C. A. Langner, E. H. Birkenmeier, O. Ben-zeev, M. C. Schotz, H. O. Sweet et al.,

G. , The fatty liver dystrophy (fld) mutation. A new mutant mouse with a developmental abnormality in triglyceride metabolism and associated tissue-specific defects in lipoprotein lipase and hepatic lipase activities, J. Biol. Chem, vol.264, pp.7994-8003, 1989.

K. Reue, The role of lipin 1 in adipogenesis and lipid metabolism, Novartis Found. Symp, vol.286, pp.58-68, 2007.

J. Phan, M. Peterfy, and K. Reue, Lipin expression preceding peroxisome proliferator-activated receptor-gamma is critical for adipogenesis in vivo and in vitro, J. Biol. Chem, vol.279, pp.29558-29564, 2004.

J. Phan, M. Peterfy, and K. Reue, Biphasic expression of lipin suggests dual roles in adipocyte development, Drug news perspect, vol.18, pp.5-11, 2005.

M. S. Mitra, Z. Chen, H. Ren, T. E. Harris, K. T. Chambers et al., Mice with an adipocyte-specific lipin 1 separation-of-function allele reveal unexpected roles for phosphatidic acid in metabolic regulation, Proc. Natl. Acad. Sci. U.S.A, vol.110, pp.642-647, 2013.

M. Peterfy, J. Phan, and K. Reue, Alternatively spliced lipin isoforms exhibit distinct expression, 2005.

T. R. Peterson, S. S. Sengupta, T. E. Harris, A. E. Carmack, S. A. Kang et al.,

A. E. Madden, B. N. Carpenter, D. M. Finck, and . Sabatini, Cell, vol.146, pp.408-420, 2011.

B. N. Finck, M. C. Gropler, Z. Chen, T. C. Leone, M. A. Croce et al.,

. Kelly, Lipin 1 is an inducible amplifier of the hepatic PGC-1alpha/PPARalpha regulatory pathway, Cell Metab, vol.4, pp.199-210, 2006.

K. Nadra, J. J. Medard, J. D. Mul, G. S. Han, S. Gres et al.,

G. M. Saulnier-blache, B. Carman, R. Desvergne, and . Chrast, Cell autonomous lipin 1 function is essential for development and maintenance of white and brown adipose tissue, Mol. Cell. Biol, vol.32, pp.4794-4810, 2012.

H. B. Kim, A. Kumar, L. Wang, G. H. Liu, S. R. Keller et al.,

, Lipin 1 represses NFATc4 transcriptional activity in adipocytes to inhibit secretion of inflammatory factors, Mol. Cell. Biol, vol.30, pp.3126-3139

M. S. Mitra, Z. Chen, H. Ren, T. E. Harris, K. T. Chambers et al.,

A. J. Su, B. N. Morris, and . Finck, Mice with an adipocyte-specific lipin 1 separation-of-function allele reveal unexpected roles for phosphatidic acid in metabolic regulation, Proc. Natl. Acad. Sci. U.S.A, vol.110, pp.642-647, 2013.

C. Meana, L. Pena, G. Lorden, E. Esquinas, C. Guijas et al., , 2014.

, Lipin-1 Integrates Lipid Synthesis with Proinflammatory Responses during TLR Activation in Macrophages, J. Immunol, vol.193, pp.4614-4622

A. K. Agarwal, E. Arioglu, S. De-almeida, N. Akkoc, S. I. Taylor et al.,

. Garg, AGPAT2 is mutated in congenital generalized lipodystrophy linked to chromosome 9q34, Nat. Genet, vol.31, pp.21-23, 2002.

K. Takeuchi and K. Reue, Biochemistry, physiology, and genetics of GPAT, AGPAT, and lipin enzymes in triglyceride synthesis, Am. J. Physiol. Endocrinol. Metab, vol.296, pp.1195-1209, 2009.

K. Nadra, A. S. De-preux, J. J. Charles, W. T. Medard, G. S. Hendriks et al.,

M. H. Saulnier-blache, R. Verheijen, and . Chrast, Phosphatidic acid mediates demyelination in Lpin1 mutant mice, Genes Dev, vol.22, pp.1647-1661, 2008.

J. D. Mul, K. Nadra, N. B. Jagalur, I. J. Nijman, P. W. Toonen et al.,

J. F. Han, G. M. Brouwers, J. S. Carman, D. Saulnier-blache, R. Meijer et al., A hypomorphic mutation in Lpin1 induces progressively improving neuropathy and lipodystrophy in the rat, J. Biol. Chem, vol.286, pp.26781-26793, 2011.

B. P. Kok, P. C. Kienesberger, J. R. Dyck, and D. N. Brindley, Relationship of glucose and oleate metabolism to cardiac function in lipin-1 deficient (fld) mice, J. Lipid Res, vol.53, pp.105-118, 2012.

F. M. Chinnery, A. Vaz, O. Munnich, A. Elpeleg, Y. Delahodde et al., LPIN1 gene mutations: a major cause of severe rhabdomyolysis in early childhood, Hum. Mutat, vol.31, pp.1564-1573, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00552397

C. Michot, A. Mamoune, J. Vamecq, M. T. Viou, L. S. Hsieh et al.,

F. Smahi, G. M. Djouadi, N. Carman, Y. Romero, P. De-keyzer et al., Combination of lipid metabolism alterations and their sensitivity to inflammatory cytokines in human lipin-1-deficient myoblasts, 2013.

, Biochim. Biophys. Acta, vol.1832, pp.2103-2114

P. Zhang, M. A. Verity, and K. Reue, Lipin-1 Regulates Autophagy Clearance and Intersects with Statin Drug Effects in Skeletal Muscle, Cell Metab, vol.20, pp.267-279, 2014.

A. Temprano, H. Sembongi, G. S. Han, D. Sebastian, J. Capellades et al., Redundant roles of the phosphatidate phosphatase family in triacylglycerol synthesis in human adipocytes, Diabetologia, vol.59, pp.1985-1994, 2016.

C. Michot, L. Hubert, N. B. Romero, A. Gouda, A. Mamoune et al.,

P. Barth, P. Laforet, A. Benlian, M. Munnich, O. Jeanpierre et al., Study of LPIN1, LPIN2 and LPIN3 in rhabdomyolysis and exercise-induced myalgia, J. Inherit. Metab. Dis, vol.35, pp.1119-1128, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00758764

N. Briand, S. L. Lay, W. C. Sessa, P. Ferre, and I. Dugail, Distinct roles of endothelial and adipocyte caveolin-1 in macrophage infiltration and adipose tissue metabolic activity, Diabetes, vol.60, pp.448-453, 2011.

M. Pelosi, M. Alfò, F. Martella, E. Pappalardo, and A. Musarò, Finite mixture clustering of human tissues with different levels of IGF-1 splice variants mRNA transcripts, BMC Bioinformatics, vol.16, p.289, 2015.

D. S. Galanos and V. Kapoulas, Preparation and analysis of lipid extracts from milk and other tissues, Biochim. Biophys. Acta, vol.98, pp.278-292, 1965.

H. Juguelin, A. Heape, F. Boiron, and C. Cassagne, A quantitative developmental study of neutral lipids during myelinogenesis in the peripheral nervous system of normal and trembler mice, Brain Res, vol.390, pp.249-252, 1986.

F. Vitiello and J. P. Zanetta, Thin-layer chromatography of phospholipids, J. Chromatogr, vol.166, pp.637-640, 1978.

D. Handloser, V. Widmer, and E. Reich, Separation of Phospholipids by HPTLC -An Investigation of Important Parameters, J. of Liq. Chromatogr. & Relat. Technol, vol.31, 2008.

E. Testet, J. Laroche-traineau, A. Noubhani, D. Coulon, O. Bunoust et al., Ypr140wp, 'the yeast tafazzin', displays a mitochondrial lysophosphatidylcholine (lyso-PC) acyltransferase activity related to triacylglycerol and mitochondrial lipid synthesis, Biochem. J, vol.387, pp.617-626, 2005.

A. Mamoune, M. Bahuau, Y. Hamel, V. Serre, M. Pelosi et al., A thermolabile aldolase A mutant causes fever-induced recurrent rhabdomyolysis without hemolytic anemia, PLoS Genet, vol.10, issue.11, p.1004711, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01342663

M. Pelosi, M. De-rossi, L. Barberi, and A. Musarò, IL-6 impairs myogenic differentiation by downmodulation of p90RSK/eEF2 and mTOR/p70S6K axes, without affecting AKT activity, Biomed. Res. Int, 2014.
URL : https://hal.archives-ouvertes.fr/pasteur-01182462

J. R. Dwyer, J. Donkor, P. Zhang, L. S. Csaki, L. Vergnes et al.,

Y. Tetradis, P. J. Yoshinaga, L. G. Jong, S. G. Fong, K. Young et al., Mouse lipin-1 and lipin-2 cooperate to maintain glycerolipid homeostasis in liver and aging cerebellum, Proc. Natl. Acad. Sci. U.S.A, vol.109, pp.2486-2495, 2012.

C. Wu, C. Orozco, J. Boyer, M. Leglise, J. Goodale et al., BioGPS: an extensible and customizable portal for querying and organizing gene annotation resources, Genome Biol, vol.10, p.130, 2009.

S. Y. Morita, K. Ueda, and S. Kitagawa, Enzymatic measurement of phosphatidic acid in cultured cells, J. Lipid Res, vol.50, pp.1945-1952, 2009.

E. D. Rosen, C. H. Hsu, X. Wang, S. Sakai, M. W. Freeman et al., , 2002.

, C/EBPalpha induces adipogenesis through PPARgamma: a unified pathway, Genes Dev, vol.16, pp.22-26

J. B. Kim, P. Sarraf, M. Wright, K. M. Yao, E. Mueller et al., Nutritional and insulin regulation of fatty acid synthetase and leptin gene expression through ADD1/SREBP1, J. Clin. Invest, vol.101, pp.1-9, 1998.

S. Summermatter, O. Baum, G. Santos, H. Hoppeler, and C. Handschin, Peroxisome proliferatoractivated receptor {gamma} coactivator 1{alpha} (PGC-1{alpha}) promotes skeletal muscle lipid refueling in vivo by activating de novo lipogenesis and the pentose phosphate pathway, J. Biol. Chem, vol.285, pp.32793-32800, 2010.

M. A. Haniffa, X. N. Wang, U. Holtick, M. Rae, J. D. Isaacs et al.,

C. , Adult human fibroblasts are potent immunoregulatory cells and functionally equivalent to mesenchymal stem cells, J. Immunol, vol.179, pp.1595-1604, 2007.

C. Brendel, L. Kuklick, O. Hartmann, T. D. Kim, U. Boudriot et al., Distinct gene expression profile of human mesenchymal stem cells in comparison to skin fibroblasts employing cDNA microarray analysis of 9600 genes, Gene Expr, vol.12, pp.245-257, 2005.

S. Halfon, N. Abramov, B. Grinblat, and I. Ginis, Markers distinguishing mesenchymal stem cells from fibroblasts are downregulated with passaging, Stem Cells Dev, vol.20, pp.53-66, 2011.

S. Cappellesso-fleury, B. Puissant-lubrano, P. A. Apoil, M. Titeux, P. Winterton et al., Human fibroblasts share immunosuppressive properties with bone marrow mesenchymal stem cells, J. Clin. Immunol, vol.30, pp.607-619, 2010.

J. B. Kim and B. M. Spiegelman, ADD1/SREBP1 promotes adipocyte differentiation and gene expression linked to fatty acid metabolism, Genes Dev, vol.10, pp.1096-1107, 1996.

A. K. Agarwal, V. Simha, E. A. Oral, S. A. Moran, P. Gorden et al.,

A. Arslanian, A. Klar, N. H. Ricker, L. White, K. Bindl et al.,

. Garg, Phenotypic and genetic heterogeneity in congenital generalized lipodystrophy, J. Clin. Endocrinol. Metab, vol.88, pp.4840-4847, 2003.

A. Yao-borengasser, N. Rasouli, V. Varma, L. M. Miles, B. Phanavanh et al., Lipin expression is attenuated in adipose tissue of insulin-resistant human subjects and increases with peroxisome proliferator-activated receptor gamma activation, 2006.

G. Joffe, V. R. Loyson, F. J. Panz, S. Raal, T. O'rahilly et al.,

W. Group, Identification of the gene altered in Berardinelli-Seip congenital lipodystrophy on chromosome 11q13, Nat. Genet, vol.28, pp.365-370, 2001.

M. F. Sim, R. J. Dennis, E. M. Aubry, N. Ramanathan, H. Sembongi et al.,

J. J. Siniossoglou and . Rochford, The human lipodystrophy protein seipin is an ER membrane adaptor for the adipogenic PA phosphatase lipin 1, Mol. Metab, vol.2, pp.38-46, 2012.

J. Donkor, L. M. Sparks, H. Xie, S. R. Smith, and K. Reue, Adipose tissue lipin-1 expression is correlated with peroxisome proliferator-activated receptor alpha gene expression and insulin sensitivity in healthy young men, J. Clin. Endocrinol. Metab, vol.93, pp.233-239, 2008.

M. S. Mitra, J. D. Schilling, X. Wang, P. Y. Jay, J. M. Huss et al., Cardiac lipin 1 expression is regulated by the peroxisome proliferator activated receptor gamma coactivator 1alpha/estrogen related receptor axis, J. Mol. Cell. Cardiol, vol.51, pp.120-128, 2011.

R. Ugrankar, Y. Liu, J. Provaznik, S. Schmitt, and M. Lehmann, Lipin is a central regulator of adipose tissue development and function in Drosophila melanogaster, Mol. Cell. Biol, vol.31, pp.1646-1656, 2011.

P. Zhang, K. Takeuchi, L. S. Csaki, and K. Reue, Lipin-1 phosphatidic phosphatase activity modulates phosphatidate levels to promote peroxisome proliferator-activated receptor gamma (PPARgamma) gene expression during adipogenesis, J. Biol. Chem, vol.287, pp.3485-3494, 2012.

J. Bergounioux, A. Brassier, C. Rambaud, O. Bustarret, C. Michot et al., Fatal rhabdomyolysis in 2 children with LPIN1 mutations, J. Pediatr, vol.160, pp.1052-1054, 2012.

J. Zhou and T. L. Young, Evaluation of Lipin 2 as a candidate gene for autosomal dominant 1 highgrade myopia, Gene, vol.352, pp.10-19, 2005.

B. P. Kok, G. Venkatraman, D. Capatos, and D. N. Brindley, Unlike two peas in a pod: lipid phosphate phosphatases and phosphatidate phosphatases, Chem. Rev, vol.112, pp.5121-5146, 2012.

Y. Shi and D. Cheng, These experiments (see Results section and the accompanying Table 2) show a significant decrease in the adipocyte size in the patients compared with normal controls. for tubulin expression; protein levels were obtained from the WB in (A), and shown as means ± S.D. of three (patients) or of four (controls), 2009.

, The values in panels B and C for the controls adipose tissue showed that that both measures were tightly grouped for the subcutaneous WAT controls (C6 and C7) and for the breast WAT controls (B1 and B2), and did not depend on the anatomical location of the biopsied samples, B and C significant differences are indicated by **