H. Bassirirad, Kinetics of nutrient uptake by roots: responses to global change, New Phytol, vol.147, pp.155-169, 2000.

G. Xu, X. Fan, and A. J. Miller, Plant nitrogen assimilation and use efficiency, Annu. Rev. Plant Biol, vol.63, pp.153-82, 2012.

C. Masclaux-daubresse, Nitrogen uptake, assimilation and remobilization in plants: challenges for sustainable and productive agriculture, Ann. Bot, vol.105, pp.1141-57, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01203920

M. Han, M. Okamoto, P. H. Beatty, S. J. Rothstein, and A. G. Good, The genetics of nitrogen use efficiency in crop plants, Annu. Rev. Genet, vol.49, pp.269-289, 2015.

D. T. Britto and H. J. Kronzucker, NH 4 + toxicity in higher plants: a critical review, J. Plant Physiol, vol.159, pp.567-584, 2002.

Y. Liu and N. Von-wirén, Ammonium as a signal for physiological and morphological responses in plants, J. Exp. Bot, vol.68, pp.2581-2592, 2017.

S. M. Bernard and D. Z. Habash, The importance of cytosolic glutamine synthetase in nitrogen assimilation and recycling, New Phytol, vol.182, pp.608-620, 2009.

I. Vega-mas, CO 2 enrichment modulates ammonium nutrition in tomato adjusting carbon and nitrogen metabolism to stomatal conductance, Plant Sci, vol.241, pp.32-44, 2015.

A. Sarasketa, M. B. González-moro, C. González-murua, and D. Marino, Nitrogen source and external medium pH interaction differentially affects root and shoot metabolism in Arabidopsis, Front. Plant Sci, vol.7, pp.1-12, 2016.

M. Guan, T. De-bang, C. Pedersen, and J. K. Schjoerring, Cytosolic glutamine synthetase Gln1;2 is the main isozyme contributing to GS1 activity and can be up-regulated to relieve ammonium toxicity, Plant Physiol, vol.171, pp.1195-2016, 2016.

T. Kichey, Combined agronomic and physiological aspects of nitrogen management in wheat highlight a central role for glutamine synthetase, New Phytol, vol.169, pp.265-278, 2006.

Z. Zhang, The role of glutamine synthetase isozymes in enhancing nitrogen use efficiency of N-efficient winter wheat, Sci. Rep, vol.7, p.1000, 2017.

J. K. Schjoerring, S. Husted, G. Mäck, and M. Mattsson, The regulation of ammonium translocation in plants, J. Exp. Bot, vol.53, pp.883-90, 2002.

T. Hachiya and H. Sakakibara, Interactions between nitrate and ammonium in their uptake, allocation, assimilation, and signaling in plants, J. Exp. Bot, vol.68, pp.2501-2512, 2017.

I. Vega-mas, Elevated CO 2 induces root defensive mechanisms in tomato plants when dealing with ammonium toxicity, Plant Cell Physiol, vol.58, pp.2112-2125, 2017.

I. Setién, High irradiance improves ammonium tolerance in wheat plants by increasing N assimilation, J. Plant Physiol, vol.170, pp.758-71, 2013.

I. Coleto, Leaves play a central role in the adaptation of nitrogen and sulfur metabolism to ammonium nutrition in oilseed rape (Brassica napus), BMC Plant Biol, vol.17, p.157, 2017.

D. T. Britto and H. J. Kronzucker, Nitrogen acquisition, PEP carboxylase, and cellular pH homeostasis: new views on old paradigms, Plant Cell Environ, vol.28, pp.1396-1409, 2005.

A. Viktor and M. D. Cramer, Variation in root-zone CO 2 concentration modifes isotopic fractionation of carbon and nitrogen in tomato seedlings, New Phytol, vol.157, pp.45-54, 2003.

J. Bialczyk, Z. Lechowski, D. Dziga, and K. Molenda, Carbohydrate and free amino acid con tents in tomato plants grown in media with bicarbonate and nitrate or ammonium, Acta Physiol. Plant, vol.27, pp.523-529, 2005.

H. R. Roosta and J. K. Schjoerring, Root carbon enrichment alleviates ammonium toxicity in cucumber plants, J. Plant Nutr, vol.31, pp.941-958, 2008.

L. J. Sweetlove, K. F. Beard, A. Nunes-nesi, A. R. Fernie, and R. G. Ratcliffe, Not just a circle: flux modes in the plant TCA cycle, Trends Plant Sci, vol.15, pp.462-70, 2010.

R. Sulpice, Mild reductions in cytosolic NADP-dependent isocitrate dehydrogenase activity result in lower amino acid contents and pigmentation without impacting growth, Amino Acids, vol.39, pp.1055-66, 2010.

J. Shi, Phosphoenolpyruvate carboxylase in Arabidopsis leaves plays a crucial role in carbon and nitrogen metabolism, Plant Physiol, vol.167, pp.671-681, 2015.

A. Viktor and M. D. Cramer, The influence of root assimilated inorganic carbon on nitrogen acquisition/assimilation and carbon partitioning, New Phytol, vol.165, pp.157-169, 2005.

I. Ariz, Changes in the C/N balance caused by increasing external ammonium concentrations are driven by carbon and energy availabilities during ammonium nutrition in pea plants: the key roles of asparagine synthetase and anaplerotic enzymes, Physiol. Plant, vol.148, pp.522-559, 2013.

I. Setién, Root phosphoenolpyruvate carboxylase and NAD-malic enzymes activity increase the ammonium-assimilating capacity in tomato, J. Plant Physiol, vol.171, pp.49-63, 2014.

N. J. Kruger and R. G. Ratcliffe, Pathways and fluxes: exploring the plant metabolic network, J. Exp. Bot, vol.63, pp.2243-2249, 2012.

B. H. Junker, J. Lonien, L. E. Heady, A. Rogers, and J. Schwender, Parallel determination of enzyme activities and in vivo fluxes in Brassica napus embryos grown on organic or inorganic nitrogen source, Phytochemistry, vol.68, pp.2232-2242, 2007.

D. K. Allen, Quantifying plant phenotypes with isotopic labeling & metabolic flux analysis, Curr. Opin. Biotechnol, vol.37, pp.45-52, 2016.

J. Guo, Growth, photosynthesis, and nutrient uptake in wheat are affected by differences in nitrogen levels and forms and potassium supply, Sci. Rep, vol.9, p.1248, 2019.

D. T. Britto, M. Y. Siddiqi, A. D. Glass, and H. J. Kronzucker, Futile transmembrane NH 4 + cycling: a cellular hypothesis to explain ammonium toxicity in plants, Proc. Natl. Acad. Sci. USA, vol.98, pp.4255-4263, 2001.

F. Wang, Adaptation to rhizosphere acidification is a necessary prerequisite for wheat (Triticum aestivum L.) seedling resistance to ammonium stress, Plant Physiol. Biochem, vol.108, pp.447-455, 2016.

N. Koga and M. Ikeda, Methionine sulfoximine suppressed the stimulation of dark carbon fixation by ammonium nutrition in wheat roots, Soil Sci. Plant Nutr, pp.37-41, 2000.

P. J. Lea and B. J. Miflin, Nitrogen assimilation and its relevance to crop improvement in Nitrogen metabolism in plants in the postgenomic era, Annu. Plant Rev, vol.42, pp.1-40, 2011.

R. De-souza-miranda, E. Gomes-filho, J. T. Prisco, and J. C. Alvarez-pizarro, Ammonium improves tolerance to salinity stress in Sorghum bicolor plants, Plant Growth Regul, vol.78, pp.121-131, 2016.

L. Gaufichon, M. Reisdorf-cren, S. J. Rothstein, F. Chardon, and A. Suzuki, Biological functions of asparagine synthetase in plants, Plant Sci, vol.179, pp.141-153, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01203935

H. S. Seifi, Concurrent overactivation of the cytosolic glutamine synthetase and the GABA shunt in the ABA-deficient sitiens mutant of tomato leads to resistance against Botrytis cinerea, New Phytol, vol.199, pp.490-504, 2013.

X. Ma, C. Zhu, N. Yang, L. Gan, and K. Xia, Aminobutyric acid addition alleviates ammonium toxicity by limiting ammonium accumulation in rice (Oryza sativa) seedlings, Physiol. Plant, vol.158, pp.389-401, 2016.

A. Fait, H. Fromm, D. Walter, G. Galili, and A. R. Fernie, Highway or byway: the metabolic role of the GABA shunt in plants, Trends Plant Sci, vol.13, pp.14-19, 2008.

F. Wang, Higher ammonium transamination capacity can alleviate glutamate inhibition on winter wheat (Triticum aestivum L.) root growth under high ammonium stress, PLoS One, vol.11, p.160997, 2016.

S. Labboun, Resolving the role of plant glutamate dehydrogenase. I. In vivo real time nuclear magnetic resonance spectroscopy experiments, Plant Cell Physiol, vol.50, pp.1761-73, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00426278

Y. Miyashita and A. G. Good, NAD(H)-dependent glutamate dehydrogenase is essential for the survival of Arabidopsis thaliana during dark-induced carbon starvation, J. Exp. Bot, vol.59, pp.667-680, 2008.

J. Fontaine, Characterization of a NADH-dependent glutamate dehydrogenase mutant of Arabidopsis demonstrates the key role of this enzyme in root carbon and nitrogen metabolism, Plant Cell, vol.24, pp.4044-65, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01019522

D. S. Skopelitis, Abiotic stress generates ROS that signal expression of anionic glutamate dehydrogenases to form glutamate for proline synthesis in tobacco and grapevine, Plant Cell, vol.18, pp.2767-81, 2006.

D. S. Skopelitis, The isoenzyme 7 of tobacco NAD(H)-dependent glutamate dehydrogenase exhibits high deaminating and low aminating activities in vivo, Plant Physiol, vol.145, pp.1726-1760, 2007.

I. Vega-mas, Tomato roots exhibit in vivo glutamate dehydrogenase aminating capacity in response to excess ammonium supply, J. Plant Physiol, 2019.

G. Ferraro, M. D'-angelo, R. Sulpice, M. Stitt, and E. M. Valle, Reduced levels of NADH-dependent glutamate dehydrogenase decrease the glutamate content of ripe tomato fruit but have no effect on green fruit or leaves, J. Exp. Bot, vol.66, pp.3381-3389, 2015.

M. Dieuaide-noubhani, A. Alonso, D. Rolin, W. Eisenreich, and P. Raymond, Metabolic flux analysis: recent advances in carbon metabolism in plants, 2007.

G. Tcherkez and M. Hodges, How stable isotopes may help to elucidate primary nitrogen metabolism and its interaction with (photo) respiration in C3 leaves, J. Exp. Bot, vol.59, pp.1685-93, 2008.

C. Abadie, J. Lothier, E. Boex-fontvieille, A. Carroll, and G. G. Tcherkez, Direct assessment of the metabolic origin of carbon atoms in glutamate from illuminated leaves using 13 C-NMR, New Phytol, vol.216, pp.1079-1089, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02620635

P. P. Gauthier, In folio isotopic tracing demonstrates that nitrogen assimilation into glutamate is mostly independent from current CO 2 assimilation in illuminated leaves of Brassica napus, New Phytol, vol.185, pp.988-999, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00470357

W. L. Araújo, A. O. Martins, A. R. Fernie, and T. Tohge, 2-Oxoglutarate: linking TCA cycle function with amino acid, glucosinolate, flavonoid, alkaloid, and gibberellin biosynthesis, Front. Plant Sci, vol.5, p.552, 2014.

F. Zhang, Growth traits and nitrogen assimilation-associated physiological parameters of wheat (Triticum aestivum L.) under low and high N conditions, J. Integr. Agric, vol.14, pp.1295-1308, 2015.

R. Steuer, From structure to dynamics of metabolic pathways: Application to the plant mitochondrial TCA cycle, Bioinformatics, vol.23, pp.1378-1385, 2007.

G. G. Tcherkez, In folio respiratory fluxomics revealed by 13C isotopic labeling and H/D isotope effects highlight the noncyclic nature of the tricarboxylic acid 'cycle' in illuminated leaves, Plant Physiol, vol.151, pp.620-630, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00448349

A. U. Igamberdiev and A. T. Eprintsev, Organic acids: the pools of fixed carbon involved in redox regulation and energy balance in higher plants, Front. Plant Sci, vol.7, p.1042, 2016.

D. I. Arnon, Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris, Plant Physiol, vol.24, pp.1-15, 1949.

A. Sarasketa, M. B. González-moro, C. González-murua, and D. Marino, Exploring ammonium tolerance in a large panel of Arabidopsis thaliana natural accessions, J. Exp. Bot, vol.65, pp.6023-6056, 2014.

P. A. Srere,

, Methods Enzymol, vol.13, pp.3-11, 1969.

C. Cukier, Labeling Maize (Zea mays L.) Leaves with 15 NH 4 + and monitoring nitrogen incorporation into amino acids by GC/ MS analysis, Curr. Protoc. Plant Biol, vol.3, p.20073, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02374788