T. Mizuno, E. T. Wurtzel, and M. Inouye, Osmoregulation of gene expression. II. DNA sequence of the envZ gene of the ompB operon of Escherichia coli and characterization of its gene product, J Biol Chem, vol.257, issue.22, pp.13692-13700, 1982.

C. Chang, S. F. Kwok, A. B. Bleecker, and E. M. Meyerowitz, Arabidopsis ethylene-response gene ETR1: similarity of product to two-component regulators, Science, vol.262, issue.5133, pp.539-583, 1993.

I. M. Ota and A. Varshavsky, A yeast protein similar to bacterial two-component regulators, Science, vol.262, issue.5133, pp.566-575, 1993.

J. Rudolph and D. Oesterhelt, Chemotaxis and phototaxis require a CheA histidine kinase in the archaeon Halobacterium salinarium, EMBO J, vol.14, issue.4, pp.667-73, 1995.

D. M. Kehoe and A. R. Grossman, Similarity of a chromatic adaptation sensor to phytochrome and ethylene receptors, Science, vol.273, issue.5280, pp.1409-1421, 1996.

S. C. Schuster, A. A. Noegel, F. Oehme, G. Gerisch, and M. I. Simon, The hybrid histidine kinase DokA is part of the osmotic response system of Dictyostelium, EMBO J, vol.15, issue.15, pp.3880-3889, 1996.

T. Mascher, J. D. Helmann, and G. Unden, Stimulus perception in bacterial signal-transducing histidine kinases, Microbiol Mol Biol Rev, vol.70, issue.4, p.1698512, 2006.

P. V. Attwood, Histidine kinases from bacteria to humans, Biochem Soc Trans, vol.41, issue.4, pp.1023-1031, 2013.

E. Shor and N. Chauhan, A case for two-component signaling systems as antifungal drug targets, PLoS Pathog, vol.11, issue.2, p.4344368, 2015.

T. W. Grebe and J. B. Stock, The histidine protein kinase superfamily, Adv Microb Physiol, vol.41, pp.139-227, 1999.

T. A. Defosse, A. Sharma, A. K. Mondal, D. De-bernonville, T. Latgé et al., Hybrid histidine kinases in pathogenic fungi, Mol Microbiol, vol.95, issue.6, pp.914-938, 2015.

N. L. Catlett, O. C. Yoder, and B. G. Turgeon, Whole-genome analysis of two-component signal transduction genes in fungal pathogens, Eukaryot Cell, vol.2, issue.6, p.326637, 2003.

T. Maeda, M. Takekawa, and H. Saito, Activation of yeast PBS2 MAPKK by MAPKKKs or by binding of an SH3-containing osmosensor, Science, vol.269, issue.5223, pp.554-562, 1995.

F. Posas, S. M. Wurgler-murphy, T. Maeda, E. A. Witten, T. C. Thai et al., Yeast HOG1 MAP kinase cascade is regulated by a multistep phosphorelay mechanism in the SLN1-YPD1-SSK1 "two-component" osmosensor, Cell, vol.86, issue.6, pp.865-75, 1996.

N. Chauhan, J. Latge, and R. Calderone, Signalling and oxidant adaptation in Candida albicans and Aspergillus fumigatus, Nat Rev Microbiol, vol.4, issue.6, pp.435-479, 2006.

K. C. Yeh and J. C. Lagarias, Eukaryotic phytochromes: light-regulated serine/threonine protein kinases with histidine kinase ancestry, Proc Natl Acad Sci, vol.95, issue.23, pp.13976-81, 1998.

P. Central and P. ,

O. Bayram, G. H. Braus, R. Fischer, and J. Rodriguez-romero, Spotlight on Aspergillus nidulans photosensory systems, Fungal Genet Biol, vol.47, issue.11, pp.900-908, 2010.

Z. Yu, O. Armant, and R. Fischer, Fungi use the SakA (HogA) pathway for phytochrome-dependent light signaling, Nat Microbiol

K. J. Boyce and A. Andrianopoulos, Fungal dimorphism: the switch from hyphae to yeast is a specialized morphogenetic adaptation allowing colonization of a host, FEMS Microbiol Rev, vol.39, issue.6, pp.797-811, 2015.

J. L. Lavín, A. García-yoldi, L. Ramírez, A. G. Pisabarro, and J. A. Oguiza, Two-component signal transduction in Agaricus bisporus: a comparative genomic analysis with other basidiomycetes through the web-based tool BASID2CS, Fungal Genet Biol, vol.55, pp.77-84, 2012.

J. L. Lavín, V. Sarasola-puente, L. Ramírez, A. G. Pisabarro, and J. A. Oguiza, Dual-histidine kinases in basidiomycete fungi, C R Biol, vol.337, issue.2, pp.111-117, 2014.

T. C. Cairns, D. J. Studholme, N. J. Talbot, and K. Haynes, New and improved techniques for the study of pathogenic fungi, Trends Microbiol, vol.24, issue.1, pp.35-50, 2015.

S. Jacob, A. J. Foster, A. Yemelin, and E. Thines, Histidine kinases mediate differentiation, stress response, and pathogenicity in Magnaporthe oryzae, Microbiologyopen, vol.3, issue.5, p.4234259, 2014.

F. Chapeland-leclerc, A. Dilmaghani, L. Ez-zaki, S. Boisnard, D. Silva et al., Systematic gene deletion and functional characterization of histidine kinase phosphorelay receptors (HKRs) in the human pathogenic fungus Aspergillus fumigatus, Fungal Genet Biol, vol.84, pp.1-11, 2015.

E. Foureau, M. Clastre, E. J. Montoya, S. Besseau, A. Oudin et al., Subcellular localization of the histidine kinase receptors Sln1p, Nik1p and Chk1p in the yeast CTG clade species Candida guilliermondii, Fungal Genet Biol, vol.65, pp.25-36, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01160165

J. A. Calera, X. J. Zhao, D. Bernardis, F. Sheridan, M. Calderone et al., Avirulence of Candida albicans CaHK1 mutants in a murine model of hematogenously disseminated candidiasis, Infect Immun, vol.67, issue.8, p.96739, 1999.

K. V. Clemons, T. K. Miller, C. P. Selitrennikoff, and D. A. Stevens, Fos-1, a putative histidine kinase as a virulence factor for systemic aspergillosis, Med Mycol, vol.40, issue.3, pp.259-62, 2002.

J. C. Nemecek, M. Wüthrich, and B. S. Klein, Global control of dimorphism and virulence in fungi, Science, vol.312, issue.5773, pp.583-591, 2006.

M. Viaud, S. Fillinger, W. Liu, J. S. Polepalli, L. Pêcheur et al., A class III histidine kinase acts as a novel virulence factor in Botrytis cinerea, Mol Plant Microbe Interact, vol.19, issue.9, pp.1042-50, 2006.

Y. Bahn, K. Kojima, G. M. Cox, and J. Heitman, A unique fungal two-component system regulates stress responses, drug sensitivity, sexual development, and virulence of Cryptococcus neoformans, Mol Biol Cell, vol.17, issue.7, p.1483045, 2006.

G. Zhou, J. Wang, L. Qiu, and M. Feng, A Group III histidine kinase (mhk1) upstream of high-osmolarity glycerol pathway regulates sporulation, multi-stress tolerance and virulence of Metarhizium robertsii, a fungal entomopathogen, Environ Microbiol, vol.14, issue.3, pp.817-846, 2011.