Accéder directement au contenu Accéder directement à la navigation

A single Bayesian network classifier for monitoring with unknown classes

Abstract : In this paper, the Conditional Gaussian Networks (CGNs), a form of Bayesian Networks (BN), are used as a statistical process monitoring approach to detect and diagnose faults. The proposed approach improves the structure of Bayesian networks and generalizes a few results regarding statistical tests and the use of an exclusion criterion. The proposed framework is evaluated using data from the benchmark Tennessee Eastman Process (TEP) with various scenarios.
Type de document :
Article dans une revue
Liste complète des métadonnées

https://hal.univ-angers.fr/hal-02489918
Contributeur : Sylvain Verron <>
Soumis le : lundi 24 février 2020 - 17:28:28
Dernière modification le : jeudi 19 mars 2020 - 14:09:33

Identifiants

Collections

Citation

Mohamed Amine Atoui, Achraf Cohen, Sylvain Verron, Abdessamad Kobi. A single Bayesian network classifier for monitoring with unknown classes. Engineering Applications of Artificial Intelligence, Elsevier, 2019, 85, pp.681-690. ⟨10.1016/j.engappai.2019.07.016⟩. ⟨hal-02489918⟩

Partager

Métriques

Consultations de la notice

88