K. Panke-buisse, A. C. Poole, J. K. Goodrich, R. E. Ley, and J. Kao-kniffin, Selection on soil microbiomes reveals reproducible impacts on plant function, The ISME journal, vol.9, pp.980-989, 2015.

J. A. Lau and J. T. Lennon, Rapid responses of soil microorganisms improve plant fitness in novel environments, Proc. Natl. Acad. Sci. USA, vol.109, pp.14058-62, 2012.

R. Mendes, Deciphering the rhizosphere microbiome for disease-suppressive bacteria, Science, vol.332, pp.1097-100, 2011.

A. Sugiyama, M. G. Bakker, D. V. Badri, D. K. Manter, and J. M. Vivanco, Relationships between Arabidopsis genotype-specific biomass accumulation and associated soil microbial communities, Botany, vol.91, pp.123-126, 2013.

D. Bulgarelli, Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota, Nature, vol.488, pp.91-95, 2012.

L. Maignien, E. A. Deforce, M. E. Chafee, A. M. Eren, and S. L. Simmons, Ecological Succession and Stochastic Variation in the Assembly of Arabidopsis thaliana Phyllosphere Communities, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01019120

J. Edwards, Structure, variation, and assembly of the root-associated microbiomes of rice, Proc. Natl. Acad. Sci. USA, vol.112, pp.911-920, 2015.

J. W. Leff, R. C. Lynch, N. C. Kane, and N. Fierer, Plant domestication and the assembly of bacterial and fungal communities associated with strains of the common sunflower, Helianthus annuus, New Phytol, vol.214, pp.412-423, 2017.

A. Shade, M. Jacques, and M. Barret, Ecological patterns of seed microbiome diversity, transmission, and assembly, Curr. Opin. Microbiol, vol.37, pp.15-22, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02516692

A. S. Rodrigues-pereira, P. J. Houwen, H. W. Deurenberg-vos, and E. B. Pey, Cytokinins and the bacterial symbiosis of Ardisia species, Zeitschrift für Pflanzenphysiologie, vol.68, pp.170-177, 1972.

D. E. Goggin, R. J. Emery, L. V. Kurepin, and S. B. Powles, A potential role for endogenous microflora in dormancy release, cytokinin metabolism and the response to fluridone in Lolium rigidum seeds, Annals of botany, vol.115, pp.293-301, 2015.

B. R. Vázquez-de-aldana, A. García-ciudad, B. García-criado, S. Vicente-tavera, and I. Zabalgogeazcoa, Fungal Endophyte (Epichloë festucae) Alters the Nutrient Content of Festuca rubra Regardless of Water Availability, PLOS ONE, vol.8, p.84539, 2013.

K. F. Baker and S. H. Smith, Dynamics of Seed Transmission of Plant Pathogens, Annual Review of Phytopathology, vol.4, pp.311-332, 1966.

R. Gitaitis and R. Walcott, The epidemiology and management of seedborne bacterial diseases, Annual Review of Phytopathology, vol.45, pp.371-97, 2007.

A. Darrasse, C. Bureau, R. Samson, C. Morris, and M. Jacques, Contamination of bean seeds by Xanthomonas axonopodis pv. phaseoli associated with low bacterial densities in the phyllosphere under field and greenhouse conditions, European Journal of Plant Pathology, vol.119, pp.203-215, 2007.

A. Darrasse, Transmission of Plant-Pathogenic Bacteria by Nonhost Seeds without Induction of an Associated Defense Reaction at Emergence, Applied and Environmental Microbiology, vol.76, pp.6787-6796, 2010.

A. Darsonval, The Type III secretion system of Xanthomonas fuscans subsp. fuscans is involved in the phyllosphere colonization process and in transmission to seeds of susceptible beans, Applied and Environmental Microbiology, vol.74, pp.2669-78, 2008.

M. Valeria and R. Gianfranco, Seed treatments to control seedborne fungal pathogens of vegetable crops, Pest Management Science, vol.70, pp.860-868, 2013.

A. Wightwick, R. Walters, G. Allinson, S. Reichman, and N. Menzies, Environmental Risks of Fungicides Used in Horticultural Production Systems. Fungicides, 2010.

B. Mitter, A New Approach to Modify Plant Microbiomes and Traits by Introducing Beneficial Bacteria at Flowering into Progeny Seeds, Front. Microbiol, vol.8, 2017.

M. Barret, J. Guimbaud, A. Darrasse, and M. Jacques, Plant microbiota affects seed transmission of phytopathogenic microorganisms, Molecular Plant Pathology, vol.17, pp.791-795, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02516665

B. Jakuschkin, Deciphering the Pathobiome: Intra-and Interkingdom Interactions Involving the Pathogen Erysiphe alphitoides, Microb. Ecol, vol.72, pp.870-880, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01607740

W. Qian, Comparative and functional genomic analyses of the pathogenicity of phytopathogen Xanthomonas campestris pv. campestris, Genome research, vol.15, pp.757-67, 2005.

S. Rezki, Differences in stability of seed-associated microbial assemblages in response to invasion by phytopathogenic microorganisms, PeerJ, vol.4, p.1923, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01392639

H. Avenot, Isolation of 12 polymorphic microsatellite loci in the phytopathogenic fungus Alternaria brassicicola, Molecular Ecology Notes, vol.5, pp.948-950, 2005.

V. Joana, G. Holub-eric, and B. , Xanthomonas campestris pv. campestris (cause of black rot of crucifers) in the genomic era is still a worldwide threat to brassica crops, Molecular Plant Pathology, vol.14, pp.2-18, 2012.

P. R. Verma, G. S. Saharan, and . Canada, Agriculture and Agri-Food Canada. Research Branch. Monograph on Alternaria diseases of crucifers. (Ottawa: Research Branch, Agriculture and Agri-Food Canada, 1994.

R. B. Maude, Seedborne diseases and their control: principles and practice, 1996.

S. Pochon, The Arabidopsis thaliana-alternaria brassicicola pathosystem: a model interaction for investigating seed transmission of necrotrophic fungi, Plant Methods, vol.8, issue.9, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01190780

J. M. Wolf, . Van-der, P. Zouwen, L. Svander-&-heijden, and . Van-der, Flower infection of Brassica oleracea with Xanthomonas campestris pv. campestris results in high levels of seed infection, Eur J Plant Pathol, vol.136, pp.103-111, 2013.

D. Dembélé and P. Kastner, Fold change rank ordering statistics: a new method for detecting differentially expressed genes, BMC Bioinformatics, vol.15, p.14, 2014.

S. Climer, A Custom Correlation Coefficient (CCC) Approach for Fast Identification of Multi-SNP Association Patterns in Genome-Wide SNPs Data, Genetic epidemiology, vol.38, pp.610-621, 2014.

B. J. Garcia, Phytobiome and transcriptional adaptation of Populus deltoides to acute progressive drought and cyclic drought, 2018.

O. Lukjancenko, T. M. Wassenaar, and D. W. Ussery, Comparison of 61 sequenced Escherichia coli genomes, Microb. Ecol, vol.60, pp.708-720, 2010.

S. Rezki, Assembly of seed-associated microbial communities within and across successive plant generations, Plant Soil, vol.422, pp.67-79, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02516590

G. Torres-cortés, Functional microbial features driving community assembly during seed germination and emergence, Front Plant Sci, vol.9, p.902, 2018.

S. Klaedtke, Terroir is a key driver of seed-associated microbial assemblages, Environ Microbiol, vol.18, pp.1792-1804, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01455975

G. Lopez-velasco, P. A. Carder, G. E. Welbaum, and M. A. Ponder, Diversity of the spinach (Spinacia oleracea) spermosphere and phyllosphere bacterial communities, Fems Microbiology Letters, vol.346, pp.146-154, 2013.

M. G. Links, Simultaneous profiling of seed-associated bacteria and fungi reveals antagonistic interactions between microorganisms within a shared epiphytic microbiome on Triticum and Brassica seeds, The New phytologist, vol.202, pp.542-53, 2014.

L. Yang, Dominant groups of potentially active bacteria shared by barley seeds become less abundant in root associated microbiome, Front. Plant Sci, vol.8, 2017.

E. Terrasson, Identification of a molecular dialogue between developing seeds of Medicago truncatula and seedborne xanthomonads, Journal of Experimental Botany, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01392700

F. R. Terras, Small cysteine-rich antifungal proteins from radish -their rôle in host-defense, Plant Cell, vol.7, pp.573-588, 1995.

S. Meldau, M. Erb, and I. T. Baldwin, Defence on demand: mechanisms behind optimal defence patterns, Ann. Bot, vol.110, pp.1503-1514, 2012.

O. Leprince, A. Pellizzaro, S. Berriri, and J. Buitink, Late seed maturation: drying without dying, J Exp Bot, vol.68, pp.827-841, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01608543

B. Niu, J. N. Paulson, X. Zheng, and R. Kolter, Simplified and representative bacterial community of maize roots, Proc. Natl. Acad. Sci. USA, vol.114, pp.2450-2459, 2017.

M. Barret, Emergence Shapes the Structure of the Seed Microbiota, Applied and Environmental Microbiology, vol.81, pp.1257-1266, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01153480

E. B. Nelson, Microbial dynamics and interactions in the spermosphere, Annual Review of Phytopathology, vol.42, pp.271-309, 2004.

M. E. Hibbing, C. Fuqua, M. R. Parsek, and S. B. Peterson, Bacterial competition: surviving and thriving in the microbial jungle, Nat. Rev. Microbiol, vol.8, pp.15-25, 2010.

T. Fukami, Historical Contingency in Community Assembly: Integrating Niches, Species Pools, and Priority Effects, vol.46, pp.1-23, 2015.

M. Jacques, Using Ecology, Physiology, and Genomics to Understand Host Specificity in Xanthomonas, Annu Rev Phytopathol, vol.54, pp.163-187, 2016.

C. S. Schmidt, M. Alavi, M. Cardinale, H. Müller, and G. Berg, Stenotrophomonas rhizophila DSM14405 T promotes plant growth probably by altering fungal communities in the rhizosphere, Biol Fertil Soils, vol.48, pp.947-960, 2012.

E. B. Nelson, The seed microbiome: Origins, interactions, and impacts, Plant Soil, vol.422, pp.7-34, 2018.

Y. Bai, Functional overlap of the Arabidopsis leaf and root microbiota, Nature, vol.528, pp.364-369, 2015.

M. Martin, Cutadapt removes adapter sequences from high-throughput sequencing reads, EMBnet.journal, vol.17, pp.10-12, 2011.

B. Langmead and S. L. Salzberg, Fast gapped-read alignment with Bowtie 2, Nature methods, vol.9, pp.357-366, 2012.

E. Belmas, Genome Sequence of the Necrotrophic Plant Pathogen Alternaria brassicicola Abra43, Genome Announc, vol.6, pp.1559-1576, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02516580

D. E. Wood and S. L. Salzberg, Kraken: ultrafast metagenomic sequence classification using exact alignments, Genome Biology, vol.15, p.46, 2014.

P. J. Mcmurdie and S. Holmes, phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data, PLOS ONE, vol.8, p.61217, 2013.

Y. Peng, H. C. Leung, S. M. Yiu, and F. Y. Chin, IDBA-UD: a de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth, Bioinformatics, vol.28, pp.1420-1428, 2012.

C. Chin, Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data, Nat Meth, vol.10, pp.563-569, 2013.

T. Seemann, Prokka: rapid prokaryotic genome annotation, Bioinformatics, vol.30, pp.2068-2069, 2014.

B. Buchfink, C. Xie, and D. H. Huson, Fast and sensitive protein alignment using DIAMOND, Nat Meth, vol.12, pp.59-60, 2015.

J. Huerta-cepas, eggNOG 4.5: a hierarchical orthology framework with improved functional annotations for eukaryotic, prokaryotic and viral sequences, Nucleic Acids Res, vol.44, pp.286-293, 2016.

H. Li, The Sequence Alignment/Map format and SAMtools, Bioinformatics, vol.25, pp.2078-2079, 2009.

S. Van-dongen, C. Abreu-goodger, and M. C. Using, Methods Mol. Biol, vol.804, pp.281-295, 2012.

D. D. Kang, J. Froula, R. Egan, and Z. Wang, MetaBAT, an efficient tool for accurately reconstructing single genomes from complex microbial communities, PeerJ, vol.3, p.1165, 2015.

D. H. Parks, M. Imelfort, C. T. Skennerton, P. Hugenholtz, and G. W. Tyson, CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes, Genome Res, vol.25, pp.1043-1055, 2015.

M. Richter and R. Rosselló-móra, Shifting the genomic gold standard for the prokaryotic species definition, Proc. Natl. Acad. Sci. USA, vol.106, pp.19126-19131, 2009.

,

R. Luo, SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler, Gigascience, vol.1, p.18, 2012.

D. R. Zerbino and E. Birney, Velvet: Algorithms for de novo short read assembly using de Bruijn graphs, Genome Res, vol.18, pp.821-829, 2008.

B. J. Callahan, DADA2: High-resolution sample inference from Illumina amplicon data, Nature Methods, vol.13, pp.581-583, 2016.

H. Glassner, Bacterial niches inside seeds of Cucumis melo L, Plant Soil, vol.422, pp.101-113, 2018.

R. I. Amann, Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations, Appl. Environ. Microbiol, vol.56, pp.1919-1925, 1990.

H. Daims, A. Brühl, R. Amann, K. Schleifer, and M. Wagner, The Domain-specific Probe EUB338 is Insufficient for the Detection of all Bacteria: Development and Evaluation of a more Comprehensive Probe Set, Systematic and Applied Microbiology, vol.22, pp.434-444, 1999.

A. Darrasse, M. Barret, S. Cesbron, S. Compant, and M. Jacques, Niches and routes of transmission of Xanthomonas citri pv. fuscans to bean seeds, Plant Soil, vol.422, pp.115-128, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02516672

W. Günter, A. Rudolf, and B. Wolfgang, Optimizing fluorescent in situ hybridization with rRNA-targeted oligonucleotide probes for flow cytometric identification of microorganisms, Cytometry, vol.14, pp.136-143, 1993.