J. Andreasson and U. Pischel, Smart Molecules at Work-Mimicking Advanced Logic Operations, Chem. Soc. Rev, vol.39, issue.1, pp.174-188, 2010.

F. Pina, J. Parola, R. Gomes, M. Maestri, and V. Balzani,

/. Multistate and . Multifunctional, Molecular-Level Systems: Photochromic Flavylium Compounds, Molecular Switches, pp.181-226, 2011.

D. Gust, J. Andreasson, U. Pischel, T. A. Moore, and A. L. Moore, Data and Signal Processing Using Photochromic Molecules, Chem. Commun, vol.2012, issue.14, 1947.

Z. F. Sun, Q. Y. Huang, T. He, Z. Y. Li, Y. Zhang et al., Multistimuli-Responsive Supramolecular Gels: Design Rationale, Recent Advances, and Perspectives, ChemPhysChem, vol.15, issue.12, pp.2421-2430, 2014.

M. Irie, Diarylethenes for Memories and Switches, Chem. Rev, vol.100, issue.5, pp.1685-1716, 2000.

H. Tian and S. J. Yang, Recent Progresses on Diarylethene Based Photochromic Switches, Chem. Soc. Rev, vol.33, issue.2, pp.85-97, 2004.

H. Tian and S. Wang, Photochromic Bisthienylethene as Multi-Function Switches, Chem. Commun, vol.8, pp.781-792, 2007.

H. Tian and Y. L. Feng, Next Step of Photochromic Switches?, J. Mater. Chem, vol.18, issue.14, pp.1617-1622, 2008.

J. J. Zhang, Q. Zou, and H. Tian, Photochromic Materials: More Than Meets The Eye, Adv. Mater, vol.25, issue.3, pp.378-399, 2013.

A. Peters and N. R. Branda, Electrochromism in Photochromic Dithienylcyclopentenes, J. Am. Chem. Soc, vol.125, issue.12, pp.3404-3405, 2003.

W. R. Browne, J. J. De-jong, T. Kudernac, M. Walko, L. N. Lucas et al., Oxidative Electrochemical Switching in Dithienylcyclopentenes, part 1: Effect of Electronic Perturbation on the Efficiency and Direction of Molecular Switching, Chem.?Eur. J, vol.11, issue.21, pp.6414-6429, 2005.

W. R. Browne, J. J. De-jong, T. Kudernac, M. Walko, L. N. Lucas et al., Oxidative Electrochemical Switching in Dithienylcyclopentenes, part 2: Effect of Substitution and Asymmetry on the Efficiency and Direction of Molecular Switching and Redox Stability, Chem.?Eur. J, vol.11, issue.21, pp.6430-6441, 2005.

V. I. Minkin, Photoswitchable Molecular Systems Based on Spiropyrans and Spirooxazines, Molecular Switches, pp.37-80, 2011.

I. Willner, M. Liondagan, and E. Katz, Photostimulation of Dinitrospiropyran-Modified Glucose Oxidase in the Presence of DNP-Antibody-A Biphase-Switch for the Amperometric Transduction of Recorded Optical Signals, Chem. Commun, issue.5, pp.623-624, 1996.

A. Kocer, M. Walko, W. Meijberg, B. L. Feringa, and . Light, , vol.309, pp.755-758, 2005.

R. Klajn, Spiropyran-Based Dynamic Materials, Chem. Soc. Rev, vol.43, issue.1, pp.148-184, 2014.

V. I. Minkin, -. Photo, -. Thermo, -. Solvato, and E. Compounds, Chem. Rev, vol.104, issue.5, pp.2751-2776, 2004.

S. V. Paramonov, V. Lokshin, O. A. Fedorova, and . Spiropyran, Chromene or Spirooxazine Ligands: Insights into Mutual Relations Between Complexing and Photochromic Properties, J. Photochem. Photobiol. C: Photochem. Rev, vol.12, issue.3, pp.209-236, 2011.

M. Campredon, G. Giusti, R. Guglielmetti, A. Samat, G. Gronchi et al., Radical Ions and Germyloxyaminoxyls from Nitrospiro Indoline-Naphthopyrans -a Combined Electrochemical and EPR Study, J. Chem. Soc, issue.11, 2089.

J. F. Zhi, R. Baba, K. Hashimoto, and A. Fujishima, Photoelectrochromic Properties of a Spirobenzopyran Derivative, J. Photochem. Photobiol. A: Chem, issue.1?2, pp.91-97, 1995.

M. J. Preigh, M. T. Stauffer, F. T. Lin, and S. G. Weber, Anodic Oxidation Mechanism of a Spiropyran, J. Chem. Soc., Faraday Trans, vol.92, issue.20, pp.3991-3996, 1996.

J. F. Zhi, R. Baba, and A. Fujishima, An Electrochemical Study of some Spirobenzopyran Derivatives in Dimethylformamide, Ber. Bunsen-Ges. Phys. Chem, vol.100, issue.11, pp.1802-1807, 1996.

A. Domenech, H. Garcia, I. Casades, and M. Espla, Electrochemistry of 6-Nitro-1?, vol.3

. ?-indoline, Associated with Zeolite Y and MCM-41 Silicates. Lightdriven Site-selective Electrocatalytic Effect on N,N,N?,N?-tetramethylbenzidine Oxidation, J. Phys. Chem. B, issue.52, p.108, 2004.

P. Mialane, G. Zhang, I. M. Mbomekalle, P. Yu, J. Compain et al., Dual Photochromic/Electrochromic Compounds Based On Cationic Spiropyrans and Polyoxometalates, Chem.?Eur. J, issue.19, pp.5572-5576, 2010.

K. Wagner, R. Byrne, M. Zanoni, S. Gambhir, L. Dennany et al., A Multiswitchable Poly(terthiophene) Bearing a Spiropyran Functionality: Understanding Photo-and Electrochemical Control, J. Am. Chem. Soc, vol.133, issue.14, pp.5453-5462, 2011.

O. Ivashenko, H. J. Van, P. Rudolf, B. L. Feringa, and W. R. Browne, Oxidative Electrochemical Aryl C-C Coupling of Spiropyrans, Chem. Commun, issue.60, pp.6737-6739, 2013.

N. Sertova, J. M. Nunzi, I. Petkov, and T. Deligeorgiev, Photochromism of Styryl Cyanine Dyes in Solution, J. Photochem. Photobiol., A, vol.112, issue.2, pp.187-190, 1998.

R. Bartnik, S. Lesniak, G. Mloston, T. Zielinski, and K. Gebicki,

, Cationic Dye Derivatives of 1-(2-hydroxyethyl)-2-styryl-3,3-dimethyl-3H-indole, Chem. Stosow, vol.34, issue.3?4, pp.325-359, 1990.

R. Bartnik, G. Mloston, and Z. Cebulska, Synthesis and Chain-ring Tautomerism of 1-(2-hydroxyethyl)-3,3-dimethyl-3H-indole Derivative Cyanine dyes, Chem. Stosow, vol.34, issue.3?4, pp.343-52, 1990.

L. Sanguinet, J. L. Pozzo, V. Rodriguez, F. Adamietz, F. Castet et al., Acido-and Phototriggered NLO Properties Enhancement, J. Phys. Chem. B, issue.22, pp.11139-11150, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00108427

F. Mancois, J. Pozzo, J. Pan, F. Adamietz, V. Rodriguez et al., Two-Way Molecular Switches with Large Nonlinear Optical Contrast, Chem.? Eur. J, vol.15, issue.11, pp.2560-2571, 2009.

G. Szalo?i, G. Sevez, J. Berthet, J. Pozzo, and S. Delbaere, A Simple Molecule-Based Octastate Switch, J. Am. Chem. Soc, vol.136, issue.39, pp.13510-13513, 2014.

O. Oms, K. Hakouk, R. Dessapt, P. Deniard, S. Jobic et al., Photo-and Electrochromic Properties of Covalently Connected Symmetrical and Unsymmetrical Spiropyran-Polyoxometalate Dyads, Chem. Commun, vol.2012, issue.99, pp.12103-12105
URL : https://hal.archives-ouvertes.fr/hal-00865896

W. R. Browne, M. M. Pollard, B. De-lange, A. Meetsma, and B. L. Feringa, Reversible Three-State Switching of Luminescence: A New Twist to Electro and Photochromic Behavior, J. Am. Chem. Soc, vol.128, issue.38, pp.12412-12413, 2006.

O. Ivashenko, H. Logtenberg, J. Areephong, A. C. Coleman, P. V. Wesenhagen et al., Remarkable Stability of High Energy Conformers in Self-Assembled Monolayers of a Bistable Electro-and Photoswitchable Overcrowded Alkene, J. Phys. Chem. C, issue.46, pp.22965-22975, 2011.

H. Spreitzer and J. Daub, Multi-Mode Switching Based on Dihydroazulene/Vinylheptafulvene Photochromism: Synergism of Photochromism and Redox Switching in Heteroaryl-Functionalized Systems, Chem.?Eur. J, vol.2, issue.9, pp.1150-1158, 1996.

W. F. Yuan, L. Sun, H. H. Tang, Y. Q. Wen, G. Jiang et al., Novel Thermally, A. Stable Spironaphthoxazine and its Application in Rewritable High Density Optical Data Storage, Adv. Mater, vol.17, issue.2, pp.156-160, 2005.

D. R. Coulson, L. C. Satek, and S. O. Grim, Tetrakis-(triphenylphosphine)palladium(0)

G. Sevez, J. Gan, S. Delbaere, G. Vermeersch, L. Sanguinet et al., Photochromic Performance of a Dithienylethene-Indolinooxazolidine Hybrid, Photochem. Photobiol. Sci, vol.2010, issue.2, pp.131-135
URL : https://hal.archives-ouvertes.fr/hal-00454161

D. P. Becker, J. N. Carroll, Y. M. Fobian, M. L. Grapperhaus, D. W. Hansen et al., Heteroarylsulfonylmethyl Hydroxamic Acids and Amides and Their Use as Protease Inhibitors. WO2004048368, vol.2, 2004.

G. Gritzner and J. Kuta, Recommendations on Reporting Electrode Potentials in Nonaqueous Solvents (Recommendations 1983), Pure Appl. Chem, issue.4, p.56, 1984.

F. Gaillard and E. Levillain, Visible Time-Resolved Spectroelectrochemistry -Application to Study of the Reduction of Sulfur (S-8) in Dimethylformamide, J. Electroanal. Chem, vol.398, issue.1?2, pp.77-87, 1995.

P. Blanchard, A. Cravino, and E. Levillain, Electrochemistry of Oligothiophenes and Polythiophenes. In Handbook of Thiophene-Based Materials

A. Mishra, C. Ma, J. L. Segura, and P. Baüerle, Functional Oligothiophene-Based Materials: Nanoarchitectures and Applications, Handbook of Thiophene-Based Materials

F. Castet, L. Ducasse, B. Champagne, L. Sanguinet, J. L. Pozzo et al., Experimental and Theoretical Determination of the First-order Hyperpolarizability of Photo-and Acidochromic Indolino [2,1-b]oxazolidines, Synth. Met, vol.155, issue.2, pp.393-397, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00110225

I. Petkov, F. Charra, J. M. Nunzi, and T. Deligeorgiev, Photochemistry of 2-[(1,3,3-trimethylindoline-2(1H)-ylidene)propen-1-yl]-3,3-dimethylindolino[1,2-b]-oxazolidine in Solution, J. Photochem. Photobiol., A, vol.128, issue.1?3, pp.93-96, 1999.

N. J. Bunce, P. Pilon, L. O. Ruzo, and D. J. Sturch, Electron Transfer on Photolysis of 1-chloronaphthalene in Alkane Solvents, J. Org. Chem, issue.18, pp.3023-3028, 1976.

M. Ohashi and K. Tsujimoto, Amine Assisted Photodechlorination of 4-chlorobiphenyl. A Comment on the Mechanism, Chem. Lett, vol.12, issue.4, pp.423-426, 1983.

C. A. Chesta, J. J. Cosa, and C. M. Previtali, The N,Ndimethylaniline-Photosensitized Dechlorination of Chlorobenzenes, J. Photochem, vol.32, issue.2, pp.203-215, 1986.

P. Bauerle, End-Capped Oligothiophenes -New Model Compounds for Polythiophenes, Adv. Mater, vol.1992, issue.2, pp.102-107

J. C. Henderson, Y. Kiya, G. R. Hutchison, and H. Abruna, , vol.5, p.5

. ?-bis, 2,2 ?-bithiophene: A Potential Cathode Electroactive Material for Energy Storage Devices, J. Phys. Chem. C, issue.10, pp.3989-3997, 2008.

A. Neudeck, P. Audebert, L. Guyard, L. Dunsch, P. Guiriec et al., Dimer from Bithiophene Radical Cations. Investigation of Equilibrium Constants as a Function of Substituent Size and Supporting Electrolyte Using Fast Conversion Electrochemical Cells, Acta Chem. Scand, vol.53, issue.10, pp.867-875, 1999.

Y. Yu, E. Gunic, B. Zinger, and L. L. Miller, Spectra and Reactivity of Methoxyoligothiophene Cation Radicals, J. Am. Chem. Soc, vol.118, issue.5, pp.1013-1018, 1996.