J. C. Love, L. A. Estroff, J. K. Kriebel, R. G. Nuzzo, and G. M. Whitesides, Self-Assembled Monolayers of Thiolates on Metals as a Form of Nanotechnology, Chem. Rev, vol.105, pp.1103-1170, 2005.

S. Zhang, C. M. Cardona, and L. Echegoyen, Ion Recognition Properties of Self-Assembled Monolayers (SAMs), Chem. Commun, pp.4461-4473, 2006.

S. Flink, F. C. Van-veggel, and D. N. Reinhoudt, Sensor Functionalities in Self-Assembled Monolayers, Adv. Mater, vol.12, pp.1315-1328, 2000.

C. Amatore, D. Genovese, E. Maisonhaute, N. Raouafi, and B. Schollhorn, Electrochemically Driven Release of Picomole Amounts of Calcium Ions with Temporal and Spatial Resolution, Angew. Chem., Int. Ed, vol.47, pp.5211-5214, 2008.

M. W. Beulen, F. C. Van-veggel, and D. N. Reinhoudt, Coupling of Acid-Base and Redox Functions in Mixed Sulfide Monolayers on Gold, Chem. Commun, pp.503-504, 1999.

A. C. Coleman, J. Areephong, J. Vicario, A. Meetsma, W. R. Browne et al., Situ Generation of Wavelength-Shifting Donor?Acceptor Mixed-Monolayer-Modified Surfaces, Angew. Chem., Int. Ed, vol.49, pp.6580-6584, 2010.

V. Ta, S. B. Nimse, K. Song, J. Kim, D. R. Sayyed et al., Characterization of the Mixed Self-Assembled Monolayer at the Molecular Scale, Chem. Commun, vol.47, pp.11261-11263, 2011.

P. Y. Blanchard, C. Niebel, S. Boisard, O. Aleveque, L. Sanguinet et al., Evidence of Electrochemical Transduction of Cation Recognition by TEMPO Derivatives, New J. Chem, vol.36, pp.546-549, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02533551

S. N. Dmitrieva, M. V. Churakova, N. A. Kurchavov, A. I. Vedernikov, A. Y. Freidzon et al., Host?Guest Complexes of Nitro-Substituted N-Alkylbenzoaza-18-crowns-6, Russ. J. Org. Chem, pp.47-1101, 2011.

A. J. Pearson, J. Hwang, and M. E. Ignatov, Crown-annelated p-Phenylenediamine Derivatives as Electrochemical and Fluorescence Responsive Chemosensors: Fluorescence Studies, Tetrahedron Lett, vol.42, pp.3537-3540, 2001.

K. Uosaki, Y. Sato, and H. Kita, Electrochemical Characteristics of a Gold Electrode Modified with a Self-Assembled Monolayer of Ferrocenylalkanethiols, Langmuir, vol.7, pp.1510-1514, 1991.

S. E. Creager and G. K. Rowe, Competitive Self-Assembly and Electrochemistry of Some Ferrocenyl-n-alkanethiol Derivatives on Gold, J. Electroanal. Chem, vol.370, pp.203-211, 1994.

E. F. Douglass, P. F. Driscoll, D. Liu, N. A. Burnham, C. R. Lambert et al., Effect of Electrode Roughness on the Capacitive Behavior of Self-Assembled Monolayers, Anal. Chem, vol.80, pp.7670-7677, 2008.

O. Aleveque, P. Y. Blanchard, C. Gautier, M. Dias, T. Breton et al., Electroactive Self-Assembled Monolayers: Laviron'S Interaction Model Extended to Non-Random Distribution of Redox Centers, Electrochem. Commun, vol.12, pp.1462-1466, 2010.

O. Aleveque, C. Gautier, M. Dias, T. Breton, and E. Levillain, Phase Segregation on Electroactive Self-Assembled Monolayers: A Numerical Approach for Describing Lateral Interactions between Redox Centers, Phys. Chem. Chem. Phys, vol.12, pp.12584-12590, 2010.
URL : https://hal.archives-ouvertes.fr/hal-02533701

G. Trippe, M. Ocafrain, M. Besbes, V. Monroche, J. Lyskawa et al., Self-Assembled Monolayers of a Tetrathiafulvalene-Based Redox-Switchable Ligand, New J. Chem, vol.26, pp.1320-1323, 2002.

A. J. Moore, L. M. Goldenberg, M. R. Bryce, M. C. Petty, A. P. Monkman et al., Cation recognition by self-assembled layers of novel crown-annelated tetrathiafulvalenes, Adv. Mater, vol.10, pp.395-398, 1998.

O. Reynes, C. Bucher, J. Moutet, and G. Royal, Saint-Aman, E. Electrochemical Sensing of Dihydrogen Phosphate and Adenosine-5?-triphosphate Anions by Self-Assembled Monolayers of (Ferrocenylmethyl)trialkylammonium Cations on Gold Electrodes, Inorg. Chim. Acta, vol.361, pp.1784-1788, 2008.

J. C. Medina, T. T. Goodnow, S. Bott, J. L. Atwood, A. E. Kaifer et al., Ferrocenyldimethyl-[2.2]-cryptand: Solid State Structure of the External Hydrate and Alkali and Alkaline-Earth-Dependent Electrochemical Behaviour, J. Chem. Soc., Chem. Commun, pp.290-292, 1991.

C. E. Chidsey, C. R. Bertozzi, T. M. Putvinski, and A. M. Mujsce, Considering that ferrocene molecules are modeled as spheres with a diameter of 6.6 Å and are connected to the electrode through alkanethiol chains modeled as cylinders with a diameter of 4.6 Å, the maximum ?Fc for a monolayer has been estimated to be around 4.5 × 10 ?10 mol cm ?2 , assuming hexagonal closest-packing, J. Am. Chem. Soc, vol.112, pp.4301-4306, 1990.

R. Dieing, V. Morisson, A. J. Moore, L. M. Goldenberg, M. R. Bryce et al., Crown-Annelated Tetrathiafulvalenes: Synthesis of New Functionalised Derivatives and Spectroscopic and Electrochemical Studies of Metal Complexation, J. Chem. Soc., Perkin Trans, vol.2, pp.1587-1593, 1996.