Accéder directement au contenu Accéder directement à la navigation
Communication dans un congrès

Probability distribution function based iris recognition boosted by the mean rule

Abstract : In this work, a new iris recognition algorithm based on tonal distribution of iris images is introduced. During the process of identification probability distribution functions of colored irises are generated in HSI and YCbCr color spaces. The discrimination between classes is obtained by using Kullback-Leibler divergence. In order to obtain the final decision on recognition, the multi decision on various color channels has been combined by employing mean rule. The decisions of H, S, Y, Cb and Cr color channels have been combined. The proposed technique overcome the conventional principle component analysis technique and achieved a recognition rate of 100% using the UPOL database. The major advantage is the fact that it is computationally less complex than the Daugman's algorithm and it is suitable for using visible light camera as opposed to the one proposed by Daugman where NIR cameras are used for obtaining the irises.
Type de document :
Communication dans un congrès
Liste complète des métadonnées
Contributeur : Okina Université d'Angers <>
Soumis le : jeudi 2 septembre 2021 - 15:05:39
Dernière modification le : mardi 7 septembre 2021 - 14:12:39


Fichiers produits par l'(les) auteur(s)


Distributed under a Creative Commons Paternité 4.0 International License




Kert Pjatkin, Morteza Daneshmand, Pejman Rasti, Gholamreza Anbarjafari. Probability distribution function based iris recognition boosted by the mean rule. 2014 International Conference on Intelligent Computing and Internet of Things (ICIT), Jan 2015, Harbin, China. pp.47-50, ⟨10.1109/ICAIOT.2015.7111535⟩. ⟨hal-02527965⟩



Consultations de la notice


Téléchargements de fichiers