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Abstract

Background: Systems biology aims to analyse regulation mechanisms into the cell. By mapping interactions
observed in different situations, differential network analysis has shown its power to reveal specific cellular responses
or specific dysfunctional regulations. In this work, we propose to explore on a large scale the role of natural anti-sense
transcription on gene regulation mechanisms, and we focus our study on apple (Malus domestica) in the context of
fruit ripening in cold storage.

Results: We present a differential functional analysis of the sense and anti-sense transcriptomic data that reveals
functional terms linked to the ripening process. To develop our differential network analysis, we introduce our
inference method of an Extended Core Network; this method is inspired by C3NET, but extends the notion of
significant interactions. By comparing two extended core networks, one inferred with sense data and the other one
inferred with sense and anti-sense data, our differential analysis is first performed on a local view and reveals
AS-impacted genes, genes that have important interactions impacted by anti-sense transcription. The motifs
surrounding AS-impacted genes gather transcripts with functions mostly consistent with the biological context of the
data used and the method allows us to identify new actors involved in ripening and cold acclimation pathways and to
decipher their interactions. Then from a more global view, we compute minimal sub-networks that connect the
AS-impacted genes using Steiner trees. Those Steiner trees allow us to study the rewiring of the AS-impacted genes in
the network with anti-sense actors.

Conclusion: Anti-sense transcription is usually ignored in transcriptomic studies. The large-scale differential analysis
of apple data that we propose reveals that anti-sense regulation may have an important impact in several cellular
stress response mechanisms. Our data mining process enables to highlight specific interactions that deserve further
experimental investigations.

Keywords: Differential network analysis, Anti-sense regulation, Functional analysis

Background
Understanding cell regulation mechanism is a key issue
in bioinformatics. In the last two decades, large-scale
gene expression profiling has led to considerable advances
on this topics. Many discoveries have been obtained by
differential expression analyses. In medicine, molecular
classification of diseases may be achieved by looking for
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differentially expressed genes when comparing microar-
ray datasets from healthy and disease samples [1]. Even if
useful as prognostic tools, these approaches do not pro-
vide explanations about the dysfunctional mechanisms
that cause the disease. Therefore, as reviewed in [2], recent
works move to differential networking in order to identify
cell regulations that are altered in disease samples.
Differential network biology [3, 4] refers to a set of

works that rely on differential networkmapping to analyse
interactions between components of a biological system.
These works study the changes that can be observed
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in the interaction networks representing biological sys-
tems when different environmental conditions, different
tissue types, different disease states or different species are
considered.
One type of approach in network biology is to integrate

static interaction knowledge with dynamic changes in
gene expression or metabolic fluxes. In [5], the authors
propose to screen a knownmolecular interaction network
to identify active sub-networks; an active sub-network
is a connected region of the network with an unex-
pected high level of differential expression over particular
sets of conditions. The top-scoring active sub-networks
help to uncover regulatory mechanisms that control the
expression changes in these experiments. In [6], the inte-
gration of a static protein-protein interaction network
with ageing-related gene expression data is used to iden-
tify cellular changes related to age. An interaction from
the reference network is put in the network associated
to age A if the two related proteins are expressed in
the datasets relative to A. The topologies of 37 differ-
ent age-specific networks are analysed. While the global
network topology does not exhibit significant changes
with age, the measures of local topology (node degree,
clustering coefficient, graphlet degree, . . . ) reveal a small
set of proteins whose centrality values are correlated
with age.
Another possible approach is to compare networks

inferred from data. A lot of methods have been proposed
in the literature for the task of building an interaction
network from a collection of expression data [7–10]. In
these reverse engineering methods, the network mod-
elises gene interactions as static processes inferred from a
set of similar samples. To decipher the cellular response
to different situations, more recent studies propose to
identify differential co-expression patterns by comparing
several networks [11, 12]. The comparison may be car-
ried on pair-wise gene co-expressions by quantifying the
significant differences [13, 14]. The comparison may also
identify sub-networks containing significant changes of
regulation; in [15], the authors measure the preserva-
tion of network modules across a set of condition-specific
networks. Thus differential network analysis proposes to
identify significant interaction modifications when com-
paring networks involving the same set of actors but
related to different conditions.
The present work aims to study the impact of anti-sense

transcription on gene networks by a method inspired
by differential network analysis. Anti-sense RNAs are
endogenous RNA molecules whose partial or entire
sequences exhibit complementarity to other transcripts.
Their different functions are not completely known but
several studies suggest that they play an important role
in the regulation of gene expression [16]. Mechanisms of
anti-sense regulation can affect positively or negatively the

protein production through their impact on transcription
[17], mRNA degradation/stability [18] or final translation
[19]. More recent works have also shown that anti-sense
RNA are involved in the chromatin architecture [20].
Among their different functions, anti-sense genes can
trigger the post-transcriptional gene silencing: it is a RNA-
degradation mechanism creating small interfering RNAs
(siRNA). The anti-sense transcript and the sense tran-
script hybridize themselves to form a double strand RNA
(dsRNA). For instance, inArabidopsis thaliana, [21] found
that the RPP5 defence gene was affected by this phe-
nomena: its sense and anti-sense dsRNA are degraded
in siRNA which presumably contributes to the degrada-
tion of the sense transcript in the absence of pathogen
infection. A similar mechanism regarding the salt tol-
erance in Arabidopsis thaliana has been described [22].
The description of these regulations and the results of
genome-wide approaches [23, 24] suggest that anti-sense
genes and RNA are major actors of biological pathways
and must be integrated in the methods inferring gene
networks.
The present work deals with apple data because a pre-

vious study [24] reveals different interesting points about
anti-sense transcription in this organism. The authors
used a dedicated microarray chip and RNA-Seq of small
RNAs to analyse anti-sense transcription in eight differ-
ent organs of appleMalus domestica. In their analysis, the
three following points are important results about anti-
sense transcription. Firstly, their measures of sense and
anti-sense transcription show that, when considering the
sense genes expressed in at least one of the eight organs,
a significant level of anti-sense expression is found for
65% of them. This observation is higher than the previ-
ous studies performed on Arabidopsis thaliana [25, 26]
that identified only 30% of anti-sense expression. Sec-
ondly, the presence of short interfering RNAs is correlated
with the anti-sense transcript expression. Thirdly, the lev-
els of expression of anti-sense transcripts vary depending
on both organs andGeneOntology (GO) categories: genes
related to fruits and seeds, and belonging to the "defense"
GO class have higher levels.
The work described in this paper proposes a genome-

wide analysis of apple transcriptomic data, with measures
of anti-sense transcripts, in the context of fruit ripening
and cold storage. To identify the impact of integrating
anti-sense transcription in gene network inference, we
propose to achieve an original differential network analy-
sis where we compare two context-specific gene networks
inferred from two sets of actors: the first set is only
composed by sense transcripts, it represents a usual tran-
scriptomic study; the second set is composed by both
sense and anti-sense transcripts. By computing the major
differences between these two networks, we aim to high-
light interactions that are greatly impacted by anti-sense
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transcripts and that would be neglected in a classical gene
expression analysis.
The gene network inference methods based on sta-

tistical measures lead to infer many interactions in the
network. Some of them are noise or redundant, we call
them false positive interactions. A lot of works have been
done to minimize such false positive interactions [27, 28].
Altay and Emmert-Streib [8] proposes to study what they
call the core part of the gene network. The core network
represents the most trustworthy part of the network: it is
computed by selecting only the most significant interac-
tion for each gene. However, the constraint of selecting
only one interaction per gene seems too restrictive. We
propose to extend the core network by considering a small
number of significant interactions for each gene. There-
fore, our gene network inference method computes what
we call an Extended Core Network (ECN). We use ECN
in our differential analysis to discover the interactions of
the core network that are impacted by the integration of
the anti-sense transcripts. Our proposal is summarized
by the workflow presented in Fig. 1. We then define the
notion of AS-impacted genes to identify the genes whose
network neighbourhood is drastically different when the
anti-sense transcripts are considered. We also study the
relationships between the AS-impacted genes and we try
to explain how their neighbourhood is rearranged by
computing Steiner trees.
The rest of the paper is organized as follows. In

“Methods” section, we first present the biological sam-
ples and the differential functional analysis that we pro-
pose to study the impact of anti-sense data on functional
enrichment tests. Then we introduce the Extended Core
Network Inference algorithm and we evaluate it on arti-
ficial datasets. We also present our differential analysis
of two core gene networks built on different sets of
actors, with the associated definition of change motifs
and AS-impacted genes. We finally explain the compu-
tation of Steiner trees to study the relationships between
AS-impacted genes. In “Results and discussion” section,
we first present the results of the differential functional
analysis ; the outputs are functional terms clearly consis-
tent with ripening in cold situation. We then present the
results of our differential network study, with a detailed
biological analysis that confirms the interest of taking
into account anti-sense transcription in biological experi-
ments.

Methods
Biological material
We study the anti-sense transcription in the context
of apple fruit ripening thanks to microarray data. The
AryANE v1.0 microarray is designed to detected 63,011
predicted sense genes and 63,011 complementary anti-
sense sequences for the Malus domestica genome [29].

With this microarray, we can identify the sense and anti-
sense expression for the whole predicted genome. We
used data produced in order to study the evolution of fruit
in cold storage condition for different varieties. For each
22 genotypes we have two samples: one at harvest time
(H) and one 60 days after harvest time (60DAH) with fruits
kept at 4°C. The data produced by the microarray are the
intensity values of loci, a locus being associated to a gene.
In order to analyse the microarray data, we use the quan-
tile normalization [30, 31]. Then we selected differentially
expressed transcripts (p-val< 1%) between harvest and 60
days later. Based on a previous study [24], we applied a fur-
ther threshold of 1 log change between the two conditions.
We identified 931 sense transcripts and 694 anti-sense
transcripts differentially expressed between H and 60DAH.
We found 200 couples (i.e. sense and anti-sense comple-
mentary transcripts) among the differentially expressed
transcripts. We use all these 1,625 transcripts into our
analysis.

Differential functional analysis
As we observe a significant number of anti-sense tran-
scripts in the differentially expressed probes, we first try
to investigate the biological functions concerned by these
actors. For that, we perform a differential functional anal-
ysis [32] with the particularity to analyse on one hand the
sense data, and on the other hand the sense and anti-sense
data.
Functional enrichment is used in order to identify bio-

logical functions associated to a set of genes. It relies
on an ontology that regroups and hierarchizes a set of
terms associated to genes. An ontology is an acyclic ori-
ented graph, linking terms with a subsumption relation.
Terms are ordered from themost specific ones to themost
generic one.
The Gene Ontology Consortium provides three inde-

pendent Gene Ontologies (GO) : “molecular function”,
“biological process” and “cellular component” [33]. In a
Gene Ontology, the most generic term is the one named
after the ontology. The biochemical activity of the gene’s
product is stored in the “molecular function” GO. It only
specifies the activity, not where nor when it happens. A
“biological process” GO term refers to a process in which
the gene is involved. A biological process is an associa-
tion of several molecular function via chemical or physical
transformations. The “cellular component” GO indicates
where the product is active.
In order to identify biological functions, we will use the

“biological process” Gene Ontology and thus we associate
each gene with a GO term. As anti-sense transcripts are
not annotated, we affect to each anti-sense the annotation
of the corresponding sense gene. This decision is based
on the fact that due to its sequence complementarity, an
anti-sense transcript may interact with the corresponding
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Fig. 1 Differential network analysis. In order to identify change motifs, we realise a differential network analysis from gene networks inferred by
Extended Core Network on Sense data in one hand, and Sense and Anti-Sense data in an other hand

sense transcript, or at least with a very close member of
the gene family. In [29], an apple gene is annotated using
predicted orthologs (closest homolog) from Arabidop-
sis thaliana [34], the most studied model plant genome.
When an apple gene has no homolog, we associate the
term “unknown biological processes” to the gene and its
anti-sense.
GO slim gives a broad overview of the ontology con-

tent without the detail of the specific fine-grained terms

which are not always known. The categories were chosen
to provide a broad representation of the distribution of
biological roles. An annotation file associating a GO slim
and a GO term with each of the 126,022 apple genes has
also been created.
Once we can associate genes with GO terms, we can

perform the functional analysis in which we identify sta-
tistically over-represented GO terms in a set of genes. The
test performed is a hypergeometric test. A GO term is
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considered as statistically over-represented if the p-value
is below a given threshold, generally set to 0.05.
Many tools were developed to identify the statisti-

cally over-represented GO categories in a set of genes.
Among them, the Cytoscape App named BiNGO [35]
provides a visual representation of the ontology: one pos-
sible output of BiNGO is a graph with nodes representing
over-represented GO categories and arcs representing
the hierarchy between them. The graph also represents
the proportion of genes associated to a GO category by
the size of a node, and the colour of a node codes for
the associated p-value of the over-representation. BiNGO
uses a Bonferroni correction on the hypergeometric test
results. This correction is needed to compare the p-values
obtained for each GO categories.
Concerning the apple ripening condition that we study,

we notice an important proportion of anti-sense tran-
scripts that are differentially expressed: the set AS is
composed of 694 different transcripts whereas the S set
is composed of 931 different transcripts. Therefore it is
relevant to question the role of these anti-sense actors in
the ripening process under cold storage conditions. To
explore this question, we propose a differential functional
analysis.
We perform the differential functional analysis as

follows. We compute the over-represented GO cate-
gories on the sense set (S), then we compute the over-
represented GO categories on the sense and anti-sense set
(SAS = S ∪ AS). The use of BiNGO to perform the test
gives us two sub-graphs of the GO. We propose to com-
pute the difference of these two sub-graphs. We define
the revealed-by-AS terms as the functional terms of this
difference: they represent the functional terms that are
outputted from the ontological analysis only when the AS
transcripts are included.

Extended core network inference method
Motivations
Gene network inference from transcriptomic data has
been studied in several works [7, 9, 10]. Some inference
methods propose to reconstruct pairwise gene interac-
tion networks by using a statistical measure to infer the
co-expression or co-regulation between two genes. This
statistical criterion can be Pearson or Spearman correla-
tion [36], or mutual information [8, 27] to detect non-
linear relationships. A threshold of significance is used
to keep relevant relations in the network. The inconve-
nient with these methods is that they predict many false
positive interactions. Among these false positive interac-
tions, we find interactions that are not biologically true,
and non-direct interactions. An indirect interaction can
be observed if, for example, two genes g2 and g3 are under
the regulation of a third gene g1; in such a situation, the
statistical criterion value between g2 and g3 is probably

high and thus the method will infer an indirect interaction
between g2 and g3. With these indirect interactions, the
network becomes more complex and difficult to interpret.
Therefore some pruning methods have been proposed to
eliminate them [27]. In [8], the authors deal with this prob-
lem by proposing the Conservative Causal Core Network
(C3NET) that computes the core of a gene network. The
core of the network contains only the strongest interac-
tions of the gene network: for each gene, it selects the best
interaction (i.e. with the maximal mutual information).
The aim of our method is to identify significant changes in
the interactions when anti-sense actors are integrated by
comparing two inferred networks. Therefore, we can work
with the core of a gene network. However, the C3NET
definition of a core network may be too restrictive since
several mutual information values may be close to the
maximal. This is why we propose a gene network infer-
ence method named Extended Core Network (ECN) that
considers for each gene the most significant interactions.

Algorithm
Extended Core Network estimates the gene connections
using mutual information. We first copula-transform
[37, 38] the data to have a better estimation of the mutual
information. The mutual information M[ i, j] between
genes i and j is estimated with the same estimator used in
C3NET:

M[i, j]= 1
2
log

(
σ 2
I σ 2

J
|C|

)

where σ 2
I and σ 2

J are the variance of the expression vec-
tors I and J of genes i and j respectively, and |C| is the
determinant of the covariance matrix.
The statistical significance of pairwise mutual infor-

mation is test by re-sampling methods, as C3NET or
ARACNE [27]. Values that are not significant are set to 0
before applying the inference algorithm.
The Extended Core Network (ECN) algorithm infers a

gene network represented by an adjacency matrix. Given
a set of genes G, the first step of the algorithm is to cre-
ate the zero matrix representing the fact that no genes are
connected. The second step aims to identify the neigh-
bourhood of each gene, composed of all the genes for
which the mutual information value is maximal. In order
to compute themaximal values of themutual information,
we use an accepting rate r. Given a gene g ∈ G, g′ ∈ G is
a neighbour of g if the mutual information between g and
g′ is close to the best mutual information value of g with
respect to the accepting rate r. The accepting rate must be
between 0 and 1 where 0 means that we accept nothing
but the best neighbour and 1 means that we accept every
neighbour with a significant interaction. With an accept-
ing rate fixed at 0, ECN works approximately as C3NET
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does, the difference is that C3NET selects only one inter-
action whereas ECN accepts all the interactions in case
of two identical best values. An accepting rate fixed at 1
means that we define the core network by selecting all the
significant mutual information values of the matrix. This
is why the preprocessing step of the mutual information
matrix sets all non-significant values to 0.
The mutual information between g1 and g2 is the same

as the mutual information between g2 and g1. So C3NET
outputs a symmetrical adjacency matrix, leading in an
undirected graph. However we want to compare two core
networks and be able to identify the interactions that
changed when the anti-sense transcripts are added into
the data. This is why our algorithm outputs a asymmetri-
cal adjacencymatrix, allowing us to identify the significant
modifications in the neighbourhood of a gene.
The complexity of the ECN algorithm is O(n2), where

n is the number of genes; it is the same as C3NET
complexity [8].

Evaluation on artificial datasets
In order to compare our Extended Core Network algo-
rithm with C3NET, we use simulated data. The assess-
ment of a network inference method requires a reference
biological network; for some organisms like E. coli [39, 40]
and S. cerevisiae [41], gene networks of reasonable size
are considered as established knowledge and are used as
benchmarks in the following way. From the reference net-
work, a sub-network of the desired size is extracted; then
artificial expression datasets are produced by simulat-
ing the activity of the chosen sub-network; the inference
method is applied on these simulated data and produces
a learned network that can be compared to the original
network.
We generate our simulated data with sub-networks of E.

coli and S. cerevisiae thanks to the SynTREN [42] genera-
tor and simulator. The sub-networks are randomly gener-
ated using the neighbor addition method which creates a
connected network of n = 200 genes. We use SynTREN
to create a dataset X of p = 100 samples by simulating the
activity of the genes from the selected network.
To evaluate the error rate of each inference method,

we compare the inferred edges with the edges in the true
gene network. This comparison gives us the precision =

true positive
true positive+false positive and recall = true positive

true positive+false negative
of each method. The precision and recall are used to
compute the error measure named F1 score such that
F1 = 2 · presicion·recall

precision+recall .
The inference methods are tested in S = 500 simula-

tions. A simulation k ∈[1..S] is run with a specific dataset
Xk formed by n genes and j ∈ [p

2 ..p
]
samples randomly

selected from the dataset X generated by SynTREN.
We compare different accepting rates of Extended Core

Network with C3NET on two datasets, one from E. coli

and another from S. cerevisiae. We test ECN with accept-
ing rates ranging from 20 to 100% with a 10% step and
from 0 to 20% with a 1% step.
Figure 2 shows the box plots of the F1 scores obtained by

the simulations. To enable the comparison with C3NET,
ECN is used to produce an undirected network. The
ECN_0 method corresponds to the Extended Core Net-
work with a 0% accepting rate. The difference between
ECN_0 and C3NET occurs when at least two genes have
the best mutual information with one gene. We can
observe that ECN has a higher F1 score than C3NET on
E. coli (Fig. 2a and b) and yeast (Fig. 2c and d) when
the accepting rate is low. As expected, the F1 score of
ECN depends on the values of the accepting rate. For
low values, a rate increase improves the score, but when
the accepting rate exceeds a certain value, the F1 score
decreases. As explained before, a high accepting rate
entails an increased number of false positives, and we
observe that it greatly impacts the F1 score. We can see
this phenomena in Fig. 2a and c once the accepting rate
is higher than 10% and 20% respectively, the F1 scores
drop down to 0. From empirical observations on several
simulated datasets, we can notice that an accepting rate
between 5 and 10% is a good rate. In the Fig. 2b and d, we
can observe that the rate of 7% (ECN_0.07) is the best rate
value on those specific data.

Differential network analysis
In this section we present the methodology that we
propose in order to decipher the impact of anti-sense
transcription on gene co-expression network. This
methodology relies on the comparison of two extended
core networks that reveals AS-impacted genes and change
motifs that we define below. By computing Steiner
trees, we also observe how the interactions between
AS-impacted genes are reorganized in the network con-
taining sense and anti-sense data.

AS-impacted genes and changemotifs
We propose a differential network analysis where the
extended core network inferred from the sense only data
(S) is compared to the extended core network inferred
from the sense and anti-sense data (SAS). We focus our
analysis on a sense gene that has no sense neighbour in
the SAS extended core network. If a sense node has no
sense neighbour in the SAS network, it means that the
interactions that exist between this gene and others in
the S network are not strong enough to be present
in the SAS core network. We say that this gene is an
AS-impacted gene. An AS-impacted gene is observed
when the mutual information of this gene with an
anti-sense transcript is so strong that, even with the
accepting rate, the mutual information between this gene
and the other sense transcripts are not significant enough.
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Fig. 2 Box plots of F1 scores for C3NET and ECN with different accepting rates. The number following ECN indicates the accepting rates. The C3NET
method is the first on the left, then the ECN methods are sorted beginning with ECN_0. Box plots are obtained from 500 simulations on two
datasets : E. coli (a and b) and S. cerevisiae (c and d). Accepting rates from 0 to 100% with a 10% step are tested (a and c), and from 0 to 20% with a
1% step (b and d)
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By representing both S and SAS network in the same
graph, we can define a changemotif as a sub-graph formed
by an AS-impacted node, with all its direct neighbours
in the S and the SAS networks [32, 43]. We can iden-
tify the change motifs directly in the adjacency matrices
of both networks. Change motifs allow us to identify
local changes on interactions when the anti-sense actors
are integrated in the network inference. The information
contained in the change motifs shows the importance of
taking anti-sense into account because it reveals the inter-
actions between sense and anti-sense transcripts. Figure 3
represents a changemotif designed from the AS-impacted
node S1; the outer links of S1 in the S network (S1 � S2
and S1 � S4) are different than the outer link of S1 in the
SAS network (S1 � AS3).
A change motif surrounding an AS-impacted gene

extracts from the data a small set of genes and anti-
sense transcripts that deserves a further study. We shall
report in the “Results and discussion” section the detailed
biological analysis that we have done on these motifs.

Steiner trees to compute the rewiring of AS-impacted
sub-graphs
Change motifs allow us to have a local view of the impact
of the integration of anti-sense actors to the inference
method. We now want to have a more global view on this
impact. The AS-impacted genes are present all over the
S network, but some of them are connected, forming an
AS-impacted sub-graph. Those AS-impacted sub-graphs

Fig. 3 Illustration of a changemotif in the Extended Core Network. A
sense node is represented in blue, an anti-sense node is represented
in purple. The orange triangle-shaped node is an AS-impacted gene. A
red link is only present in the Sense network. A green link is present in
the Sense and Anti-Sense network. The link S1 � S2 means that the
mutual information between S1 and S2 is maximal for S1

represent a part of the network strongly impacted by anti-
sense actors. In order to analyse this impact, we study
the rearrangement of the AS-impacted gene interactions
in the SAS network. In other words, we look for indirect
interactions in the SAS network between AS-impacted
genes that interacts directly in the S network. This analysis
is performed thanks to the Steiner tree problem explained
below.
Given an undirected graph G = (V ,E) with a set of ver-

tices V and a set of edges E, and given a subset of vertices
S ⊆ V , the minimal Steiner tree problem is to find a sub-
graphG′ ofG such that S is contained inG′, all the vertices
are connected by a path, and the number of edges of G′
is minimal. For a weighted graph, the aim is to minimize
the total weight of the edges of G′. The Steiner tree prob-
lem is used to solve several problems, such as extracting
information from a large database of molecular interac-
tions [44]. For example, for a given set of proteins, the
Steiner tree problem may be applied to the interactome
graph with these proteins as terminal nodes to compute
a minimal set of relations connecting all these proteins.
An experimental study used the Steiner tree problem on a
large human protein-protein interaction network [45].
The minimum Steiner tree problem is a NP-complete

combinatorial optimization problem [46] and several
heuristic methods have been designed to use it with large
graphs. In our workflow, we use the shortest paths based
approximation [45] that computes the Steiner tree ST step
by step. The first node added to the Steiner tree ST is one
of the terminal node. Then, the shortest paths between
all the remaining terminal nodes and the nodes of ST are
computed, and the closest terminal node is connected to
the Steiner tree ST with the shortest path. Once all the ter-
minal nodes are in the Steiner tree ST, the resulting tree is
pruned thanks to the minimum spanning tree method.
SteinerNet is a R package that allows to compute the

minimum Steiner tree using one exact algorithm, or find
a solution using four different approximate algorithms
[45]. The shortest paths based approximation is one of
the heuristic developed in SteinerNet that can be used on
large graphs such as the protein-protein or gene networks.
The SteinerNet package was last updated in 2013; then
as the dependencies were obsolete, it was removed from
the CRAN repository. We updated the package to the R
version 3.2.0 and we will be pleased to share this updated
package upon request.
In order to analyse the rewiring of AS-impacted genes,

we solve the minimum Steiner tree problem with the sub-
set of vertices composed by a AS-impacted sub-graph.
AS-impacted sub-graphs have a particularity: all the genes
have a direct connection in S, but because the genes are
AS-impacted, all those connections are not represented
in the sense and anti-sense network SAS. Thus it is inter-
esting to wonder how these nodes rewired in SAS. If
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we can find a minimal Steiner tree for an AS-impacted
sub-graph, the tree show the relationships between the
AS-impacted genes of the sub-graph in the sense and anti-
sense network. It shows how anti-sense actors intervene in
the relationships between connected AS-impacted genes.
Several exploitations of the Steiner trees can be done. In
one hand, the Steiner tree can be visualized to help focus
on interesting interactions. In an other hand, we can per-
form a functional analysis to identify the main biological
functions impacted by anti-sense transcription.

Results and discussion
Differential functional analysis
We performed two functional analyses that, for a
p-value threshold of 0.05, identified GO categories for
sense data in one hand and for sense and anti-sense data
in an other hand. This differential functional analysis pro-
vided 104 revealed-by-AS terms. The list of the revealed-
by-AS terms associated with their p-value is given in
Additional file 1. Among those terms, we can see terms
related to cell wall (i.e. “cell wall organization or biogene-
sis”, p-value: 0.004), cold response (i.e. “response to cold”,
p-value: 0.035) and osmotic response (i.e. “water trans-
port”, p-value: 0.001). Those biological functions, related
to response to stress and fruit ripening, are consistent
with our experimental context since fruits are stored in
cold chambers while the ripening continues (the different
processes involved in this experiment are more thor-
oughly explained below). Without the anti-sense data,
terms related to such conditions are not in the result of the
functional enrichment analysis.

Differential network analysis
The number of change motifs depends on the accepting
rate used in the Extended Core Network method, because
this rate determines the neighbourhood size of nodes, and
consequently of AS-impacted nodes. We identified 308
change motifs in the 60DAH experiment with an accept-
ing rate of 5%. The number of change motifs is equal to
the number of AS-impacted genes, and it represents about
30% of sense actors.
We performed the differential network analysis on the

60DAH experiment. Figure 4 shows the graphical result
of this analysis. We can see the repartition of the AS-
impacted genes (orange triangles) and note that they are
spread in the network which means that AS transcrip-
tion impacts is not restricted to a specific set of genes.
The graph was drawn using Cytoscape [47] and features of
Cytoscape may be used to mine this graph.

Enrichment analysis of changemotifs
We identified 308 change motifs in the 60DAH experi-
ment. Each change motif contains an AS-impacted gene
and its direct neighbors in the S network and in the SAS

Fig. 4 Extended Core Network with a 5% accepting rate for
sense-only 60DAH experiment. Orange triangle-shaped nodes
represent AS-impacted genes: they are connected to one or several
sense nodes in this graph, but in the SAS network, they only have
anti-sense neighbors

network. For this analysis, each motif is enlarged by also
considering the direct neighbours of its anti-sense actors;
as the anti-sense actors impact the central gene of the
motif, we want to consider the other interactions that they
may have in the SAS network. In the following, the expres-
sion “change motif” will refer to an enlarged change motif.
As a change motif is a gene set produced by our analy-
sis work-flow, it is interesting to know if some biological
functions are over-represented by this set. The change
motifs are formed on average of 5 genes. Due to this
small set size, we perform an enrichment analysis of each
change motif using the apple GO slim, which contains 14
categories. Additional file 2 presents the results of this
enrichment analysis.
The main post-harvest factors that influence apple soft-

ening include temperature, atmosphere, relative humidity,
calcium treatment, and ethylene [48]. Artificial preven-
tion of ripening process (and keeping quality) is the
main goal of controlled atmosphere storage (low oxygen
and high carbon dioxide) and/or cold storage (low tem-
peratures). For cold storage, apples during post-harvest
time are stored at 0-4°C. Low temperatures influence the
post-harvest biology of apple fruits. Chilling stress is a
physiological disorder that limits the storage of chilling
sensitive fruits at low, but non-freezing temperatures [49].
Low temperatures disrupt the balance of reactive oxygen
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species (ROS), leading to its accumulation and oxidative
stress [50]. Therefore, in the particular case of the specific
transcriptome of apple after two months of cold storage,
it is expected to find genes involved in: ripening/cell wall
modifications, cold signaling/response to cold stress and
response to oxidative stress.
We identified 308 motifs as AS-impacted in the tran-

scriptome of the two months storage set (60DAH). Taking
in account the homologies between apple and Arabidop-
sis genes when available, 72 of them displayed a significant
enrichment in the GO slim categories such as “develop-
mental processes”, “response to abiotic or biotic stimu-
lus”, “response to stress” and “transport” (see Additional
file 3).
The 291 apple genes involved in the 72 enriched motifs

correspond to 209 putative Arabidopsis orthologs. Inter-
estingly, a closer identification of putative biological func-
tions based on the TAIR annotations [34] allowed to
relate no less than 127 of them (i.e. 61%) to the above
cited processes, in summary: ripening, cold and oxida-
tive stress. They were found in 88% of the motifs (see
Additional file 3), indicating that the majority of the genes
belonging to change motifs can be directly related to the
biological process of fruit post-harvest conservation at
low temperature.
Besides, 81 apple genes lack any information on their

biological function and are not considered in this anal-
ysis. Arabidopsis orthologs of some of them have been
cited in deregulated gene lists of various conditions of
stress response, which is not inconsistent per se, but
not highlighted in this study. The consistency of the AS
impacted motifs with the apple maturation process under
cold temperature can be easily highlighted through the
three following examples.
The motif #1 (Fig. 5a) contains 4 genes:

MDP0000250286 is encoding for a putative super-
oxide dismutase responding to cold stress [51],
MDP0000120044 is similar to the Cyt P450 monoxy-
genase CYP714A1 involved in gibberellic acid pathway
[52] and MDP0000251669 to a thioredoxin [53], all of
them involved in the oxidative stress response. Lastly,
MDP0000813397 is encoding a brassinosteroid signaling
kinase [54], brassinosteroid being a plant hormone family
involved in cold stress response [55]. In this first example,
the members of the motif are all directly related to the
cold stress response which occurs during the storage
process.
Motif #2 (Fig. 5b) contains two genes involved in the

response to cold, MDP0000205588, encoding an osmotic
fatty acid desaturase [56] and MDP0000249561, the
BZIP44 transcription factor also putatively involved in the
control of fruit maturation through cell wall loosening
[57, 58]; and two genes involved in response to oxidative
stress: MDP0000309881, similar to the hypoxia-induced

gene domain 1 [59], andMDP0000920069, encoding a res-
piratory burst oxidase protein F [60] also responsive to
ethylene and abscisic acid.Within this motif, only the gene
MDP0000252890 encoding a rubisco subunit 3B, could
not be directly related to the studied process according to
scientific literature.
Out of the eight genes of the Motif #3 (Fig. 5c), five

of them are perfectly consistent with the fruit ripen-
ing process under cold temperature: MDP0000250138
is an ortholog of BIN2, a member of the ATSK
(shaggy-like kinase) family which acts in the cross-talk
between auxin and brassinosteroid signaling pathways
[61], MDP0000797759, a glycine-rich RNA binding pro-
tein which increases stress tolerance under conditions of
low temperature [62], MDP0000151721 is an ortholog
of Fro1 involved in cold acclimation and osmotic stress
response [63], MDP0000263744, a xyloglucan endotrans-
glycosylase involved in cell wall modification and cold
acclimation [64], and finally MDP0000917574, an alde-
hyde dehydrogenase 1A which is a critical gene of the
phenylpropanoid pathway involved in the production of
antioxidant components and the response to biotic and
abiotic stresses [65].
In summary, these results show that the motifs obtained

by taking in account the AS transcriptome in the network
inference highlights new actors. In this case we clearly
show that biological functions of these new actors can be
related to the studied biological question. Therefore the
consideration of these new actors, either sense transcripts,
or anti-sense transcripts supposed to act as regulators
of the corresponding coding genes, sheds a new light of
the putative regulation networks underlying the studied
processes.
Moreover, a synthetic view of the whole set of AS-

impactedmotifs can provide new avenues of work to point
pathways or genes whose importance could have been
underestimated without this input. In this case it is note-
worthy that at least 11 occurrences of genes related to the
brassinoids pathway appear in the set of 72 motifs. Brassi-
noids have been reported to be involved in a range of
developmental processes, such as stem and root growth,
floral initiation, and the development of flowers and fruits
[55, 66]. Studies also revealed that brassinoids can confer
resistance of plants to various abiotic and biotic stresses,
including cold stress [67, 68]. Li et al. [69] even reported
that brassinolide mediates tolerance of plants to abiotic
stress in general and cold stress in particular. Brassinoids
have also been reported as involved in grape berry ripen-
ing [70] and early fruit development in cucumber [71], but
their implication has not been reported yet in apple devel-
opment andmaturation. The present study has shown that
several genes involved in the brassinoid pathway might
play a role in the apple maturation and conservation at low
temperature.
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Fig. 5 Change motifs from the 60DAH experiment. Orange and blue nodes represent sense nodes, an orange node being an AS-impacted gene.
Purple nodes represent anti-sense nodes. A red link is a link only from the sense network. A green link is a link only from the sense and anti-sense
network. A gray link is a link from both networks. Each apple gene (MDP) is associated with its best homolog in Arabidopsis thaliana. a Change motif
#1. The AS-impacted gene is MDP 0000251669_r. b Change motif #2. The AS-impacted gene is MDP 0000205588_r. c Change motif #3. The
AS-impacted gene is MDP 0000917574_r
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Fig. 6 Steiner tree of an AS-impacted sub-graph from the 60DAH experiment. Orange nodes are AS-impacted genes, blue nodes are Steiner sense
nodes, purple nodes are Steiner anti-sense nodes. Gray links are connections from the SAS network, red links are connections from the S network.
Bigger nodes corresponds to the nodes from the change motif #3

AS-impacted sub-graphs
In the 60DAH experiment we identify 29 AS-impacted
sub-graphs, when considering only graphs with at least
three connected AS-impacted nodes. For instance, Fig. 6
shows a Steiner tree containing the AS-impacted gene of
the change motif #3. This Steiner tree connect all the AS-
impacted genes (drawn in orange triangle-shaped nodes)
thanks to sense (blue) and anti-sense (purple) nodes from
the SAS network. Red links are interactions from the S
network impacted by anti-sense transcription; they do
not appear in the SAS network (nor in the Steiner tree).
With this visualization, we can see that the core of the
network has been highly modified by the integration of
anti-sense actors, however AS-impacted genes that were
direct neighbors in the S network are still connected but
in an indirect manner. The Steiner tree from Fig. 6 is com-
posed by 26 AS-impacted genes and 82 Steiner nodes. We
perform a functional enrichment of AS-impacted genes
in one hand and the whole genes of the Steiner tree in
an other hand using the GO slim. The 26 AS-impacted
genes are tagged with two GO slim categories: “other

metabolic processes” (p-value: 0.030) and “transcription,
DNA-dependent” (p-value: 0.023). The functional enrich-
ment of the 108 genes of the Steiner tree are enriched by
the “response to abiotic or biotic stimulus” GO slim cate-
gory with a p-value of 0.048, which is consistent with our
experimental context.

Conclusion
The original proposition of our work is to analyse the
impact of anti-sense transcription on a large scale. To
achieve this goal, sense and anti-sense transcripts are
treated in the same way in our gene network inference
method. By considering the recent ideas of differential
network analysis, our main proposal is to compare net-
work inferred from different sets of data: the sense data
in one hand, and both the sense and anti-sense data in an
other hand. To compare the inferred networks, we first
propose the Extended Core Network inference method.
Secondly we define the differential network analysis that
we performed with the Extended Core Network method.
The comparison of two networks inferred on different
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sets of actors shows that the integration of the anti-sense
data clearly modifies the network topology. We define the
AS-impacted genes and the change motifs, that identify
those changes in the network topology. The biological
analysis of changemotifs on apple data highlights interest-
ing actors and emphasizes the interest to take anti-sense
data into account in transcriptomic analysis. The differ-
ential network analysis identifies subsets of new actors in
the context of maturation and conservation of the fruit
that will be explored in further studies. We also propose
to study the AS-impacted sub-graphs to provide a more
global view of the impact of anti-sense transcription on
biological functions.

Additional files

Additional file 1: List of the GO categories revealed by anti-sense data.
List of the 104 revealed-by-AS terms. Column A: Identifier of the GO
category. Column B: significant p-value. Column C: significant corrected
p-value below 0.05, the correction used is the Benjamini & Hochberg False
Discovery Rate (FDR) correction (Revealed-by-AS terms are ordered
according to this criteria). Column D: Number of apple genes from the
sample tagged with the GO category. Column E: Number of apple genes
from the genome tagged with the GO category. Column F: Number of
apple genes in the sample. Column G: Number of apple genes in the
genome. Column H: Name of the GO category. Column I: Apple genes
from the sample tagged with the GO category. Column J: Arabidopsis
orthologs of the apple genes from the sample tagged with the GO
category; here an Arabidopsis ortholog with an anti-sense apple gene is
identified by the “_AS” prefix. (ODS 57 kb)

Additional file 2: Change motifs enrichment. Results of the enrichment
analysis of the 308 change motifs from the 60DAH experiment. Columns A
to D: apple genes, nodes of the change motif. Column E: GO slim category
significantly over-represented by the genes present in the change motif
(“No enrichment” if there is no significantly over-represented category).
Column F: significant p-value below 0.05 (-1 if no enrichment). Column G:
Apple genes from the sample tagged with the GO slim category. Column
H: Number of apple genes in the genome. Column I: Number of apple
genes in the sample. Column J: Number of apple genes from the genome
tagged with the GO slim category. Column K: Number of apple genes from
the sample tagged with the GO slim category. Columns L to O: Arabidopsis
orthologs of the apple genes of the change motif. Column P: Arabidopsis
orthologs of the apple genes from the sample tagged with the GO
category. (ODS 34 kb)

Additional file 3: Functional annotation of change motifs significantly
enriched according GO slim classification. For each enriched change motif
from Additional file 2, we associate functional keywords from the TAIR
annotation. Columns A to D: apple genes, nodes of the change motif.
Column E: GO slim category significantly over-represented by the genes
present in the change motif. Column F: significant p-value below 0.05
(change motifs are ordered according to this criteria). Column G:
Arabidopsis orthologs tagged by the GO slim term associated with the
change motif. Columns H to N: Functional keywords from Arabidopsis
orthologs (TAIR annotations), keywords consistent with the biological
context (fruit ripening in abiotic stress condition) are highlighted in orange.
In columns H to N, we use the following abbreviations: ABA: abscissic acid;
SA: salicylic acid; JA: jasmonate acid; ROS: reactive oxygen species. The
three change motifs described in the manuscript (Fig. 5) are highlighted in
blue. (ODS 23 kb)

Additional file 4: H experiment — http://www.info.univ-angers.fr/
%7elegeay/AF4%5fHarvest.zip. Normalized data (without background
suppression) of the H (Harvest) experiment. The file contains the
normalized expression data of the 126,022 apple genes (rows) of the 22

samples (columns). The normalization method used is the quantile
normalization. (TXT 1 kb)

Additional file 5: 60DAH experiment — http://www.info.univ-angers.fr/
%7elegeay/AF5%5f60DAH.zip. Normalized data (without background
suppression) of the 60DAH (60 Days After Harvest) experiment. The file
contains the normalized expression data of the 126,022 apple genes (rows)
of the 22 samples (columns). The normalization method used is the
quantile normalization. (TXT 1 kb)

Abbreviations
AS: Anti-sense; C3NET: Conservative causal core network; ECN: Extended core
network; GO: Gene ontology; RNA: Ribonucleic acid; S: Sense; SAS: Sense and
anti-sense
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