Accéder directement au contenu Accéder directement à la navigation
Article dans une revue

Diagnosis of partially observed petri net based on analytical redundancy relationships

Abstract : In this paper, we design an efficient diagnosis technique for partially observed discrete event systems modeled by labeled Petri nets. The fault detection is based on analytical redundancy relationships derived from the nominal model. The decomposition of the Tun‐induced subnet to connected subgraphs allows determining the subgraphs that may contain faults. To appreciate the fault localization, a set of analytical redundancy relationships is etablished for each fault transition based on the fault model. The proposed diagnosis approach is independent of the length of the observed sequence and independent of the number of unobservable transitions. The detected faults with the proposed approach are faults which led to a change in the number of tokens in the net.
Type de document :
Article dans une revue
Liste complète des métadonnées

https://hal.univ-angers.fr/hal-02528715
Contributeur : Okina Université d'Angers <>
Soumis le : mercredi 1 avril 2020 - 23:39:56
Dernière modification le : jeudi 2 avril 2020 - 10:31:15

Identifiants

Collections

Citation

Amira Dardour, Atef Kheder, Othman Nasri, Anas Kamoun. Diagnosis of partially observed petri net based on analytical redundancy relationships. Asian Journal of Control, 2018, 21 (5), pp.2218-2231. ⟨10.1002/asjc.1832⟩. ⟨hal-02528715⟩

Partager

Métriques

Consultations de la notice

24