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Abstract: Timed Event Graphs (TEGs) are a graphical model for decision free and time-invariant
Discrete Event Systems (DESs). To express systems with time-variant behaviors, a new form of
synchronization, called partial synchronization (PS), has been introduced for TEGs. Unlike exact
synchronization, where two transitions t1, t2 can only fire if both transitions are simultaneously enabled,
PS of transition t1 by transition t2 means that t1 can fire only when transition t2 fires, but t1 does not
influence the firing of t2. Under some assumptions, we can show that the dynamic behavior of a TEG
under PS can be decomposed into a time-variant and a time-invariant part. The time-invariant part can
be interpreted as a standard TEG. Moreover, it is shown that the tools introduced for standard TEGs can
be used to analyze the overall system.
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1. INTRODUCTION AND MOTIVATION

TEGs are a subclass of timed Petri nets where each place has
exactly one input and one output transition and all arcs have
weight 1. If an earliest functioning rule is adopted, the behavior
of a TEG can be modeled by linear equations in a specific al-
gebraic structure called dioids. Based on such dioids, a general
theory has been developed for performance evaluation and con-
trol of TEGs, e.g. Baccelli et al. (1992); Heidergott et al. (2005).
Timed Event Graphs under Partial Synchronization (TEGsPS)
are an extension of TEGs introduced in David-Henriet et al.
(2014). A similar extension was introduced in De Schutter and
van den Boom (2003), where TEGs with hard and soft synchro-
nization are studied. TEGsPS can express some time-variant
phenomena which cannot be expressed by standard TEGs. For
instance, partial synchronization (PS) is useful to model sys-
tems where particular events can only occur in a specific time
window. E.g., at an intersection, a vehicle can only cross when
the traffic light is green. Clearly this describes a time-variant be-
havior, since the vehicle is delayed by a time that depends on its
time of arrival at the intersection. In David-Henriet et al. (2014,
2015, 2016), first results have been obtained for performance
evaluation and controller synthesis for TEGsPS. This includes
output reference control and model predictive control.
In this paper we investigate TEGsPS where partial synchro-
nization is periodic. We show that under this assumption the
dynamic behavior of TEGsPS can be modeled in a specific
dioid called T [[γ]]. A specific time-variant operator is intro-
duced to take PSs into account. Similarly to transfer functions
for standard TEGs in the dioidMax

in [[γ, δ]], the transfer behavior
of TEGsPS is described by ultimately cyclic series in the dioid
T [[γ]]. These corresponding transfer functions are useful, for
instance, for computing the output for a given input of a system,

for system composition and for control synthesis. Moreover, we
show that operations on ultimately cyclic series in T [[γ]] can be
reduced to operations between matrices in Max

in [[γ, δ]]. There-
fore many tools developed for TEGs in the dioid Max

in [[γ, δ]]
can be applied to the more general class of TEGsPS.
This paper is organized as follows: Section 2 summarizes the
necessary facts on TEGsPS and dioid theory. In Section 3,
modeling of TEGsPS in the dioid T [[γ]] is introduced. Section
4 discusses a decomposition method for elements in T [[γ]] and
provides tools to handle operations on ultimately cyclic series
in T [[γ]].

2. TIMED EVENT GRAPHS AND DIOIDS

2.1 Timed Event Graphs

In the following, we briefly recall the necessary facts on TEGs.
For details, see Baccelli et al. (1992); Heidergott et al. (2005).
A TEG consists of a set of places P = {p1, · · · , pn}, a set of
transitions T = {t1, · · · , tm} and a set of arcs A ⊆ (P × T ) ∪
(T ×P ), all with weight 1. pi is an upstream place of transition
tj (and tj is a downstream transition of place pi), if (pi, tj) ∈
A. Conversely, pi is a downstream place of transition tj (and tj
is an upstream transition of place pi), if (tj , pi) ∈ A. For TEGs,
each place pi has exactly one upstream transition and exactly
one downstream transition. Moreover, each place pi exhibits an
initial marking (M0)i ∈ N0 and a holding time (φ)i ∈ N0.
A transition tj is said to be enabled, if the marking in every
upstream place is at least 1. When tj fires, the marking (M)i
in every upstream place pi is reduced by 1 and the marking
(M)o in every downstream place po is increased by 1. The
holding time (φ)i is the time a token must remain in place pi
before it contributes to the firing of the downstream transition of
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Fig. 1. (a) standard TEG. (b) PS of t2 by ta, triggered every ω time units. (c)
equivalent PS expressed by a signal Sω .

pi. The set T of transitions is partitioned into input transitions,
i.e., transitions without upstream places, output transitions, i.e.,
transitions without downstream places and internal transitions,
i.e., transitions with both upstream and downstream places. We
say that a TEG is operating under the earliest functioning rule,
if all internal and output transitions are fired as soon as they are
enabled.

2.2 Timed Event Graph under Partial Synchronization

TEGsPS provide a suitable model for some time-variant dis-
crete event systems. In the following, we give a brief intro-
duction. For further information the reader is invited to consult
David-Henriet et al. (2014). Considering the TEG in Fig. 1a,
assuming the earliest functioning rule, incoming tokens in place
p1 are immediately transferred to place p2 by the firing of
transition t2. In contrast, Fig. 1b illustrates a TEG with PS
of transition t2 by transition ta. This means that t2 can only
fire if ta fires, but the firing of ta does not depend on t2.
In this example, place p3 and transition ta, together with the
corresponding arcs, constitute an autonomous TEG. Under the
earliest functioning rule, the firing of transition ta generates
a periodic signal Sω with a period ω ∈ N. Therefore, the
PS of t2 by ta can also be described by a predefined signal
Sω: Z 7→ {0, 1}, enabling the firing of t2 at times t where
Sω(t) = 1. The signal Sω(t) = 1 if t ∈ {jω with j ∈ Z}
and 0 otherwise.
Definition 1. A Timed Event Graph under Partial Synchroniza-
tion is a TEG where internal and output transitions are subject
to partial synchronization. /

Note that the assumption that only internal and output transi-
tions are subject to PS is not restrictive since we can always add
new input transitions and extend the set of internal transitions
by the former input transitions. In David-Henriet et al. (2015),
ultimately periodic signals are considered for PS transitions. It
was shown that the behavior of a Timed Event Graph under
Partial Synchronization (TEGPS) can be described by recur-
sive equations in state space form. In this work, we focus on
(immediately) periodic signals for PS of a transitions.
Definition 2. A periodic signal S : Z → {0, 1} is defined by
a string {n0, n1, · · · , nI} ∈ N0 and a period ω ∈ N, such that
∀j ∈ Z

S(t) =

{
1 if t ∈ {n0 + ωj, n1 + ωj, · · · , nI + ωj},
0 otherwise,

where the string {n0, n1, · · · , nI} is strictly ordered, i.e., ∀i ∈
{1, · · · , I}, ni−1 < ni, and nI < ω. /

Example 1. The signal

S1(t) =

{
1 if t ∈ {· · · ,−3, 0, 1, 4, 5, 8, 9, · · · },
0 otherwise,

is a periodic signal with a period ω = 4 and a string {0, 1}.
Therefore ∀j ∈ Z,

S1(t) =

{
1 if t ∈ {0 + 4j, 1 + 4j},
0 otherwise.

(1)

/

In the following, we only consider PS of transitions by periodic
signals as given in Definition 2. We call such a PS a periodic
PS. To consider only periodic PS allows us to define a dioid of
operators to describe the behavior of TEGsPS. In particular we
can show that the transfer behavior of a TEGPS is described by
a rational power series of an ultimately cyclic form. Let us note
that focusing on periodic signals for a PS of a transition is not
overly restrictive as periodic schedules are common in many
applications.

2.3 Dioid Theory

A dioid D is an algebraic structure with two binary operations,
⊕ (addition) and ⊗ (multiplication). Addition is commutative,
associative and idempotent (i.e. ∀a ∈ D, a ⊕ a = a).
The neutral element for addition, denoted by ε, is absorbing
for multiplication (i.e., ∀a ∈ D, a ⊗ ε = ε ⊗ a = ε).
Multiplication is associative, distributive over addition and has
a neutral element denoted by e. The element e (resp, ε) is called
unit (resp. zero) element of the dioid. Both operations can be
extended to the matrix case. For matricesA,B ∈ Dm×n, C ∈
Dn×q and a scalar λ ∈ D, matrix addition and multiplication
are defined by
(A⊕B)i,j := (A)i,j ⊕ (B)i,j , (λ⊗A)i,j := λ⊗ (A)i,j ,

(A⊗C)i,j :=

n⊕
k=1

((A)i,k ⊗ (C)k,j) .

The identity matrix, denoted by I , is a matrix with elements e
on the diagonal and ε otherwise. Note that, as in conventional
algebra, the multiplication symbol ⊗ is often omitted. A dioid
D is said to be complete if it is closed for infinite sums and if
multiplication distributes over infinite sums. A complete dioid
is a partially ordered set, with a canonical order � defined by
a ⊕ b = a ⇔ a � b. Moreover, in a complete dioid, the
Kleene star of an element a ∈ D, denoted a∗, is defined by
a∗ =

⊕∞
i=0 a

i with a0 = e and ai+1 = a⊗ ai.
Theorem 1. (Baccelli et al. (1992)). In a complete dioid D,
x = a∗b is the least solution of the implicit equation x = ax⊕b.

/

Let C ⊆ D then (C,⊕,⊗) is a subdioid of (D,⊕,⊗) if e and ε
are in C and C is closed for ⊕ and ⊗.

3. MODELING OF TEGS UNDER PS IN THE DIOID T [[γ]]

To model TEGsPS, a dater function xi : Z → Zmax = {Z ∪
±∞} is associated to each transition ti. xi(k) gives the date
when the transition fires the kth time. Naturally, dater functions
are nondecreasing functions, i.e., xi(k + 1) ≥ xi(k). The set
of dater functions is denoted by Σ, and on Σ addition and
multiplication by a constant are defined as follows:

x, y ∈ Σ, (x⊕ y)(k) := max(x(k), y(k)),

λ ∈ Zmax, (λ⊗ x)(k) := λ+ x(k).

The ⊕ operation induces an order relation on Σ, i.e. ∀x, y ∈
Σ, x � y ⇔ x ⊕ y = y. An operator ρ : Σ → Σ is
linear if (a) ∀x, y ∈ Σ : ρ(x ⊕ y) = ρ(x) ⊕ ρ(y) and (b)



λ⊗ ρ(x) = ρ(λ⊗ x). An operator is additive if (a) is satisfied.
The set of additive operators on Σ is denoted O.
Proposition 1. (Cottenceau et al. (2014)). The set O equipped
with addition and multiplication: x ∈ Σ,∀ρ1, ρ2 ∈ O,
(ρ1 ⊕ ρ2)(x) := ρ1(x)⊕ ρ2(x), (ρ1 ⊗ ρ2)(x) := ρ1(ρ2(x)),

is a noncommutative complete dioid. The identity operator (unit
element) is denoted by e : ∀x ∈ Σ, (e(x))(k) = x(k),
and the zero operator (zero element) is denoted by ε : ∀x ∈
Σ, (ε(x))(k) = −∞.
To simplify notation, we write ρx instead of ρ(x) from now on.
Definition 3. (Basic operators in TEGsPS). Dynamic phenom-
ena arising in TEGsPS can be described by the following addi-
tive basic operators in O:
ς ∈ Z, δς : ∀x ∈ Σ, (δςx)(k) = x(k) + ς, (2)
ν ∈ Z, γν : ∀x ∈ Σ, (γνx)(k) = x(k − ν), (3)
ω,$ ∈ N, ∆ω|$ : ∀x ∈ Σ, (∆ω|$x)(k) = dx(k)/$eω, (4)

where dae is the smallest integer greater than or equal to a. /

The time- and event-shift operator δ and γ are used to model
the dynamic behavior of standard TEGs, e.g., Baccelli et al.
(1992). In addition we introduce the ∆ω|$ operator to consider
phenomena caused by PS.
Proposition 2. The basic operators satisfy the following rela-
tions

γν ⊕ γν
′

= γmin(ν,ν′), δτ ⊕ δτ
′

= δmax(τ,τ ′), (5)

γν ⊗ γν
′

= γν+ν′ , δτ ⊗ δτ
′

= δτ+τ ′ , (6)
∆ω|$ ⊗ δ$ = δω ⊗∆ω|$. (7)

Proof. See Baccelli et al. (1992) for (5), (6). For the proof of
(7), recall (2) and (4),

(∆ω|$δ
$x)(k) =

⌈x(k) +$

$

⌉
ω =

⌈x(k)

$
+ 1
⌉
ω,

=
⌈x(k)

$

⌉
ω + ω = (δω∆ω|$x)(k).

2

Remark 1. (7) implies that for −b < τ ≤ 0, ∆ω|bδ
τ∆b|$ =

∆ω|$, since,

(∆ω|bδ
τ∆b|$x)(k) =

⌈dx(k)/$eb+ τ

b

⌉
ω

=
⌈⌈x(k)

$

⌉
+
τ

b

⌉
ω

=
⌈x(k)

$

⌉
ω since −1 < τ/b ≤ 0,

= (∆ω|$x)(k).

/

3.1 Dioid of Time Operators T

In the following, we introduce a dioid of specific time operators
in order to model the time-variant behavior of periodic PS.
Definition 4. (Dioid of T-operators T ). We denote by T the
dioid of operators obtained by addition and composition of
operators in (ε, e, δς ,∆ω|$) with ς ∈ Z, and ω,$ ∈ N. The
elements of T are called T-operators (T is for time). /

For example, δ3∆4|4δ
1∆3|2 ∈ T . Since a T-operator only

describes a time relation in a system, e.g. a delay, we can
associate a function Rv : Zmax → Zmax to a T-operator v.
This function when evaluated on t is obtained by replacing x(k)
by t in the expression of v(x)(k). For example, ((∆3|4δ

1 ⊕

δ2∆3|3)x)(k) = max(d(x(k) + 1)/4e3, 2 + dx(k)/3e3) and
thereforeR∆3|4δ1⊕δ2∆3|3(t) = max(d(t+1)/4e3, 2+dt/3e3).
We denote by R the set of functions generated by all operators
in T . Clearly, there is an isomorphism between the set of T-
operators and the set R. The order relation over the dioid T
corresponds to the order induced by the max operation on R.
For v1, v2 ∈ T ,
v1 � v2 ⇔ v1 ⊕ v2 = v1 ⇔ v1x⊕ v2x = v1x, ∀x ∈ Σ,

⇔ (v1x)(k)⊕ (v2x)(k) = (v1x)(k), ∀x ∈ Σ, ∀k ∈ Z,
⇔ Rv1

(t) ≥ Rv2
(t), ∀t ∈ Zmax. (8)

Definition 5. (Periodic T-operators). A T-operator v ∈ T is
said to be periodic if its corresponding function Rv is quasi-
periodic, i.e., ∃ω ∈ N such that ∀t ∈ Zmax, Rv(t+ ω) = ω +
Rv(t). /

The set of periodic operators, denoted by Tper, is a subdioid of
T .
Proposition 3. (Canonical form of a periodic T-operator). A
periodic T-operator v ∈ Tper with period ω has a canonical
form given by a finite sum

⊕I
i=1 δ

τi∆ω|ωδ
τ ′i . Moreover the

sum is strictly ordered such that ∀i ∈ {1, · · · , I − 1}, τi <
τi+1.

Proof. We first show that a periodic T-operator v ∈ Tper with
period ω can be represented as

v =

ω−1⊕
i=0

δRv(−i)∆ω|ωδ
i−ω+1. (9)

For this, we consider the operator w =
⊕ω−1

i=0 wi with wi =

δRv(−i)∆ω|ωδ
i−ω+1. The functionRwi associated to wi is

Rwi(t) = Rv(−i) +
⌈ t+ i− ω + 1

ω

⌉
ω.

ThereforeRw is

Rw(t) = max
(
Rv(0) +

⌈ t+ 1− ω
ω

⌉
ω,

Rv(−1) +
⌈ t+ 2− ω

ω

⌉
ω, · · · ,Rv(1− ω) +

⌈ t
ω

⌉
ω
)
, (10)

which clearly has period ω. To prove that v can be represented
as (9) we have to show that Rw(t) = Rv(t). Because Rw and
Rv are quasi ω-periodic functions it is sufficient to check that
Rw(t) = Rv(t) for t = {1 − ω, · · · , 0}. Let us remark that
Rv is nondecreasing and thus, · · · ≤ Rv(0) − ω ≤ Rv(1 −
ω) ≤ · · · ≤ Rv(0) ≤ Rv(1− ω) + ω ≤ · · · . We evaluate (10)
for t = 0, this leads to

Rw(0) = max
(
Rv(0) +

⌈1− ω
ω

⌉
ω,

Rv(−1) +
⌈2− ω

ω

⌉
ω, · · · ,Rv(1− ω) +

⌈ 0

ω

⌉
ω
)

= max
(
Rv(0),Rv(−1), · · · ,Rv(1− ω)

)
=Rv(0).

Similarly we can show that for t ∈ {1− ω, · · · ,−1},Rw(t) =
Rv(t). For this, recall (10)

Rw(t) = max
(
Rv(0) +

⌈ t+ 1− ω
ω

⌉
ω,

Rv(−1) +
⌈ t+ 2− ω

ω

⌉
ω, · · · ,Rv(1− ω) +

⌈ t
ω

⌉
ω
)
.

For 1 ≤ j ≤ ω and 1− ω ≤ t ≤ −1 observe that,⌈ t+ j − ω
ω

⌉
ω =

{
−ω, for t+ j < 0

0, for t+ j ≥ 0,



therefore,
Rw(t) = max

(
Rv(0)− ω, · · · ,Rv(t+ 1)− ω,Rv(t), · · ·
· · · ,Rv(1− ω)

)
,

= Rv(t),
and v = w =

⊕ω−1
i=0 wi =

⊕ω−1
i=0 δRv(−i)∆ω|ωδ

i−ω+1.
The canonical representation is the one obtained by removing
redundant wi according to the order relation given in (8). 2

Remark 2. Clearly periodic operator v ∈ Tper with period ω
can be represented with a multiple period nω as follows,

v =

nω−1⊕
i=0

δRv(−i)∆nω|nωδ
i−nω+1.

/

Remark 3. In particular the periodic operator ∆ω|ω with period
ω is represented with period nω by the sum

∆ω|ω =

n−1⊕
i=0

δ−iω∆nω|nωδ
−(n−1−i)ω.

/

Example 2. The identity operator e = ∆1|1 with period 1

can be represented with period 3 as follows, e = ∆3|3δ
−2 ⊕

δ−1∆3|3δ
−1 ⊕ δ−2∆3|3, see Fig. 2. /

R
∆3|3δ

−2

R
δ−1∆3|3δ

−1

R
δ−2∆3|3

t

R(t)

1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

Fig. 2. Re(t) = max(R∆3|3δ−2 (t),Rδ−1∆3|3δ−1 (t),Rδ−2∆3|3
(t)).

The time-variant behavior caused by a periodic PS of a transi-
tion can be modeled in the dioid T . For this, recall the definition
of a periodic signal S (Definition 2). We associate with a peri-
odic signal S a function RS : Zmax → Zmax. This function
RS(t) is defined by, ∀j ∈ Z,

RS(t) =



−∞ if t = −∞
n0 + ωj if (nI − ω) + ωj < t ≤ n0 + ωj,

n1 + ωj if n0 + ωj < t ≤ n1 + ωj,
...

nI + ωj if nI−1 + ωj < t ≤ nI + ωj,

∞ if t =∞.
(11)

Example 3. The function RS1(t) associated to the signal S1

given in Example 1 is

RS1
(t) =


−∞ if t = −∞
0 + 4j if − 3 + 4j < t ≤ 0 + 4j,

1 + 4j if 0 + 4j < t ≤ 1 + 4j,

∞ if t =∞.
/

The value of RS(t) can be interpreted as the next time when
the signal S enables the firing of the corresponding transition.

S1

t1 t2

Fig. 3. Simple TEGPS with a periodic PS of t2.

Clearly, an ω-periodic signal S leads to a corresponding func-
tionRS(t) which satisfies ∀t ∈ Zmax,RS(t+ω) = ω+RS(t).
To prove that a periodic PS of a transition (i.e. the PS is speci-
fied by a periodic signal S) admits an operator representation in
the dioid T , we must show the existence of an operator v ∈ T
such thatRv = RS .
Proposition 4. A periodic partial synchronization of a transi-
tion by signal S (from Definition 2) has an operator representa-
tion given by

v =δn0∆ω|ωδ
−nI ⊕ δn1−ω∆ω|ωδ

−n0 ⊕ · · ·
· · · ⊕ δnI−ω∆ω|ωδ

−n(I−1) . (12)

Proof. Recall that a periodic signal S corresponds to a quasi
periodic function RS , see (11), and the isomorphism between
the function Rv and the T-operator v. It remains to show that
Rv = RS . The functionRv is given by

Rv(t) = max
(
n0 +

⌈ t− nI
ω

⌉
ω, n1 − ω +

⌈ t− n0

ω

⌉
ω, · · ·

, nI − ω +
⌈ t− n(I−1)

ω

⌉
ω
)
. (13)

To show equality, we evaluate Rv(t) for intervals defined in
(11). E.g., for (nI − ω) + ωj < t ≤ n0 + ωj, observe that⌈ t− ni

ω

⌉
= j, i = 0, · · · I,

hence
Rv(t) = max

(
n0 + jω, n1 − ω + jω, · · · , nI − ω + jω

)
= n0 + jω.

Second, for (n0 + ωj) < t ≤ n1 + ωj, we have⌈ t− ni
ω

⌉
=

{
j + 1, for i = 0

j, for i = 1, · · · , I,
hence

Rv(t) = max
(
n0 + jω, n1 + jω, n2 − ω + jω, · · ·
· · · , nI − ω + jω

)
= n1 + jω.

By going through the remaining intervals defined in (11) we
establish

Rv(t) = RS(t), ∀t ∈ Zmax.
2

Example 4. Consider the TEGPS shown in Fig. 3, where the
signal S1 is given in (1) (Example 1) and dater functions
x1(k) (resp. x2(k)) is associated with transition t1 (resp. t2).
According to Prop. 4, the behavior of the periodic PS of
transition t2 is modeled by the following operator:
vS1

= δ0∆4|4δ
−1 ⊕ δ−3∆4|4δ

−0 = δ−3∆4|4 ⊕∆4|4δ
−1.

This operator describes the firing relation between t1 and
t2, i.e. x2 = (δ−3∆4|4 ⊕ ∆4|4δ

−1)x1. Therefore, x2(k) =
max(−3 + dx1(k)/4e4, d(x1(k)− 1)/4e4). /

Remark 4. Due to the influence of the PS, this firing relation
between t1 and t2 is time-variant. For instance, if the k-th firing
of t1 is at time instance x1(k) = 1, then the k-th firing of t2
is at x2(k) = 1, i.e., we have no delay. In contrast, if the k-th
firing of t1 is at time instant x1(k) = 2, then the k-th firing of
t2 is at x2(k) = 4, and the delay is 2. /



3.2 Dioid T [[γ]]

Since the γ operator commutes with all T-operators, i.e. ∀v ∈
T , vγ = γv, we can define the dioid T [[γ]] as follows.
Definition 6. (Dioid T [[γ]]) We denote by T [[γ]] the quotient
dioid in the set of formal power series in one variable γ
with exponents in Z and coefficients in the noncommutative
complete dioid T induced by the equivalence relation, ∀s ∈
T [[γ]],

s = s(γ1)∗. (14)
/

Note that we can interpret elements in T [[γ]] as nondecreasing
functions s : Z→ T , where s(ν) refers to the coefficient of γν .
Definition 7. Let s1, s2 ∈ T [[γ]], then addition and multiplica-
tion are defined by

s1 ⊕ s2 :=
⊕
ν∈Z

(s1(ν)⊕ s2(ν))γν ,

s1 ⊗ s2 :=
⊕
ν∈Z

( ⊕
n+n′=ν

(s1(n)⊗ s2(n′))

)
γν .

/

As before, ⊕ defines an order on T [[γ]], i.e., a, b ∈ T [[γ]] : a⊕
b = b ⇔ a � b. A monomial in T [[γ]] is defined by vγν ,
where v ∈ T . A polynomial is a finite sum of monomials, i.e.,⊕

i viγ
νi .

Definition 8. (Ultimately Cyclic Series of T [[γ]] ): A series
s ∈ T [[γ]] is said to be ultimately cyclic if it can be written
as s = p⊕ q(γνδτ )∗, where ν, τ ∈ N and p, q are polynomials
in T [[γ]]. /

3.3 Subdioids of T [[γ]]

We denote by Tper[[γ]] the subdioid of T [[γ]], obtained by
restricting the coefficients v to periodic operators, i.e. v ∈ Tper.
An other important subdioid of T [[γ]] is the dioid Max

in [[γ, δ]].
This dioid is obtained by restricting the coefficients v to
the (ε, δτ ) operators, i.e., an element in Max

in [[γ, δ]] is writ-
ten as

⊕
i δ
τiγni with τi, ni ∈ Z. This dioid has been ex-

tensively studied, e.g. Gaubert and Klimann (1991); Baccelli
et al. (1992). The product of two monomials γn1δt1 , γn2δt2 ∈
Max

in [[γ, δ]] is obtained by,
γn1δt1 ⊗ γn2δt2 = γn1+n2δt1+t2 .

Moreover, we have the following order relation for monomials
γn1δt1 � γn2δt2 ⇔ n1 ≥ n2 and t1 ≤ t2.

A comprehensive representation of calculations with series in
Max

in [[γ, δ]] can be found in Baccelli et al. (1992). It is well
known that the input-output behavior of a standard TEG can be
described by a transfer function matrix composed of ultimately
cyclic series in Max

in [[γ, δ]]. Moreover, based on Max
in [[γ, δ]],

methods for performance evaluation and controller synthesis
have been introduced for TEGs, e.g. Gaubert and Klimann
(1991); Maia et al. (2003); Hardouin et al. (2017). In Hardouin
et al. (2009), software tools have been made available for
computations inMax

in [[γ, δ]]. The dioidMax
in [[γ, δ]] plays a key

role in this paper. In particular in Section 4, we show that all
relevant operations on ultimately cyclic series s ∈ Tper[[γ]]
can be reduced to operations on matrices in Max

in [[γ, δ]]. We
can therefore use the existing tools for Max

in [[γ, δ]] to study
TEGsPS.

t2 t3 t4
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S2

p3 p4

p2

t1 p1

Fig. 4. Example of a TEGPS.

3.4 Modeling of TEGsPS in Tper[[γ]]

A TEGPS operating under the earliest functioning rule, admits
a state-space representation in Tper[[γ]],

x = Ax⊕Bu, y = Cx, (15)
where x (resp. u,y) refers to the vector of dater functions of
internal (resp. input, output) transitions. The matrices A ∈
Tper[[γ]]n×n, B ∈ Tper[[γ]]n×g and C ∈ Tper[[γ]]p×n describe
the influence of transitions on each other, encoded by operators
in Tper[[γ]]. Let us consider a path constituted by the arcs (tj , pi)
and (pi, to). The influence of transition tj on transition to is
coded as an operator

vtoδ
(φ)iγ(M0)i

where vto is the operator representation of the signal So corre-
sponding to the PS of to (see Example 4), (φ)i is the holding
time of place pi and (M0)i is the initial marking of pi.
Example 5. Consider the TEGPS in Fig. 4 with PS of transition
t2 by the signal

S2(t) =

{
1 if t ∈ {1 + 2j},
0 otherwise.

As ω = 2, I = 0, n0 = 1 according to Prop. 4 vS2
=

vt2 = δ1∆2|2δ
−1. For the path (t3, p2)(p2, t2), the influence

of t3 on transition t2 corresponds to an operator representation
vt2δ

0γ2 = vt2γ
2 = δ1∆2|2δ

−1γ2. Moreover, by assigning
a dater function u(t) (resp. x1(k), x2(k), y(k)) to transition
t1 (resp. t2, t3, t4), the earliest functioning of the TEGPS is
described in state space form x = Ax⊕Bu; y = Cx, where

A =

[
ε δ1∆2|2δ

−1γ2

δ1 ε

]
, B =

[
δ1∆2|2δ

−1

ε

]
, C =

[
ε δ1

]
.

/

According to Theorem 1, the least solution of the equation
x = Ax⊕Bu is x = A∗Bu. Therefore, the transfer function
matrix H of a TEGPS can be obtained by y = Hu =
CA∗Bu. In order to compute this transfer function matrix,
we have to perform addition, multiplication and the Kleene star
operation of series in Tper[[γ]]. In the next section, we show how
these operations between series in Tper[[γ]] can be reduced to
operations between matrices inMax

in [[γ, δ]].

4. CORE REPRESENTATION OF A SERIES IN TPER[[γ]]

In this section, we propose a specific decomposition of series
in Tper[[γ]]. We show that series s ∈ Tper[[γ]] with period ω can
always be represented as s = mωQbω where Q is a square
matrix inMax

in [[γ, δ]] of size ω × ω, mω is a row vector defined
as

mω :=
[
∆ω|1 δ

−1∆ω|1 · · · δ1−ω∆ω|1
]

and bω is a column vector defined as

bω :=
[
∆1|ωδ

1−ω · · · ∆1|ωδ
−1 ∆1|ω

]T
.



It is important to note that in this form the core matrix Q is a
matrix in Max

in [[γ, δ]]. We first demonstrate how to obtain this
form on a small example and then provide a formal method.
Example 6. Consider the following series in Tper[[γ]],

s = ∆2|2 ⊕ δ1∆2|2δ
−1 ⊕ δ2∆2|2γ

2(δ2γ2)∗.

Because of ∆ω|$ = ∆ω|b∆b|$ (Remark 1) and δω∆ω|$ =
∆ω|$δ

$ (7) this series can be rewritten as

s = ∆2|1 e︸︷︷︸
M1

∆1|2 ⊕ δ−1∆2|1 δ1︸︷︷︸
M2

∆1|2δ
−1

⊕∆2|1 δ
1γ2(δ1γ2)∗︸ ︷︷ ︸

S1

∆1|2.

Clearly M1,M2 and S1 are elements in Max
in [[γ, δ]]. We now

can rewrite s in the core representation,

s =
[
∆2|1 δ

−1∆2|1
]︸ ︷︷ ︸

m2

[
ε e⊕δ1γ2(δ1γ2)∗

δ1 ε

]
︸ ︷︷ ︸

Q

[
∆1|2δ

−1

∆1|2

]
︸ ︷︷ ︸

b2

,

which is in the required form. /

The algorithm to obtain the core form for an arbitrary ultimately
cyclic series s ∈ Tper[[γ]] is as follows. The ultimately cyclic
series s =

⊕I
i=1 viγ

ni ⊕
⊕J

j=1 v
′
jγ
n′j (δτγν)∗ ∈ Tper[[γ]] is

written such that all coefficients vi and v′j are represented with
their least common period (Remark 2), i.e.,

s =

L⊕
l=1

δtl∆ω|ωδ
t′lγnl ⊕

K⊕
k=1

δξk∆ω|ωδ
ξ′kγn

′
k(δτγν)∗.

Recall that ∆ω|$ = ∆ω|b∆b|$ (Remark 1) therefore,

s =

L⊕
l=1

δtl∆ω|1∆1|ωδ
t′
lγnl ⊕

K⊕
k=1

δξk∆ω|1∆1|ωδ
ξ′
kγn

′
k (δτγν)∗.

Note that the δω operator commutes with ∆ω|ω , i.e., δω∆ω|ω =
∆ω|ωδ

ω (7). Moreover, we can always represent an ultimately
cyclic series s ∈ T [[γ]] such that τ is a multiple of ω, i.e., we
can extend (γνδτ̃ )∗ such that, τ = τ̃ l = lcm(τ̃ , ω). Hence,

(γνδτ̃ )∗ = (e⊕γνδτ̃ ⊕ · · · ⊕ γ(l−1)νδ(l−1)τ̃ )(γlνδlτ̃ )∗,

= (e⊕γνδτ̃ ⊕ · · · ⊕ γ(l−1)νδ(l−1)τ̃ )(γlνδτ )∗.

Therefore, in the following we assume τ/ω ∈ N, thus
∆1|ω(δτγν)∗ = (δτ/ωγν)∗∆1|ω . This leads to

s =

L⊕
l=1

δt̃l∆ω|1 δ
t̂lγnl︸ ︷︷ ︸
Ml

∆1|ωδ
t̃′l⊕

K⊕
k=1

δξ̃k∆ω|1 δ
ξ̂kγn

′
k(δτ/ωγν)∗︸ ︷︷ ︸
Sk

∆1|ωδ
ξ̃′k ,

with −ω < t̃l, t̃
′
l, ξ̃k, ξ̃

′
k ≤ 0. In this representation Ml are

monomials and Sk are series in Max
in [[γ, δ]]. Moreover, the

entries of the bω-vector appear on the right and the entries of
the mω-vector appear on the left of monomial Ml (resp. series
Sk). For a given s we denote the set of monomials by M =
{M1, · · · ,ML} and the set of series by S = {S1, · · · , SK}.
Furthermore, the subsets Mi,j (resp. Si,j ) are defined as

∀i, j ∈ {0, · · · , ω − 1},

Mi,j := {Ml ∈M | δ−i∆ω|1Ml∆1|ωδ
−j ∈

L⊕
l=1

δt̃l∆ω|1Ml∆1|ωδ
t̃′
l},

Si,j := {Sk ∈ S | δ−i∆ω|1Sk∆1|ωδ
−j ∈

K⊕
k=1

δξ̃k∆ω|1Sk∆1|ωδ
ξ̃′
k}.

The element (Q)i+1,ω−j of the core matrix is then obtained by

(Q)i+1,ω−j =
⊕

M∈Mi,j

M ⊕
⊕

S∈Si,j

S.

Hence, any ultimately cyclic series s ∈ Tper[[γ]] can be ex-
pressed by s = mωQbω . Let us note that the core Q of
a series s ∈ Tper[[γ]] is not unique, in other words we can
express the same series with different cores, i.e., we may have
s = mωQbω = mωQ̃bω with Q, Q̃ ∈ Max

in [[γ, δ]]ω×ω but
Q 6= Q̃. We illustrate this in the following example.
Example 7. Recall the series s = ∆2|2 ⊕ δ1∆2|2δ

−1 ⊕
δ2γ2(δ2γ2)∗∆2|2 given in Example 6. s can be expressed by
m2Q̃b2 where,

Q̃ =

[
e e⊕δ1γ2(δ1γ2)∗

δ1 ε

]
.

Clearly Q̃ � Q and Q̃ 6= Q (see Example 6). However, Q̃ is a
valid core of s since:

m2Q2b2 = m2

[
∆1|2δ

−1 ⊕∆1|2 ⊕ δ1γ2(δ1γ2)∗∆1|2
δ1∆1|2δ

−1

]
,

recall ∆1|2δ
−1 ⊕∆1|2 = ∆1|2(δ−1 ⊕ δ0) = ∆1|2, (5),

=
[
∆2|1 δ

−1∆2|1
] [∆1|2 ⊕ δ1γ2(δ1γ2)∗∆1|2

δ1∆1|2δ
−1

]
= ∆2|1∆1|2 ⊕∆2|1δ

1γ2(δ1γ2)∗∆1|2 ⊕ δ−1∆2|1δ
1∆1|2δ

−1

= ∆2|2 ⊕ δ1∆2|2δ
−1 ⊕ δ2γ2(δ2γ2)∗∆2|2.

/

To show how the core form can be used to perform basic
operations between ultimately cyclic series in Tper[[γ]] we first
elaborate some properties of the mω-vector and bω-vector. The
scalar product mωbω of these two vectors is the identity e,
because of Remark 3 and the fact that ∆ω|1∆1|ω = ∆ω|ω
(Remark 1),

mω ⊗ bω =δ0∆ω|1∆1|ωδ
1−ω ⊕ · · · ⊕ δ1−ω∆ω|1∆1|ωδ

0

=δ0∆ω|ωδ
1−ω ⊕ · · · ⊕ δ1−ω∆ω|ωδ

0 = e, (16)
as discussed in Example 2. The dyadic product bω ⊗ mω

is a square matrix in Max
in [[γ, δ]] denoted by N. For i, j ∈

{1, · · · , ω}, the entry (bω ⊗mω)i,j is given by,

(N)i,j = (bω ⊗mω)i,j = ∆1|ωδ
(i−j)+(1−ω)∆ω|1.

Then, because of ∆1|ωδ
−ω = δ−1∆1|ω and ∆1|ωδ

−n∆ω|1 =
∆1|1 = e for −ω < n ≤ 0, see Remark 1,

N = bω ⊗mω =


e δ−1 · · · δ−1

...
. . . . . .

...
...

. . . δ−1

e · · · · · · e

 . (17)

Proposition 5. For the N matrix the following relations hold
N⊗N = N; N⊗ bω = bω; mω ⊗N = mω .



Proof.
N⊗N = bω ⊗mω ⊗ bω ⊗mω = bω ⊗ e⊗mω = N,

N⊗ bω = bω ⊗mω ⊗ bω = bω ⊗ e = bω,

mω ⊗N = mω ⊗ bω ⊗mω = e⊗mω = mω.

2

4.1 Operations between Core Matrices

To perform addition and multiplication of two ultimately cyclic
series s1 = mω1

Q1bω1
, s2 = mω2

Q2bω2
∈ Tper[[γ]] in

the core form, it is necessary to express the core matrices
Q1 ∈Max

in [[γ, δ]]ω1×ω1 andQ2 ∈Max
in [[γ, δ]]ω2×ω2 with equal

dimensions. This is possible by expressing both series with
their least common period ω = lcm(ω1, ω2), see the following
proposition.
Proposition 6. A series s = mωQbω ∈ Tper[[γ]] can be
expressed with a multiple period nω by extending the core
matrix Q, i.e., s = mωQbω = mnωQ

′bnω , where Q′ ∈
Max

in [[γ, δ]]nω×nω and is given by

Q′ =

∆1|nδ
1−nNQN∆n|1 · · · ∆1|nδ

1−nNQNδ1−n∆n|1
...

...
∆1|nNQN∆n|1 · · · ∆1|nNQNδ1−n∆n|1

 .
Proof. See Appendix A. 2

Proposition 7. (Sum of series).
Let s = mωQbω, s′ = mωQ

′bω ∈ Tper[[γ]], the sum s ⊕
s′ = mωQ

′′bω , whereQ′′ = Q⊕Q′.

Proof. We have, mωQbω ⊕mωQ
′bω = mω(Q⊕Q′)bω. 2

Proposition 8. (Product of series).
Let s = mωQbω, s′ = mωQ

′bω ∈ Tper[[γ]], the product
s⊗ s′ = mωQ

′′bω , whereQ′′ = QNQ′.

Proof. Recall that bωmω = N, therefore mωQbωmωQ
′bω =

mωQNQ′bω. 2

Proposition 9. (Kleene star of series). Let s = mωQbω ∈
Tper[[γ]]. Then, s∗ can be obtained by

s∗ = mω(QN)∗bω. (18)

Proof. Recall that bω = Nbω and therefore s = mωQbω =
mωQNbω . In the core form, the Kleene star of a series s ∈
Tper[[γ]] can be written as

s∗ = e⊕mωQNbω ⊕mωQNbωmωQNbω ⊕ · · ·
Recall that Q is a square matrix, e = mωbω (16), N = bωmω

(17) and NN = N (Prop. 5),
s∗ = mωbω ⊕mωQNbω ⊕mωQNQNbω ⊕ · · ·

= mω(I ⊕QN⊕ (QN)2 ⊕ · · · )bω
= mω(QN)∗bω.

2

Due to Prop. 7, Prop. 8 and Prop. 9, it is clear that the sum,
product and Kleene star operation of ultimately cyclic series
in Tper[[γ]] can be computed based on the core matrices Q ∈
Max

in [[γ, δ]] of the series. Finally let us note that this core-
form of series s ∈ Tper[[γ]] is similar to the core-form of
series s ∈ Eper[[δ]] see, Trunk et al. (2017). The dioid Tper[[γ]]
with periodic time-operators can be seen as the counter part of
the dioid Eper[[δ]], introduced in Cottenceau et al. (2014), with
periodic event-operators. The dioid Eper[[δ]] is useful to obtain
transfer function matrices for Weight-Balanced Timed Event
Graphs (WBTEGs).

4.2 Transfer Functions of a TEGPS in Tper[[γ]]

Recall the state space form of a TEGPS, x = Ax⊕Bu; y =
Cx, Section 3.4, (15).
Theorem 2. For a g-input p-output TEGPS with periodic PSs
(Definition 2) the transfer function matrix is given by H =
CA∗B ∈ Tper[[γ]]p×g . Moreover, the entries of the transfer
function matrixH are ultimately cyclic series in Tper[[γ]]. /

Proof. A periodic PS of a transition by a periodic signal
refers to a periodic T-operator Prop. 4. As every mono-
mial/polynomial in Tper[[γ]] is a specific ultimately cyclic series,
the entries of the A, B and C matrices are composed of ulti-
mately cyclic series in Tper[[γ]]. The sum (resp. product, Kleene
star) of ultimately cyclic series in Tper[[γ]] are again ultimately
cyclic series in Tper[[γ]], see Prop. 7 (resp. Prop. 8, Prop. 9).
Thus the transfer matrixCA∗B is also composed of ultimately
cyclic series in Tper[[γ]]. 2

Example 8. Consider the TEGPS in Example 5 the transfer
function is obtained by

h = CA∗B =
[
ε δ1

] [ ε δ1∆2|2δ
−1γ2

δ1 ε

]∗ [
δ1∆2|2δ

−1

ε

]
= δ1(A∗)2,1δ

1∆2|2δ
−1,

where (A∗)2,1 = (δ2∆2|2δ
−1γ2)∗δ1. To express h as an

ultimately cyclic series we rewrite (A∗)2,1 in the core-form and
compute the Kleene star with the toolbox minmaxGD Hardouin
et al. (2009). Recall Prop. 9, therefore

(A∗)2,1 =
(
m2

[
γ2δ1 ε
ε ε

]
b2

)∗
δ1 = m2

( [γ2δ1 ε
ε ε

]
N
)∗
b2δ

1

= m2

[
(γ2δ1)∗ γ2(γ2δ1)∗

ε e

]
b2δ

1.

After multiplication we obtain, h = δ3∆2|2δ
−1(γ2δ2)∗ ⊕

δ2γ2∆2|2δ
−1(γ2δ2)∗ ⊕ δ2∆2|2δ

−1 = δ3∆2|2δ
−1(γ2δ2)∗. For

the given TEGPS, this transfer function is useful to compute the
output y to a given input u, where y and u represent the dater
functions associated with the transitions t1 and t4. For instance
consider the input dater function

u(k) =



−∞ for k < 1;

0 for k = 1;

2 for k = 2, 3;

3 for k = 4, 5, 6, 7;

∞ for k ≥ 8.

The output dater function to this input is given by

y(k) = ((δ3∆2|2δ
−1(γ2δ2)∗)u)(k)

= ((δ3∆2|2δ
−1u)(k)⊕ (δ5∆2|2δ

−1γ2u)(k)

⊕ (δ7∆2|2δ
−1γ4u)(k)⊕ · · · )

= max
(
3 +

⌈u(k)− 1

2

⌉
2, 5 +

⌈u(k − 2)− 1

2

⌉
2,

7 +
⌈u(k − 4)− 1

2

⌉
2, · · ·

)
.

Therefore,



y(k) =



−∞ for k < 1;

3 for k = 1;

5 for k = 2, 3;

7 for k = 4, 5;

9 for k = 6, 7;

∞ for k ≥ 8.
/

output y(k)

input u(k)

count

time

1 2 3 4 5 6 7 8 9
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Fig. 5. System response y to the input u.

5. CONCLUSION

In this paper, we introduce algebraic tools to obtain transfer
function matrices for a subclass of TEGsPS, where the partial
synchronization of transitions are characterized by periodic sig-
nals. We introduce a dioid called Tper[[γ]] with periodic-time
operators and show that all relevant operations on ultimately
cyclic series s ∈ Tper[[γ]] in this dioid can be reduced to op-
erations on matrices in the subdioidMax

in [[γ, δ]]. An advantage
of this approach is that the already existing tools for standard
TEGs in the dioidMax

in [[γ, δ]] can be applied to the more gen-
eral class of TEGsPS. Based on these results, many control
concepts already introduced for TEGs, such as model-reference
control Maia et al. (2003), observer based control Hardouin
et al. (2017), etc. can be generalized for TEGsPS. This will be
the topic of further work.

Appendix A. PROOFS

Proof. of Prop. 6. A series s ∈ Tper[[γ]] with period ω can be
written as,

s = mωQbω = mnω bnωmωQbωmnω︸ ︷︷ ︸
Q̂
′

bnω.

Since, ∆1|nωδ
1−nω = ∆1|n∆1|ωδ

−ω(n−1)δ1−ω

= ∆1|nδ
1−n∆1|ωδ

1−ω then

bnω =



∆1|nδ
1−n∆1|ωδ

1−ω

...
∆1|nδ

1−n∆1|ω


...∆1|n∆1|ωδ

1−ω

...
∆1|n∆1|ω




=

∆1|nδ
1−nbω
...

∆1|nbω

 .

This leads to

bnωmω =

∆1|nδ
1−nN
...

∆1|nN

 .

Respectively bωmnω =
[
N∆n|1 · · · Nδ1−n∆n|1

]
. Finally we

obtain

Q′ =

∆1|nδ
1−nN
...

∆1|nN

Q [N∆n|1 · · · Nδ1−n∆n|1
]
,

=

∆1|nδ
1−nNQN∆n|1 · · · ∆1|nδ

1−nNQNδ1−n∆n|1
...

...
∆1|nNQN∆n|1 · · · ∆1|nNQNδ1−n∆n|1

 .
The extended core is a matrix inMax

in [[γ, δ]], since ∆1|nδ
τ∆n|1

= δdτ/nen, see Remark 1. 2
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