Accéder directement au contenu Accéder directement à la navigation
Autre publication

Horizontal Extrapolation of Wind Speed Distribution Using Neural Network for Wind Resource Assessment

Abstract : To evaluate the wind potential on a site for future wind energy project, an accurate representation of the wind speed distribution is required. However, due to the lack of observations, wind engineers are conducted to use some statistical tools to estimate the characteristics of wind by the measurements from a nearby reference or data obtained from a short period. In this work, we aim at applying an information processing paradigm that is inspired by biological neurons, formal neurons, for the assessment of wind speed distribution. Two different learning algorithms are used so as to generate Artificial Neural Network with one hidden layer. Results prove that learning by means of Bayesian regularization, in comparison with Levenberg–Marquardt learning algorithm, gives the best performance. In addition, the proposed network allows significant results in horizontal wind extrapolation.
Type de document :
Autre publication
Liste complète des métadonnées

https://hal.univ-angers.fr/hal-02527931
Contributeur : Okina Université d'Angers <>
Soumis le : mercredi 1 avril 2020 - 15:23:41
Dernière modification le : vendredi 1 mai 2020 - 11:50:57

Lien texte intégral

Identifiants

Collections

Citation

Nihad Aghbalou, Abdérafi Charki, Saida Rahali El Azzouzi, Kamal Reklaoui. Horizontal Extrapolation of Wind Speed Distribution Using Neural Network for Wind Resource Assessment. 2017, pp.1498-1504. ⟨10.21275/ART20178810⟩. ⟨hal-02527931⟩

Partager

Métriques

Consultations de la notice

21