Accéder directement au contenu Accéder directement à la navigation
Article dans une revue

Weak dual residuations applied to tropical linear equations

Abstract : An extension to an algorithm of R.A. Cuninghame-Green and K. Zimmermann for solving equations with residuated functions is presented. This extension relies on the concept of weak residuation and in the so-called “strong property”. It is shown that a contextualization of this method to tropical linear equations, which will be denoted as Primal Method (in contrast with the Dual Method, another algorithm described in literature), generates a non-decreasing sequence which converges to the smallest solution in a special semimodule. It is also shown the connections of this method with previously published works.
Type de document :
Article dans une revue
Liste complète des métadonnées
Contributeur : Marie-Françoise Gerard <>
Soumis le : mardi 7 avril 2020 - 16:21:24
Dernière modification le : mercredi 30 juin 2021 - 18:02:29

Lien texte intégral




Vinicius Mariano Gonçalves, Carlos Andrey Maia, Laurent Hardouin. Weak dual residuations applied to tropical linear equations. Linear Algebra and its Applications, Elsevier, 2014, 445, pp.69-84. ⟨10.1016/j.laa.2013.10.044⟩. ⟨hal-02535546⟩



Consultations de la notice