Accéder directement au contenu Accéder directement à la navigation
Article dans une revue

Weak dual residuations applied to tropical linear equations

Abstract : An extension to an algorithm of R.A. Cuninghame-Green and K. Zimmermann for solving equations with residuated functions is presented. This extension relies on the concept of weak residuation and in the so-called “strong property”. It is shown that a contextualization of this method to tropical linear equations, which will be denoted as Primal Method (in contrast with the Dual Method, another algorithm described in literature), generates a non-decreasing sequence which converges to the smallest solution in a special semimodule. It is also shown the connections of this method with previously published works.
Type de document :
Article dans une revue
Liste complète des métadonnées

https://hal.univ-angers.fr/hal-02535546
Contributeur : Marie-Françoise Gerard <>
Soumis le : mardi 7 avril 2020 - 16:21:24
Dernière modification le : mardi 7 avril 2020 - 16:27:53

Lien texte intégral

Identifiants

Collections

Citation

Vinicius Mariano Gonçalves, Carlos Andrey Maia, Laurent Hardouin. Weak dual residuations applied to tropical linear equations. Linear Algebra and its Applications, Elsevier, 2014, 445, pp.69-84. ⟨10.1016/j.laa.2013.10.044⟩. ⟨hal-02535546⟩

Partager

Métriques

Consultations de la notice

13