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Abstract: Great effort is put into seeking a new and effective strategies to control insect pests. One of
them is to combine natural products with chemical insecticides to increase their effectiveness. In the
study presented, menthol which is an essential oil component was evaluated on its ability to increase
the efficiency of bendiocarb, carbamate insecticide. A multi-approach study was conducted using
biochemical method (to measure acetylcholinesterase enzyme activity), electrophysiological technique
(microelectrode recordings in DUM neurons in situ), and confocal microscopy (for calcium imaging).
In the electrophysiological experiments, menthol caused hyperpolarization, which was blocked by an
octopamine receptor antagonist (phentolamine) and an inhibitor of protein kinase A (H-89). It also
raised the intracellular calcium level. The effect of bendiocarb was potentiated by menthol and
this phenomenon was abolished by phentolamine and H-89 but not by protein kinase C inhibitor
(bisindolylmaleimide IX). The results indicate that menthol increases carbamate insecticide efficiency
by acting on octopamine receptors and triggering protein kinase A phosphorylation pathway.

Keywords: menthol; essential oils; bendiocarb; carbamates; octopamine receptor; protein kinase A;
PKA; protein kinase C; PKC

1. Introduction

The impact of synanthropic insect species on human beings is highly significant and raises with
global warming. The demand for food is increasing with a growing human population in the world,
while insect pests destroy growing plants and stored crops. Therefore, new methods of protecting man
and food against insect pests are constantly being developed [1,2].

Although conventional chemical insecticides are the most effective in controlling insect pest,
they have many disadvantages. First, they are increasingly becoming less efficient. Long- lasting
and excessive use have caused the development of resistance to different groups of insecticides (e.g.,
nicotinoids and pyrethroids) in various insect species [3–5]. Cross-resistance (i.e., the specific resistance
for given insecticide can also cause resistance for other insecticidal substances) is also observed [5].
In consequence, it is necessary to use increasing doses of insecticides, which in turn leads to growing
incidence of environmental pollution and danger to non-target organisms including humans [6–8].
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Different strategies are used in Integrated Pest Management to increase the efficiency of insecticides
and to reduce their dosages. One of them is the application of mixture of insecticides with different
molecular targets [9–12]. Quite a new strategy has been proposed: increase the sensitivity of “classical
insecticide targets” by synergistic agents which elevate intracellular calcium concentration and activate
intracellular signaling pathways [13–16]. Potentiating effect of DEET repellent to carbamate insecticides
by the activation of metabotropic receptors has been demonstrated [17] and a corresponding mechanism
has been proposed for an essential oil component—menthol [18].

Essential oils derived from plants are proposed as alternative substances to chemical insecticides
which are safer for animals and humans [19–21]. Even though they are much less efficient than classical
insecticides and therefore cannot replace them [22]. However, it has been shown that some essential oil
components activate the metabotropic octopamine receptors [23–25]. They can be especially interesting
in potentiating the effects of insecticides because their target, octopamine receptors, play a key role in
physiology of insects [26,27].

Octopamine receptors belong to a family of metabotropic G protein-coupled receptors.
Their classification was made based on similarities between Drosophila melanogaster receptors and
mammals’ adrenergic receptors. In insects, the activation of receptors OCTβ-R triggers (via the increase
of cAMP) protein kinase A (PKA) signaling pathway while the activation of OCTαR (via the increase of
IP3) triggers protein kinase C (PKC) pathway [26,28]. In Periplaneta americana, one octopamine receptor
has been characterized—Paoa1—and its activation leads to increases in both intracellular calcium level
and cAMP level [29].

In our previous studies, it was demonstrated that in the essential oils component, menthol,
increases the efficiency of carbamate insecticide (bendiocarb), most probably by activating octopamine
receptors [18]. Carbamates are inhibitors of acetylcholinesterase (AChE) enzyme, which hydrolyzes
acetylcholine neurotransmitters. Acetylcholine activates synaptic and non-synaptic acetylcholine
receptors in the central and peripheral nervous systems of many organisms including insects [30,31].
Increased sensitivity of AChE to carbamate insecticides via activation of metabotropic (muscarinic)
receptors has already been shown [17]. The aim of our study was to verify the hypothesis that menthol
potentiates the effect bendiocarb through the activation of octopamine receptors and thus the activation
of phosphorylation cascade. Bendiocarb, the most often used carbamate insecticide, was approved by
World Health Organization and European Union Commission [32,33].

Octopaminergic dorsal unpaired median (DUM) neurons of the cockroach (Periplaneta americana)
nervous system was taken as a model. DUM neurons release octopamine from their axonal endings
and express octopaminergic receptors on the cell body [34–36]; they have endogenous pacemaker
activity that is precisely regulated by a large variety of ion channels and receptors. DUM neurons are
often used as very sensitive models to study the intracellular signaling systems [13,17]. We conducted
multi-approach analyses, including electrophysiological experiments on DUM neurons in situ,
biochemical tests of AChE activity, and calcium imaging using fluorescent microscopy techniques.
Presented study confirms our hypothesis that menthol increases the efficiency of bendiocarb by
activation of octopamine receptors, activation of protein kinase A (PKA) signaling pathway, and
increasing Ca2+ concentration.

2. Results

2.1. Electrophysiological Tests

Electrophysiological experiments were performed on DUM neurons in situ in ganglia, using the
microelectrode technique. DUM neurons display spontaneous activity and generate rhythmical action
potentials. Typical DUM neuron interspike “resting potential” is about −50 mV and the discharge
frequency is about 2 Hz.
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In control conditions, application of physiological saline directly on ganglion caused a short
disturbance of DUM neurons activity, mostly manifested in small depolarization (no more than 2 mV)
and increase in firing frequency (however with duration no longer than 3 s).

Tested substances changed spontaneous activity pattern in DUM neurons (F5,45 = 5.65, p < 0.001).
Application of 0.1 µM menthol in all tests caused a rapid hyperpolarization of membrane potential
which was accompanied with the switching off of the ability of neurons to generate action potentials
(Figure 1Aa). This effect was short lasting and after some seconds (Av: 19.27 ± 4.5 s) the membrane
potential returned to its control value. There was relatively large variation in the duration and
size of hyperpolarization induced by menthol between preparations. To express quantitatively
the changes in DUM neurons activity induced by tested substances, we decided to estimate the
Relative Size of Hyperpolarization (RSH) value—this is the value of hyperpolarization (counted as
each deviation from basal (control) membrane resting potential) multiplied by the duration of such
hyperpolarization. In that manner, we obtained a “surface” of neuronal response for applied substances
(Figure 1Ba). In the case of non-occurrence of hyperpolarization, we considered 15 s of activity after the
application of tested substances or physiological saline. After application of menthol, RSH was equal
to −793.39 ± 243.35 mV*s (Figure 1Bb) compare to −35.65 ± 30.55 mV*s in the control. The difference
was statistically significant with p = 0.0037. The negative value of RSP for the control was due to the
significant after-hyperpolarization (one of the phases) of each action potential.
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Figure 1. Menthol and octopamine change the electrophysiological properties of dorsal unpaired median
(DUM) neurons. (A) Representative original recordings of spontaneous action potentials of DUM neurons:
(a) deep hyperpolarization and switching off of the spontaneous potentials as a result of the application of
menthol (0.1µM); (b) phentolamine (10µM) blocked the hyperpolarization caused by menthol; (c) octopamine
(0.1 µM) caused the same effect as menthol; (d) phentolamine (10 µM) blocked the hyperpolarization caused
by octopamine. (B) (a) The representation of RSH (Relative Size of Hyperpolarization) value. Size of DUM
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neurons response (shown in red) to menthol and octopamine application was expressed quantitatively
by RSH—value of hyperpolarization (mV) was multiplied by time (s) of its duration to obtain a response
surface area. (b) Effect of menthol (0.1 µM, Ment) and octopamine (0.1 µM, Oct) which were reversed
by phentolamine (10 µM, Phent + Ment; Phent + Oct). Inhibitor of PKA – H-89 (1 µM) abolished the
hyperpolarization caused by menthol (H-89 + Menth). High negative values correspond to deep and
long hyperpolarization. The data is presented as mean values ± SE, n = 10. The statistically significant
differences between control and tested substances are marked: ** p < 0.01.

Very similar observations were made for 0.1 µM octopamine (Figure 1(Ac,Bb)), which caused
hyperpolarization related to the lack of ability to generate action potentials. RSH value after its
application was equal to −705.45 ± 190.47 mV*s and the difference with the control was significant
with p = 0.0032. There was no difference with menthol trial.

We assumed that menthol acted through the octopamine receptors. To verify that hypothesis, we
performed experiments by preincubating for 5 min ganglia with phentolamine which is an octopamine
receptor antagonist. Phentolamine (10 µM) completely abolished the effect of menthol as well as
octopamine (Figure 1(Ab,Ad,Bb)). RSH value for menthol in the presence of phentolamine was equal
to −66.55 ± 12.30 mV*s and was statistically not different from the control.

One of the possible effects of activating octopamine receptor is the triggering off the PKA signaling
pathway. In the next step, we performed an electrophysiological experiment by pretreating ganglia
with H-89 (1 µM) which is an inhibitor of PKA. H-89 applied 5 min before menthol, completely blocked
its effect and gave an RSH value of −34.46 ± 4.43 mV*s (Figure 1Bb).

2.2. Calcium Imaging

The activation of octopamine receptors can lead to an increase in intracellular calcium level,
therefore we performed calcium imaging on dissociated DUM neurons, as seen in Figure 2. In control
conditions, the signal resulting from binding free calcium ions with Oregon BAPTA-1 indicator
was very low—it was equal to 6.65 ± 0.69 MGV and was observed mainly in the vicinity of the
cell membrane (Figure 2A,C). Applied substances changed calcium signal (F2,42 = 8.036, p = 0.001).
Application of 0.1 µM menthol in bath resulted in the increase in calcium signal to 13.92 ± 1.95
MGV, p = 0.00013. The highest signal intensity was observed near the cell membrane (Figure 2B,C).
Since H-89 completely blocked the effect of menthol in electrophysiological studies, we decided to test
its effect on menthol-induced increase of calcium level. After pre-treating cells with the PKA inhibitor,
the intensity of fluorescence was equal to 6.93 ± 0.72 MGV and did not differ from control.
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labeled by Oregon Green BAPTA-1 and observation of fluorescence of the living cells was made using a
confocal microscope Leica TCS SP8 (excitation at 308 nm, detection at 488 nm - green fluorescence).
(A) Control confocal fluorescence images of DUM neuron and (B) after incubation with menthol 0.1
µM. (a) The bright-field transmission images; (b) the fluorescence transmission images; and (c) merged
transmission images of both control and treated DUM neurons respectively. Note a high discrepancy
between signal in control neurons and after application of menthol. Scale bars are 50 µm. (C) Numerical
representation of free calcium level in DUM neurons in control, after application of menthol 0.1 µM
alone, and preincubated with H-89. The data is presented as mean values ± SE. The statistically
significant differences between control and tested substances are marked: *** p < 0.001.

2.3. Acetylcholinesterase Activity

In our previous work [18], in electrophysiological experiments on the cockroach escape system,
we showed that menthol increased the efficacy of bendiocarb insecticide which is an AChE inhibitor.
In this study, we analyzed bendiocarb efficiency in the presence of menthol on AChE enzymatic level.
In control conditions, the activity of AChE obtained from dissociated terminal abdominal ganglia (TAG)
of P. americana was equal to 1.86 ± 0.16 µmol/mg protein (Figure 3B). Menthol applied in concentration
ranges 0.1 nM–100 µM did not significantly change AChE activity (Figure 3B) (F8,16 = 1.26, p = 0.33).

Tested substances changed activity of AChE enzyme (F25,50 = 39.19, p < 0.001). Bendiocarb
inhibited AChE activity with ED50 = 0.10 µM and with a maximum effect of 88.76% of inhibition for
1 µM concentration. The lowest tested concentration of bendiocarb which caused enzyme inhibition
(8.4%) was 0.05 µM (Figure 3A). Application of menthol (0.1 µM) shifted the dose-inhibition curve
of bendiocarb toward lower concentrations and decreased by 36% ED50 value, which was equal to
0.074 µM. The maximum observed effect for 1 µM bendiocarb in the presence of menthol was 92.96%
of inhibition and for the lowest tested bendiocarb concentration – 0.05 µM it was 35.7%. The increase
in bendiocarb efficacy in the presence of menthol was statistically significant; activity of AChE in
the presence of bendiocarb (0.5 µM) was equal to 18.87 ± 2.76% of native value and with addition of
menthol (0.1 µM), it was equal to only 11.43 ± 2.62%; p = 0.022 (Figure 3(Aa,Ab),C).

The pre-incubation of ganglia with phentolamine (10 µM) and H-89 (1 µM) abolished the
potentiating effect of menthol, leading to ED50 values of 0.11 and 0.12 µM for bendiocarb in the presence
of menthol with the two respective inhibitors. The AChE activity in the presence of phentolamine
(10 µM), menthol (0.1 µM) and bendiocarb (0.5 µM) was equal to 23.98 ± 0,99% of initial value and
was higher than that of bendiocarb alone (18.87%) although not significantly. The AChE activity in the
presence of H-89 (1 µM), menthol (0.1 µM), and bendiocarb (0.5 µM) was equal to 27.25 ± 2.47% of
initial value and was higher than that of bendiocarb alone (18.87%) with p = 0.01 (Figure 3(Aa,Ab),C).

The pre-incubation of ganglia with bisindolylmaleimide IX (iPKC), an inhibitor of protein kinase
C signaling pathway, did not have any effect on the action of menthol with the ED50 value being equal
to 0.08 µM. The AChE activity in the presence of iPKC (1 µM), menthol (0.1 µM), and bendiocarb
(0.5 µM) was equal to 12.89 ± 2.29% of initial value and was lower than that of bendiocarb alone
(18.87%) with p = 0.024 (Figure 3Ab,C). The above values were similar to those of the menthol trial.
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Figure 3. Biochemical analysis of acetylcholinesteraze (AChE) activity and its inhibition by bendiocarb
insecticide. (A) Dose-inhibition curves representing inhibitory effect of bendiocarb on AChE activity:
(a) Dose-dependency of AChE inhibition caused by bendiocarb (Bend) was shifted to its lower
concentrations in the presence of menthol (0.1 µM, Ment + Bend). The effect of menthol was reversed
by phentolamine (10 mM, Phent + Ment + Bend); (b) Dose-dependency of AChE inhibition caused by
bendiocarb (Bend) was shifted to its lower concentrations in the presence of menthol (0.1 µM, Ment +

Bend). The effect was reversed by protein kinase A inhibitor, H-89 (1 µM, iPKA + Ment + Bend) but
not by protein kinase C inhibitor, bisindolylmaleimide IX (1 µM, iPKC + Ment + Bend). (B) Menthol
applied in different concentrations (M) did not changed the AChE activity compared to control (Ctr).
(C) Inhibition of AChE activity by bendiocarb (0.5 µM, black bar) and the changes caused by: menthol
(0.1 µM, Ment); phentolamine (10 µM) with menthol (0.1 µM, Phent + Ment); inhibitor of protein kinase
C, bisindolylmaleimide IX (1 µM) with menthol (0.1 µM, iPKC + Ment); and the inhibitor of protein
kinase A, H-89 (1 µM) with menthol (0.1 µM, iPKA + Ment). The different letters above the bars refer
to statistically significant differences between the data with p < 0.05.

3. Discussion

Cooperativity between essential oils and chemical insecticides in the control of pest insects
becomes more and more interesting in modern pest management. Recent studies evaluated synergistic
interaction between essential oils and chemical insecticides [37–39].
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In our previous paper [18], it was demonstrated that menthol potentiates the effect of the carbamate
insecticide, bendiocarb. As a possible factor increasing the efficiency of bendiocarb, the activation of
octopamine receptors by menthol in the nervous system of the cockroach was proposed. However, the
mechanism of this enhancement remained unclear. The aim of our new study was to obtain a deeper
insight into this mechanism. Experiments were performed on cockroach DUM neurons, which are
known to be octopaminergic.

Octopamine serves as a neurotransmitter, neurohormone, and neuromodulator in insects [40–43]
although it is only a “trace amine” in vertebrates [28,43,44]. Octopamine receptors are G protein-coupled
receptors. Their activation turns on cellular signal transduction pathways and changes various insect
organism functions. Due to their key role being limited to invertebrates, they were tested as targets for
insecticides: formamidine pesticides and plant essential oils [23,45].

Sensitivity of DUM neurons to octopamine was described previously. It has been observed that
the electrical activity of isolated DUM neurons is regulated by octopamine in concentration dependent
manner [46,47]. In our experiments on DUM neurons in situ, the ejection of octopamine induced rapid
and short-lasting hyperpolarization of membrane potential and inhibition of spontaneous discharges.
After several seconds, spontaneous action potentials were again generated. Highly similar effects were
observed after the application of menthol and it was abolished by phentolamine, an octopamine receptor
inhibitor. Identity in effects of octopamine and menthol on DUM neurons electrical activity confirmed
the statement presented in our previous paper [18] that menthol activates octopaminergic receptors.

“Pacemaker potential”—depolarizing changes of membrane potential occurring during intervals
between spikes—is “driven” by several calcium ion currents: low voltage activated (LVA) Ca2+

currents [48]; mid/low voltage (M-LVA) activated Ca2+ current [47]; and high voltage activated (HVA)
Ca2+ current [36,47,48]. Between LVA Ca2+ currents, the maintained current permeable to Na+ and
Ca2+ (mLVA Na+/Ca2+) has been described in DUM neurons [49]. It plays an essential role in regulating
DUM neurons spontaneous discharge frequency [50]. Study of Lapied et al. [50] demonstrated that the
application of octopamine on isolated DUM neurons decreased the amplitude of mLVA Na+/Ca2+ via
an increase in internal cAMP level and activation of protein kinase A (PKA). PKA activation induces a
negative regulatory action on mLVA Na+/Ca2+ by phosphorylation of DARPP-32 protein. The effect of
octopamine on mLVA Na+/Ca2+ was abolished by phentolamine.

We propose the mLVA Na+/Ca2+ current to be one of the targets for the menthol action. The PKA
inhibitor (H-89) has been shown to reverse the effects of octopamine on mLVA Na+/Ca2+ current [50].
In our experiments, applying of H-89 in the bath eliminated the effect of menthol on the electrical
activity of DUM neurons. The stimulation of octopamine receptors in Periplaneta americana causes
the activation of adenylyl cyclase, increase of cAMP level, and activation of PKA [29]—factors which
reduce the amplitude of mLVA Na+/Ca2+ current [50]. When the depolarizing current was inhibited,
hyperpolarization should occur—this was observed in our experiments. After blocking the PKA, its
negative regulatory action was abolished and the effect of menthol was no longer observed.

The hyperpolarization state induced by octopamine and menthol can lead to activation of tLVA
Ca2+, which is normally activated at membrane potential of -70 mV and is involved in the initial part
of the pre-depolarization phase of the activity of DUM neurons [48]. Depolarizing tLVA Ca2+ may
cause a return of membrane potential from deep hyperpolarization to normal potential level after
octopamine and menthol. Moreover, the hyperpolarization induced by octopamine and menthol can
also increase the resting Ca2+ current that will participate in the return to the inter-spikes membrane
potential level [51].

Activation of octopamine receptors, (Pa oa1) from Periplaneta americana, OAMB from Drosophila
melanogaster, and CsOA1 from hemocytes of Chilo suppressalis—induces an increase in both cAMP
level and internal Ca2+ concentration [29,52–54]. In our experiments, we measured the intracellular
level of Ca2+ in DUM neurons after applying menthol and observed a significant increase in its level.
Intracellular Ca2+ concentration was indicated as a „key factor” in the regulation of ability to generate
spontaneous action potentials in DUM neuron [36]. Elevated Ca2+ concentration after the activation
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of octopamine receptors by menthol could induce modulatory effects on DUM neuron membrane
ionic channels.

We consider the rise in Ca2+ level as secondary effect, not resulting from the direct activity of
octopamine receptors. The increase in calcium level as a result of octopamine receptor has been
evidenced [29,55,56], although we observed calcium rise which was blocked by protein kinase A
inhibitor. We assume that menthol causes the activation of adenylyl cyclase and thus increase in cAMP
level which activates PKA. The activities of PKA and adenylyl cyclase are highly regulated; cAMP can
directly open the non-selective cation channels and cause Ca2+ to enter the cells [57,58]. The role of
increasing level of Ca2+ ions is the regulation of adenylyl cyclase activity and thus the constitution of a
negative feedback for PKA [59–62]. PKA is also responsible for up-regulation of M-LVA channel and
voltage-independent Ca2+ resting current and thus increase the amount of calcium entering the cells
which can be a reason for the rise in PKA-dependent calcium [63].

On the other hand, increase in Ca2+ level could indicate the involvement of PKC in the
action of menthol. However, there is a lot of data indicating that PKA and PKC pathways
exclude themselves and negatively regulates each other [64–67] and that cAMP inhibits PKC [68,69].
Our biochemical experiments (discussed later) confirm that PKC is not involved in the described
mechanism. The inhibitor of PKC did not modify the effect of menthol on efficiency of bendiocarb.

In toxicity tests on the cockroach and experiments on its whole nervous system done during our
previous study, we demonstrated that menthol increases the activity of bendiocarb—a carbamate—as
an insecticide [18]. The experiments carried out on DUM neurons presented in this paper, allowed
us to conclude that menthol activates the PKA signaling pathway through octopamine receptors and
also helped demonstrate an increase in Ca2+ concentration. The modifications of the sensitivity of
various molecular targets to insecticides by phosphorylation/dephosphorylation processes are already
known [13,16,17,70–72]. The aim of the last part of our study was to determine the modification of
bendiocarb efficiency by menthol at the level of enzymatic activity of AChE. In biochemical experiments,
presence of menthol decreased ED50 of bendiocarb by 36% which closely correlates with results obtained
in cockroach toxicity tests and in tests on its whole nerve cord [18]. Phentolamine eliminated the
menthol-induced potentiation, which clearly indicates the involvement of octopamine receptors in
its action. Moreover, bendiocarb was less potent in the presence of octopamine receptor antagonist
(however, not significantly), which can indicate that some small level of octopamine is essential
for normal activity of the enzyme. It is consistent with our previous results where phentolamine
completely blocked the effect of bendiocarb on the whole nerve cord preparation [18]. The use of
PKC inhibitor did not modify the effect of bendiocarb applied together with menthol. This suggests
that the PLC signaling pathway is not involved in the straightening effect of menthol. However, the
PKA inhibitor completely eliminated the effect of menthol and significantly reduced the efficiency
of bendiocarb applied alone. These results clearly indicate that the potentiating effect of menthol
is accomplished by the PKA signaling pathway and that phosphorylation of AChE is necessary to
achieve the enhancement of bendiocarb effect by menthol. Some reports indicate that PKA, but not
PKC, is responsible for phosphorylation of AChE [73].

The decrease in inhibitory activity of bendiocarb on AChE in the presence of H-89 compared to
the action of bendiocarb alone confirms the conclusion from experiments with phentolamine. It can be
explained by the fact, that some state of phosphorylation of AChE is required for its sensitivity for
modulators, such as bendiocarb.

In this paper, we have confirmed the hypothesis that menthol increases bendiocarb efficacy and
that its action is mediated through an octopamine receptor. We have shown first evidences that protein
kinase A is involved in the menthol effect. We have also shown that menthol increases Ca2+ level and
finally that protein kinase C does not participate in this action of menthol. Obtained results can be
used in development of modern insecticide formulas, less harmful for human and non-target animals
and more potent against insect-pests.
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4. Materials and Methods

4.1. Insects

All experiments were performed on preparations from males of the cockroach Periplaneta americana.
The insects were obtained from our breeding program. The animals were kept in temperature of
27–29 ◦C with access to water and food (cat food, oatmeal and apples) ad libitum. Insects were
transferred to the laboratory 24 h before experiment for adaptation.

4.2. Reagents

Bendiocarb (Pestanal, analytical standard), dl-octopamine hydrochloride (≥95.0%), phentolamine
hydrochloride (≥98.0%, TLC), and (±)-menthol (racemic ≥ 98.0%) were purchased from Sigma Aldrich
(Saint Luis, MI, USA). They were dissolved in ethanol to a concentration of 10 mM and next serial
dilutions were made in physiological saline. H-89 and bisindolylmaleimide IX were purchased from
Abcam (Cambridge, United Kingdom). Chemicals were dissolved in DMSO to concentration 10 mM
and then the serial dilutions were prepared in physiological saline.

Physiological saline contained in mM: NaCl – 210, KCl – 3.1, CaCl2 – 5, MgCl2 – 5.4, and Hepes – 5.
The pH = 7.2 was adjusted with NaOH. Hepes were purchased from Sigma Aldrich. The physiological
saline components—NaCl, KCl, MgCl2, CaCl2, ethanol 96%, and DMSO—were obtained from Polskie
Odczynniki Chemiczne SA (Gliwice, Poland).

Acetyltiocholine chloride (99%, TLC, Sigma Aldrich) was dissolved in physiological saline to
0.1 mM. The solution stopping AChE reaction was composed of 1 mM 5,5-dithio-bis-(2-nitrobenzoic
acid) (DTNB) (Thermo Fisher, Waltham, MA, USA) and 2% sodium dodecyl sulfate (SDS) (Thermo
Fisher) diluted in water. Collagenase (from Clostridium histolyticum, type XI) was purchased from Sigma
Aldrich and was diluted to final concentration 2 mg/mL in physiological saline. Streptomycin/penicillin
(Roche) (50,000 U/mL penicillin G and 50 mg/mL streptomycin (as sulfate) in 0.9% NaCl) were
dissolved in physiological saline to working solutions of 100 IU/mL penicillin, 100 µg/mL streptomycin.
Bovine serum (Sigma Aldrich) was diluted to 1% in physiological saline. Oregon Green BAPTA-1
(Thermo Fisher) was diluted in DMSO to 40 µM stock solution and then diluted in physiological saline
to a working solution of 5 µM.

4.3. Electrophysiological Experiments

Electrophysiological recordings were performed on DUM neurons in situ in terminal abdominal
ganglia (TAG) from the ventral nerve cord of the insect. The ganglia were dissected with micro-scissors.
The protein-lipid sheets covering the ganglia were removed to allow chemicals to get to the neurons
inside the ganglia and facilitate insertion of the microelectrodes. The TAG were then moved to Petri
dishes filled with sylgard-polymer, to which the TAG were mounted with entomological needles.
The ganglia were covered with physiological saline all the time. Recordings of bioelectric signals
in DUM neurons were performed using glass microelectrodes with resistance equal to 30–40 MΩ.
The electrophysiological set-up was consisted of: registration microelectrode filled with 3 M KCl,
reference electrode placed in physiological saline near the preparation, headstage (HS-2A, Gain: 10
MGU; Axon Instrument’s, Sunnyvale, CA, USA), amplifier Axoclamp 2A (Axon Instrument’s) and
oscilloscope (Hameg HM 507). Recordings were transferred to a computer and processed by modified
Hameg software (version 6.0, Toruń, Poland).

In each experiment, the control recordings were made (for 5 min) after 10 min of preparation
stabilization when spontaneously generated discharges had been stable in amplitude and frequency
and the membrane potential had changed only in a range of 2–3 mV. Then tested substances (menthol
and octopamine) were applied by fast ejection (Picoliter Microinjector PLI-100A, Warner Instruments,
Holliston, MA, USA) in close vicinity of the ganglia to obtain the final 0.1 µM concentration of
substances. In the case of preincubation, phentolamine (10 µM) H-89 (1 µM) were slowly applied by
perfusion 5 min before introducing the tested substances.
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The collected data was further analyzed using R software [74]. The results were expressed as
mean values± SE and the comparison of several data groups was made using one-way ANOVA.
The differences between groups were tested by Tukey’s post-hoc tests.

4.4. Acetylcholinesterase Activity—Biochemical Tests

AChE activity was determined using modified Ellman’s method [75]. For biochemical experiments,
6 TAGs were dissected and placed on ice in tube containing 2 mL of physiological saline. The ganglia
were then incubated with Collagenase IX in concentration of 2 mg/mL for 30 min in temperature of
30 ◦C. After incubation, the ganglia were transferred to cold (4 ◦C) physiological saline and rinsed
twice to stop collagenase enzymatic digestion. Depending on the combination of tested substances, the
different samples (shown in Table 1) of ganglia were prepared. In the next step, dissociation of already
treated ganglia were made – they were passed through series of glass pasteur pipets with decreasing
diameters since tissue fragments were no longer visible. Solution prepared in this way contained some
whole nerve cells and fragments of cells with AChE enzyme activity. 90 µL of solution was placed in
each well in 96-well plates with flat bottoms on ice. Solution containing AChE enzyme was incubated
with the substrate, acetyltiocholine for 30 min in temperature of 30 ◦C. The reaction was stopped by
1 mM 5,5-dithio-bis-(2-nitrobenzoic acid) (DTNB) with 2% sodium dodecyl sulfate (SDS). In variants
of the experiments where efficiency of bendiocarb was estimated, tissue solution was incubated with
insecticide 15 min before starting the reaction with acetyltiocholine. The amount of protein in solution
was determined using Bradford method [76]. Calibration curve was always prepared at the same time
as experiment. 10 min after stopping the reaction, the 96-well plate was read in microplate reader
(BioTek, Epoch, Winooski, VT, USA) with wave lengths of 406 nm for Ellman’s reaction and 595 for
Bradford’s reaction.

Table 1. Samples composition in biochemical tests.

Sample Name Physiological
Saline

Menthol
(µM)

Bendiocarb
(µM)

Phentolamine
(µM)

iPKC
(µM)

iPKA
(µM)

Control +

Ment 0.0001, 0.001, 0.01,
0.1, 1, 10, 100

Bend 0.05, 0.1, 0.2, 0.5, 1

Ment + Bend 0.1 0.05, 0.1, 0.2, 0.5, 1

Phent + Ment + Bend 0.1 0.05, 0.1, 0.2, 0.5, 1 10

iPKC + Ment + Bend 0.1 0.05, 0.1, 0.2, 0.5, 1 1

iPKA + Ment + Bend 0.1 0.05, 0.1, 0.2, 0.5, 1 1

Each replication was prepared using 6 ganglia. The experiment was replicated 3 times.
The collected data was further analyzed using R software [74]. The results were expressed as mean
values (from 3 replications)± SE and the comparison of several data groups was made using one-way
ANOVA. The differences between groups were tested by Tukey’s post-hoc tests. The dose-response
curves were established using ‘drc’, ‘sandwich’ and ‘lmtest’ [77–79].

4.5. Calcium Imaging

The determination of calcium level in living cells was performed on dissociated DUM neurons.
6 ganglia were dissected and placed in a tube containing 2 mL of physiological saline with
streptomycin/penicillin in sterile conditions. The ganglia were then incubated with sterile Collagenase
IX in concentration of 2 mg/mL for 30 min in temperature of 30 ◦C. The enzymatic activity was stopped
by rinsing the ganglia with sterile physiological saline containing antibiotics. The ganglia were then
moved to the physiological saline containing bovine serum and antibiotics. In the next step, the ganglia
were dissociated as previous described, however, in sterile conditions all the time. Obtained medium
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with DUM cells was divided into 2 Corning Petri dishes (covered earlier with poli-d-lysine (50 µg/mL))
and filled with sterile medium to 2 mL. The cells were incubated in temperature of 30 ◦C for 24 h to
ensure good adhesion. After 24 h physiological saline with bovine serum and antibiotics was removed
and the DUM cells were covered by sterile physiological saline.

Fluorescent marker of free calcium ions, Oregon Green BAPTA-1 at a concentration of 5 µM
was applied for 1 h in the dark. Next, the liquid was removed, and cells were rinsed with fresh
physiological saline. Firstly, the control observations were made. Menthol 0.1 µM was then applied
in the bath and after 15 min the cells were observed. In case of pre-incubation with H-89 1 µM, the
inhibitor was applied 10 min before menthol. The images were captured with a Leica TCS SP8 confocal
microscope using an argon-ion laser emitting light at a wavelength of 488 nm (408 nm excitation wave).
Optimized pinhole, long exposure time (400 kHz), and 20X (numerical aperture, 1.4) Plan Apochromat
DIC H lens were used. For the quantitative measurements, each experiment was performed under
condition of consistent temperature, incubation time, and concentrations of probes. The images were
collected under consistent conditions of acquisition (low laser power at 3%, emission band, gain, and
resolution) to ensure comparable results. For bleed-through analysis and control experiments, LASX
program (Leica Application Suite X) software was used. Between 10 and 20 cells were analyzed for each
experimental variant. The level of fluorescence was expressed in arbitrary units (as the mean intensity
per µm2). The statistical analysis was performed using SigmaPlot 11.0 software. The statistical
significance was determined by one-way ANOVA followed by Tukey’s post-hoc test (p < 0.01 or
p < 0.001) to compare effects of different treatments.
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