M. Bansal, V. Belcastro, A. Ambesi-impiombato, and D. Di-bernardo, How to infer gene networks from expression profiles, Molecular Systems Biology, vol.3, issue.1, p.78, 2007.

G. Altay and F. Emmert-streib, Inferring the conservative causal core of gene regulatory networks, BMC Systems Biology, vol.4, issue.1, p.132, 2010.

D. Marbach, J. C. Costello, R. Küffner, N. M. Vega, R. J. Prill et al., Wisdom of crowds for robust gene network inference, Nature Methods, vol.9, issue.8, pp.796-804, 2012.

S. Friedel, B. Usadel, N. Von-wiren, and N. Sreenivasulu, Reverse Engineering: A Key Component of Systems Biology to Unravel Global Abiotic Stress Cross-Talk, Frontiers in Plant Science, vol.3, 2012.

R. Sharan and T. Ideker, Modeling cellular machinery through biological network comparison, Nature Biotechnology, vol.24, issue.4, pp.427-433, 2006.

G. Altay, M. Asim, F. Markowetz, and D. E. Neal, Differential C3net reveals disease networks of direct physical interactions, BMC Bioinformatics, vol.12, issue.1, p.296, 2011.

T. Ideker and N. J. Krogan, Differential network biology, Molecular Systems Biology, vol.8, p.565, 2012.

A. L. Barabási, N. Gulbahce, and J. Loscalzo, Network Medicine: A Network-based Approach to Human Disease, Nature reviews. Genetics, vol.12, issue.1, pp.56-68, 2011.

V. Pelechano and L. M. Steinmetz, Gene regulation by antisense transcription, Nature Reviews Genetics, vol.14, issue.12, pp.880-893, 2013.

H. Yi and E. J. Richards, A Cluster of Disease Resistance Genes in Arabidopsis Is Coordinately Regulated by Transcriptional Activation and RNA Silencing, The Plant Cell, vol.19, issue.9, pp.2929-2939, 2007.

J. M. Celton, S. Gaillard, M. Bruneau, S. Pelletier, S. Aubourg et al., Widespread anti-sense transcription in apple is correlated with siRNA production and indicates a large potential for transcriptional and/or post-transcriptional control, New Phytologist, vol.203, issue.1, pp.287-299, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01209978

P. Langfelder and S. Horvath, WGCNA: an R package for weighted correlation network analysis, BMC Bioinformatics, vol.9, issue.1, p.559, 2008.

A. A. Margolin, I. Nemenman, K. Basso, C. Wiggins, G. Stolovitzky et al., ARACNE: An Algorithm for the Reconstruction of Gene Regulatory Networks in a Mammalian Cellular Context, BMC Bioinformatics, vol.7, issue.1, p.7, 2006.

X. Zhang, K. Liu, Z. P. Liu, B. Duval, J. M. Richer et al., NARROMI: a noise and redundancy reduction technique improves accuracy of gene regulatory network inference, Bioinformatics, vol.29, issue.1, pp.106-113, 2013.

J. H. Bullard, E. Purdom, K. D. Hansen, and S. Dudoit, Evaluation of statistical methods for normalization and differential expression in mRNA-Seq experiments, BMC Bioinformatics, vol.11, p.94, 2010.

X. Qiu, H. Wu, and R. Hu, The impact of quantile and rank normalization procedures on the testing power of gene differential expression analysis, BMC Bioinformatics, vol.14, p.124, 2013.

R. Steuer, J. Kurths, C. O. Daub, J. Weise, and J. Selbig, The mutual information: Detecting and evaluating dependencies between variables, Bioinformatics, vol.18, issue.2, pp.231-240, 2002.

Z. Kurt, N. Aydin, and G. Altay, A comprehensive comparison of association estimators for gene network inference algorithms, Bioinformatics, vol.30, issue.15, pp.2142-2149, 2014.

S. S. Shen-orr, R. Milo, S. Mangan, and U. Alon, Network motifs in the transcriptional regulation network of Escherichia coli, Nature Genetics, vol.31, issue.1, pp.64-68, 2002.

H. W. Ma, B. Kumar, U. Ditges, F. Gunzer, J. Buer et al., An extended transcriptional regulatory network of Escherichia coli and analysis of its hierarchical structure and network motifs, Nucleic Acids Research, vol.32, issue.22, pp.6643-6649, 2004.

N. Guelzim, S. Bottani, P. Bourgine, and F. Képès, Topological and causal structure of the yeast transcriptional regulatory network, Nature Genetics, vol.31, issue.1, pp.60-63, 2002.

T. V. Bulcke, K. V. Leemput, B. Naudts, P. V. Remortel, H. Ma et al., SynTReN: a generator of synthetic gene expression data for design and analysis of structure learning algorithms, BMC Bioinformatics, vol.7, issue.1, p.43, 2006.

M. Legeay, B. Duval, and J. P. Renou, Differential functional analysis and change motifs in gene networks to explore the role of anti-sense transcription, International Symposium on Bioinformatics Research and Applications, pp.117-126, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01412515

M. Legeay, B. Duval, and J. Renou, Inference and differential analysis of extended core networks: A way to study anti-sense regulation, IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2016, pp.284-287, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01467169

P. Shannon, A. Markiel, O. Ozier, N. S. Baliga, J. T. Wang et al., Cytoscape: A Software Environment for Integrated Models of Biomolecular Interaction Networks, Genome Research, vol.13, issue.11, pp.2498-2504, 2003.

R. M. Karp, Reducibility among Combinatorial Problems, Complexity of Computer Computations. The IBM Research Symposia Series, pp.85-103, 1972.

A. Sadeghi and H. Fröhlich, Steiner tree methods for optimal sub-network identification: an empirical study, BMC Bioinformatics, vol.14, p.144, 2013.