T. Ago, J. Kuroda, J. Pain, C. Fu, H. Li et al., Upregulation of Nox4 by hypertrophic stimuli promotes apoptosis and mitochondrial dysfunction in cardiac myocytes, Circ. Res, vol.106, pp.1253-1264, 2010.

A. Al-mehdi, V. M. Pastukh, B. M. Swiger, D. J. Reed, M. R. Patel et al., Perinuclear mitochondrial clustering creates an oxidant-rich nuclear domain required for hypoxia-induced transcription, Sci. Signal, vol.5, pp.168-183, 2011.

A. R. Cantelmo, A. Brajic, and P. Carmeliet, Endothelial metabolism driving angiogenesis: emerging concepts and principles, Cancer J. Sudbury Mass, vol.21, pp.244-249, 2015.

E. C. Chan, P. Van-wijngaarden, G. Liu, F. Jiang, H. Peshavariya et al., Involvement of Nox2 NADPH oxidase in retinal neovascularization, Invest. Ophthalmol. Vis. Sci, vol.54, pp.7061-7067, 2013.

J. Chang, H. J. Jung, S. H. Jeong, H. K. Kim, J. Han et al., A mutation in the mitochondrial protein UQCRB promotes angiogenesis through the generation of mitochondrial reactive oxygen species, Biochem. Biophys. Res. Commun, vol.455, pp.290-297, 2014.

N. Clere, E. Lauret, Y. Malthiery, R. Andriantsitohaina, and S. Faure, Estrogen receptor alpha as a key target of organochlorines to promote angiogenesis, Angiogenesis, vol.15, pp.745-760, 2012.

D. Bock, K. Georgiadou, M. Schoors, S. Kuchnio, A. Wong et al., Role of PFKFB3-driven glycolysis in vessel sprouting, Cell, vol.154, pp.651-663, 2013.

S. I. Dikalov, R. R. Nazarewicz, A. Bikineyeva, L. Hilenski, B. Lassègue et al., Nox2-induced production of mitochondrial superoxide in angiotensin II-mediated endothelial oxidative stress and hypertension, Antioxid. Redox Signal, vol.20, pp.281-294, 2014.

S. I. Dikalov, R. R. Nazarewicz, A. Bikineyeva, L. Hilenski, B. Lassègue et al., Nox2-induced production of mitochondrial superoxide in angiotensin II-mediated endothelial oxidative stress and hypertension, Antioxid. Redox Signal, vol.20, pp.281-294, 2014.

S. Dikalov, Cross talk between mitochondria and NADPH oxidases. Free Radic, Biol. Med, vol.51, pp.1289-1301, 2011.

C. K. Domigan, C. M. Warren, V. Antanesian, K. Happel, S. Ziyad et al., Autocrine VEGF maintains endothelial survival through regulation of metabolism and autophagy, J. Cell Sci, vol.128, pp.2236-2248, 2015.

A. K. Doughan, D. G. Harrison, and S. I. Dikalov, Molecular mechanisms of angiotensin II-mediated mitochondrial dysfunction: linking mitochondrial oxidative damage and vascular endothelial dysfunction, Circ. Res, vol.102, pp.488-496, 2008.

G. R. Drummond and C. G. Sobey, Endothelial NADPH oxidases: which NOX to target in vascular disease?, Trends Endocrinol. Metab. TEM, vol.25, pp.452-463, 2014.

J. Duarte, E. Andriambeloson, M. Diebolt, and R. Andriantsitohaina, Wine polyphenols stimulate superoxide anion production to promote calcium signaling and endothelial-dependent vasodilatation, Physiol. Res. Acad. Sci. Bohemoslov, vol.53, pp.595-602, 2004.

L. Duluc, C. Jacques, R. Soleti, F. Iacobazzi, G. Simard et al., Modulation of mitochondrial capacity and angiogenesis by red wine polyphenols via estrogen receptor, NADPH oxidase and nitric oxide synthase pathways, Int. J. Biochem. Cell Biol, vol.45, pp.783-791, 2013.

G. Eelen, B. Cruys, J. Welti, K. De-bock, and P. Carmeliet, Control of vessel sprouting by genetic and metabolic determinants, Trends Endocrinol. Metab. TEM, vol.24, pp.589-596, 2013.

R. S. Frey, M. Ushio-fukai, and A. B. Malik, NADPH oxidase-dependent signaling in endothelial cells: role in physiology and pathophysiology, Antioxid. Redox Signal, vol.11, pp.791-810, 2009.

T. Hagen, Oxygen versus reactive oxygen in the regulation of HIF-1?: the balance tips, Biochem. Res. Int, p.436981, 2012.

V. Helfinger, N. Henke, S. Harenkamp, M. Walter, J. Epah et al., The NADPH oxidase Nox4 mediates tumour angiogenesis, Acta Physiol. Oxf. Engl, vol.216, pp.435-446, 2016.

P. Hillon, B. Guiu, J. Vincent, and J. Petit, Obesity, type 2 diabetes and risk of digestive cancer, Gastroentérol. Clin. Biol, vol.34, pp.529-533, 2010.

W. J. Huss, C. F. Hanrahan, R. J. Barrios, J. W. Simons, and N. M. Greenberg, Angiogenesis and prostate cancer: identification of a molecular progression switch, Cancer Res, vol.61, pp.2736-2743, 2001.

J. H. Jang, J. N. Chun, S. Godo, G. Wu, H. Shimokawa et al., ROS and endothelial nitric oxide synthase (eNOS)-dependent trafficking of angiotensin II type 2 receptor begets neuronal NOS in cardiac myocytes, Basic Res. Cardiol, vol.110, issue.21, 2015.

D. K. Johnson, K. J. Schillinger, D. M. Kwait, C. V. Hughes, E. J. Mcnamara et al., Inhibition of NADPH oxidase activation in endothelial cells by ortho-methoxy-substituted catechols, Endothelium, vol.9, pp.191-203, 2002.

Y. Kim and T. V. Byzova, Oxidative stress in angiogenesis and vascular disease, Blood, vol.123, pp.625-631, 2014.

M. A. Kluge, J. L. Fetterman, and J. A. Vita, Mitochondria and endothelial function, Circ. Res, vol.112, pp.1171-1188, 2013.

Y. Li, M. Xi, Y. Guo, C. Hai, W. Yang et al., NADPH oxidasemitochondria axis-derived ROS mediate arsenite-induced HIF-1? stabilization by inhibiting prolyl hydroxylases activity, Toxicol. Lett, vol.224, pp.165-174, 2014.

J. J. Lugus, G. A. Ngoh, M. M. Bachschmid, and K. Walsh, Mitofusins are required for angiogenic function and modulate different signaling pathways in cultured endothelial cells, J. Mol. Cell. Cardiol, vol.51, pp.885-893, 2011.

D. Malinska, S. R. Mirandola, and W. S. Kunz, Mitochondrial potassium channels and reactive oxygen species, FEBS Lett, vol.584, pp.2043-2048, 2010.

R. W. Miller, How environmental hazards in childhood have been discovered: carcinogens, teratogens, neurotoxicants, and others, Pediatrics, vol.113, pp.945-951, 2004.

H. A. Mostefai, A. Agouni, N. Carusio, M. L. Mastronardi, C. Heymes et al., Phosphatidylinositol 3-Kinase and xanthine oxidase regulate nitric oxide and reactive oxygen species productions by apoptotic lymphocyte microparticles in endothelial cells, J. Immunol, vol.180, pp.5028-5035, 2008.

L. Multigner, J. R. Ndong, A. Giusti, M. Romana, H. Delacroix-maillard et al., Chlordecone exposure and risk of prostate cancer, J. Clin. Oncol, vol.28, pp.3457-3462, 2010.
URL : https://hal.archives-ouvertes.fr/inserm-00518099

M. Ndiaye, T. Chataigneau, R. Andriantsitohaina, J. Stoclet, and V. B. Schini-kerth, Red wine polyphenols cause endothelium-dependent EDHF-mediated relaxations in porcine coronary arteries via a redox-sensitive mechanism, Biochem. Biophys. Res. Commun, vol.310, pp.371-377, 2003.

R. Rafikov, F. V. Fonseca, S. Kumar, D. Pardo, C. Darragh et al., eNOS activation and NO function: structural motifs responsible for the posttranslational control of endothelial nitric oxide synthase activity, J. Endocrinol, vol.210, pp.271-284, 2011.

W. Risau, Mechanisms of angiogenesis, Nature, vol.386, pp.671-674, 1997.

Z. Safiedeen, I. Rodríguez-gómez, L. Vergori, R. Soleti, D. Vaithilingam et al., Temporal cross talk between endoplasmic reticulum and mitochondria regulates oxidative stress and mediates microparticle-Induced endothelial dysfunction, Antioxid. Redox Signal, vol.26, pp.15-27, 2001.

M. K. Shakeel, P. S. George, J. Jose, J. Jose, and A. Mathew, Pesticides and breast cancer risk: a comparison between developed and developing countries. Asian Pac, J. Cancer Prev. APJCP, vol.11, pp.173-180, 2010.

A. G. Shchepinova, T. A. Cairns, A. Prime, A. M. Logan, A. R. James et al., MitoNeoD a mitochondria-targeted superoxide probe, Cell Chem. Biol, vol.19, p.24, 2017.

A. Alibrahim, International Journal of Biochemistry and Cell Biology, vol.97, pp.83-97, 2018.

, , pp.1285-1298, 2017.

M. Tadaishi, S. Miura, Y. Kai, Y. Kano, Y. Oishi et al., Skeletal musclespecific expression of PGC-1?-b, an exercise-responsive isoform, increases exercise capacity and peak oxygen uptake, PLoS One, vol.6, issue.12, 2011.

N. Urao, V. Sudhahar, S. Kim, G. Chen, R. D. Mckinney et al., Critical role of endothelial hydrogen peroxide in post-ischemic neovascularization, PLoS One, vol.8, 2013.

M. Ushio-fukai, Redox signaling in angiogenesis: role of NADPH oxidase, Cardiovasc. Res, vol.71, pp.226-235, 2006.

M. Ushio-fukai, VEGF signaling through NADPH oxidase-derived ROS, Antioxid. Redox Signal, vol.9, pp.731-739, 2007.

K. Wilhelm, K. Happel, G. Eelen, S. Schoors, M. F. Oellerich et al., FOXO1 couples metabolic activity and growth state in the vascular endothelium, Nature, vol.529, pp.216-220, 2016.

G. L. Wright, I. G. Maroulakou, J. Eldridge, T. L. Liby, V. Sridharan et al., VEGF stimulation of mitochondrial biogenesis: requirement of AKT3 kinase, FASEB J, vol.22, pp.8-106468, 2008.

Q. Zhang, Y. Jiang, and J. J. Steinle, IGFBP-3 reduces eNOS and PKCzeta phosphorylation, leading to lowered VEGF levels, Mol. Vis, vol.21, pp.604-611, 2015.

E. and A. Alibrahim, International Journal of Biochemistry and Cell Biology, vol.97, pp.83-97, 2018.