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We consider the propagation of Gaussian spatiotemporal wave packets in arrays of parallel optical waveguides,
assuming linear and nondispersive coupling between the adjacent guides. The numerical analysis is based
on a discrete version of the modified Korteweg–de Vries equation that adequately describes the propagation
of ultrashort (few-cycle) spatiotemporal solitons in waveguide arrays. Two kinds of such discrete-continuous
localized wave forms, which are discrete solitons in the transverse direction, and few-cycle solitons in the
longitudinal one, are put forward, namely breathing solitons and single-humped ones. The conditions of formation
of these localized spatiotemporal structures, their time duration and spatial width, as well as their energies, are
also investigated.
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I. INTRODUCTION

The key features of nonlinear discrete optical systems have
been extensively explored during the past several years, and
arrays of evanescently coupled nonlinear waveguides have
provided a fertile ground for the study of the interplay between
discreteness and nonlinearity. In these specific optical settings
the dispersion and diffraction properties of propagating light
can be properly controlled and engineered, and many kinds
of discrete optical solitons have been studied both theoret-
ically and experimentally; see the extensive reviews [1–3].
Discrete nonlinear dynamical systems were investigated both
theoretically and experimentally not only in the optics context,
but also in other physical systems involving nonlinear lattices
[4,5]. In these physical settings, the interplay of nonlinearity
with lattice discreteness leads to unique phenomena that
are quite distinct from those occurring in the corresponding
continuous nonlinear dynamical systems [4]. It is also worth
mentioning the intense work done during the past several
years in the study of diverse mathematical models of such
discrete solitons in a series of relevant physical settings [6,7].
The many mathematical models deal with the study of the
nonintegrable discrete nonlinear Schrödinger (NLS) equation
and the integrable Ablowitz-Ladik equation [8,9] and the
investigation of other more general evolution equations that
interpolate between these two generic nonlinear differential-
difference equations; see [4,6,7].

In a pioneering earlier work, Christodoulides and Joseph
[10] theoretically investigated the problem of discrete self-
focusing in nonlinear arrays of coupled waveguides and the
characteristic properties of the corresponding one-dimensional
(1D) discrete solitons. One decade after the publication of the
theoretical prediction [10], such 1D discrete optical solitons
were experimentally observed in 1998 by Eisenberg et al. [11].
Several theoretical works investigated the formation and the
robustness to propagation of both 1D and higher-dimensional
discrete solitons in a large variety of physical settings [12–22].

The unique features of optical solitons in discrete dissipa-
tive structures have been also theoretically investigated. The
existence and the instability dynamics of both 1D [23] and two-
dimensional (2D) [24] discrete Ginzburg-Landau solitons have

been explored theoretically and numerically. Also, the motion
and stability properties of such dissipative solitons, which form
in multiple waveguide structures, were investigated in detail
by Soto-Crespo et al. [25]. These kinds of dissipative solitons
are described by the discrete complex cubic-quintic Ginzburg-
Landau equation; see Refs. [23–25]. It is worth mentioning
that, as a result of discreteness of the underlying dissipative
system, the discrete dissipative optical solitons exhibit features
that have no counterpart in either continuous or in conservative
discrete models; see Ref. [23]. Also, in the framework of the
continuous-discrete complex cubic-quintic Ginzburg-Landau
model, spatiotemporal dissipative solitons that are confined
inside 2D photonic lattices were also theoretically investigated
[26].

Discrete vortex solitons have been investigated theoretically
by Malomed and Kevrekidis [27], and subsequent works by
Leblond et al. [28,29] have studied in detail the existence and
stability domains of families of spatiotemporal vortex solitons
in either square or hexagonal arrays of evanescently coupled
waveguides.

On the experimental arena in this broad area, we mention
here the series of experimental works including the observation
of discrete spatial optical solitons in optically induced nonlin-
ear photonic lattices [30–32], the observation of both 1D and
2D discrete surface solitons in waveguide arrays [33,34], the
observation of three-dimensional (3D) discrete-continuous X
waves in photonic lattices [35] and of 3D discrete-continuous
spatiotemporal solitons (alias light bullets) in 2D arrays of
coupled waveguides [36], and the observation of vortex light
bullets that are discrete spatiotemporal solitons with embedded
orbital angular momenta [37].

Several theoretical studies in the area of propagation
of ultrashort light pulses in diverse physical settings have
used the slowly varying envelope approximation (SVEA)
and different kinds of generalizations of the generic NLS
equation; see, for example, Refs. [38,39]. However, during
the past years, a lot of theoretical works have explored the
problem of propagation of few-cycle pulses and solitons
beyond the commonly used SVEA. We only mention here
the so-called unidirectional pulse propagation model [40,41],
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the Maxwell-Duffing description of ultrashort optical pulses in
nonresonant media [42], and the Maxwell-Drude-Bloch model
of few-cycle optical solitons [43]; for recent overviews of the
main theoretical approaches in the area of nonlinear optics
of ultrashort light pulses including few-cycle optical solitons,
see Refs. [44–47]. The theoretical models beyond the SVEA
rely on the modified Korteweg–de Vries (mKdV) [48], the
short-pulse [49–51], the sine-Gordon (sG) [52], the double
sG [53,54], and the mKdV-sG [55–57] equations; see also
Refs. [58–62]. Though most of the above mentioned generic
models are purely 1D ones, studies of multidimensional
ultrashort optical solitons have been performed also; for
example, stable few-cycle spatiotemporal optical solitons can
form in quadratically nonlinear media from few-cycle input
wave packets [63]. For the sake of completeness, we mention
here a few papers that overviewed the intense experimental and
theoretical activity in the area of multidimensional localized
structures in both optical and matter-wave media [64–70].

In a recent work [71], in the framework of a non-SVEA
model that is suitable for describing the propagation of ultra-
short (few-cycle) solitons, the generic equations accounting for
the coupling between two adjacent optical waveguides were
introduced and studied numerically, showing the possibility of
soliton propagation in this setup [72]. The analysis was based
on the generalized Kadomtsev-Petviashvili equation, and from
this equation a set of two coupled mKdV equations was derived
[71].

In the present work we introduce and study in detail a
discrete version of the mKdV equation. We investigate the
formation of two distinct types of solitary waves from input
Gaussian spatiotemporal wave packets. We also describe the
characteristic features of discrete-continuous spatiotemporal
solitons, which form in coupled waveguide arrays and are
localized in both space and time.

The organization of this paper is as follows. In Sec. II
we present the generic model describing the propagation
of few-cycle spatiotemporal optical solitons in waveguide
arrays, which is based on the discrete version of coupled
mKdV equations, and we explore in this physical setting the
self-focusing effect vs the combined dispersion and diffraction
effects. The detailed study of families of few-cycle discrete-
continuous spatiotemporal optical solitonsn is given in Sec. III.
Finally, Sec. IV concludes this paper.

II. SELF-FOCUSING EFFECT VERSUS THE COMBINED
DISPERSION AND DIFFRACTION EFFECTS IN ARRAYS

OF COUPLED WAVEGUIDES

We consider a set of 2N + 1 parallel waveguides in a
planar geometry, assuming a purely linear and non-dispersive
coupling. The normalized optical electric field un propagating
in the nth waveguide satisfies the following discrete version of
the mKdV equation [71]:

∂zun = −a∂t

(
u3

n

) − b∂3
t un − c∂t (un−1 + un+1), (1)

which holds for −N � n � N (with the convention that u−N−1

and uN+1 are replaced with zero).
In (1), the dimensionless variables are defined as z = ζ/L,

t = (τ − ζ/V0)/τw, and un = En/E0, where ζ and τ are the
time and space variables, and En is the electric field. The

quantities L, τw, and E0 are reference propagation length,
reference time, and reference electric field, respectively. The
velocity V0 = c0/n0 is the ratio of the light velocity c0 in
vacuum to the linear refractive index n0 at the low-frequency
limit.

The normalized nonlinear coefficient is

a = χ (3)

2n0c0

LE2
0

τw

, (2)

where χ (3) is the third-order susceptibility at the low frequency
limit. The normalized dispersion parameter is

b = (−n′′)
2c0

L

τ 3
w

, (3)

where the prime denotes the derivative with respect to ω. The
coupling coefficient is

c = I2

1 + I1

L�n

c0τw

, (4)

where �n is the refractive index shift between the core and
cladding of each guide, I1 = ∫ ∞

−∞ f1f2dx is the overlapping
integral of the normal modes f1 and f2 of two adjacent
waveguides over the entire real axis, and I2 = ∫

g1
f1f2dx =∫

g2
f1f2dx is the overlapping integral of the same field profiles,

over the core of one waveguide only.
Setting

τ 2
w = −n′′

2�n

(1 + I1)

I2
, (5)

L = c0

√
−n′′

2

(
1 + I1

I2�n

)3/2

, (6)

E2
0 = I2

1 + I1

2n0�n

χ (3)
(7)

yields a = b = c = 1. Hence we can restrict to this situation
without loss of generality. Since the overlapping integrals I1

and I2 are real and positive, and waveguiding requires �n>0,
Eqs. (5)–(7) require n′′ < 0 and χ (3) > 0, which are the
well-known necessary conditions for spatiotemporal soliton
formation.

However, both the overlapping integrals I1 and I2 and �n

can be adjusted in a wide range of values. Hence, to fix the
ideas, we can set τw = 1 fs and assume that I1, I2, and �n

have been adjusted in such a way that c = 1. Then, setting

L = 2c0τ
3
w

−n′′ (8)

and

E2
0 = −n0n

′′

χ (3)τ 2
w

(9)

reduces a and b to 1. Using numerical values and a Sellmeier
formula pertaining to silica glass at λ=1.064 μm, n0 =1.450,
n′′ = −0.0053 fs2, and n2 = 0.21×10−19 m2/W [73] [recall
that the nonlinear index n2 is related to the third order
susceptibility according to n2 = 3χ (3)/(4n2

0ε0c0)] then the
reference propagation length is L = 113 μm, and the refer-
ence electric field is E0 = 7×109 V/m, corresponding to a

043839-2



FEW-CYCLE SPATIOTEMPORAL OPTICAL SOLITONS IN . . . PHYSICAL REVIEW A 95, 043839 (2017)

reference intensity I0 = 1
2n0ε0c0E

2
0 = 9500 GW/cm2. Using

parameters pertaining to a highly nonlinear glass, such as
the chalcogenide glass GeSe4, still at λ = 1.064 μm, i.e.,
n = 2.51, n′′ = −0.021 fs2 [74], and n2 = 13×10−18m2/W
[75], we obtain L = 29 μm, E0 = 4.3×108 V/m, and I0 =
61 GW/cm2. Obviously, the material used in an experimental
setup must also satisfy other requirements, especially in terms
of low absorption, large bandwidth, and ability to support very
high optical intensities.

It is straightforwardly proved that the system of coupled
mKdV-type equations (1) conserves the quantity

E =
N∑

n=−N

∫ ∞

−∞
u2

ndt, (10)

in the sense that ∂zE = 0. E is proportional to the optical
intensity integrated over space and time, and hence we will
refer to as the pulse energy below. Equation (1) derives from
the Lagrangian density

L =
N∑

n=−N

Ln + LI , (11)

where the Lagrangian density corresponding to channel n is

Ln = 1

2
∂tϕn∂zϕn + a

4
(∂tϕn)4 − b

2

(
∂2
t ϕn

)2
, (12)

where

un = ∂tϕn, (13)

and the interaction between channels is taken into account by

LI = c

N−1∑
n=−N

∂tϕn∂tϕn+1. (14)

Equation (1) also conserves the Hamiltonian H = ∫ ∞
−∞ H dt ,

where the Hamiltonian density is defined by

H =
N∑

n=−N

Hn + HI , (15)

with

Hn = a

4
u4

n + b

2
un∂

2
t un (16)

and

HI = LI = c

N−1∑
n=−N

unun+1. (17)

We solve the system of coupled mKdV-type equations (1)
using a standard fourth-order Runge-Kutta numerical scheme
with respect to the evolution variable z in the Fourier space.
Computation of the nonlinear term involves one inverse and
one direct fast Fourier transform at each substep of the
numerical scheme. We use normalized values of the parameters
a = b = c = 1 and periodic boundary conditions in both n and
t directions.

We solve Eqs. (1) with the initial spatiotemporal Gaussian
wave packet

un(z = 0,t) = A0 sin(ωt + ϕ) exp

(
− n2

w2
0

− t2

τ 2

)
, (18)
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FIG. 1. Formation of solitons from a Gaussian pulse. (a) Input.
(b) For a high amplitude, a soliton forms (amplitude A0 = 2.06, pulse
duration f whm = 3.5, and propagation distance z = 288). (c) For a
relatively low amplitude, the pulse is spread out by diffraction and
dispersion (the input is the same as in (a) above, with same duration
but with amplitude A0 = 0.2. Propagation distance z = 0.72).
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FIG. 2. Formation of solitons from a Gaussian input in the
amplitude-pulse duration plane, for w0 = 1. Blue crosses: soliton
forms; red circles: dispersion-diffraction occurs.

so that the input light is mainly launched in the central guide,
n = 0; see Fig. 1(a). We fix the initial envelope-carrier phase
as ϕ = 0 and the initial pulse width as w0 = 1. The angular
frequency is ω = 2πV/λ, with λ = 1 and V = 0.3, so that,
if the reference time is set to τw = 1 fs, it corresponds to a
wavelength in vacuum of 1 μm. The initial pulse duration τ is
related to its full width at half maximum f whm in a standard
way, as f whm = √

2 ln 2τ .
Then we vary the amplitude A0 and the initial pulse duration

τ , and compute the evolution of the spatiotemporal wave
packet. If both input amplitude A0 and input duration τ are high
enough, the light remains localized in both space and time;
see Fig. 1(b). However, for relatively low input amplitudes,
the combined effects of diffraction and dispersion spread out
the wave packet, though it was kept a relatively high value of
pulse duration τ ; see Fig. 1(c).

Since the soliton forms at a high input amplitude, the
question arises, does this happen above some energy threshold.
The limit of the domain where the solitons either form or not
from Gaussian inputs is shown in Fig. 2, in the amplitude-pulse
duration plane (A0 vs pulse duration f whm), and in Fig. 3,
in the amplitude-energy plane (each symbol corresponds to a
numerical calculation. In the white domain, no calculation was
performed). The energy E is defined by Eq. (10) above. It is
seen from Fig. 3 that the energy threshold for the formation of
such few-cycle discrete optical solitons is about 10; however,

9.8

10

10.2

10.4

1.6 2 2.4 2.8

en
er

gy

A0

soliton formation

dispersion - 
diffraction

FIG. 3. Formation of solitons from a Gaussian input in the
amplitude-energy plane, for w0 = 1. Blue crosses: soliton forms; red
circles: dispersion-diffraction occurs.
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FIG. 4. Formation of solitons from a Gaussian input in the
transverse width-pulse duration plane, for A0 = 2.22. Blue crosses:
soliton forms; red circles: dispersion-diffraction occurs.

the threshold is not independent of the input amplitude. There
is some “optimum” input amplitude for which the solitons
form with less energy. This optimum amplitude lies between
2.2 and 2.4; see Fig. 3.

An analogous analysis is performed against transverse
width w0, as shown on Figs. 4 and 5. The amplitude is fixed
here to A0 = 2.22.

It is also seen that the formation of a soliton requires a large
enough input energy. However, the energy required strongly
increases with w0, and cannot be interpreted as a threshold
any more, even in a rough way. This can be explained by the
fact that the solitons that are formed with high values of w0 do
not have a larger width than the solitons formed with w0 = 1,
but are exactly the same structures. As a consequence, for
large values of w0, the shape of the input is badly matched to
the final soliton, the energy is less efficiently converted into a
soliton, and more total energy is required. It may even happen,
for large values of w0, that two solitons are formed instead of
only one, both remaining located in the central channel n = 0.

III. FAMILIES OF FEW-CYCLE DISCRETE-CONTINUOUS
SPATIOTEMPORAL OPTICAL SOLITONS

We studied in the previous section the conditions under
which input Gaussian spatiotemporal wave packets turn into
ultrashort discrete solitons. In this section we study in detail
the characteristic features of these few-cycle spatiotemporal
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FIG. 5. Formation of solitons from a Gaussian input in the
transverse width-energy plane, for A0 = 2.22. Blue crosses: soliton
forms; red circles: dispersion-diffraction occurs.
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FIG. 6. Fundamental soliton with amplitude maxt,n(|un|) =
2.5667. (a) The optical field in the (n,t) plane. (b) The temporal
profile of the optical field.

optical solitons that form in waveguide arrays. The solitons
are the stationary states of the nonlinear system (1); however,
they are not constant, but oscillating, constituting the so-called
breather solitons. Hence they cannot be computed directly by
reducing the nonlinear coupled system of equations (1) to a set
of ordinary differential equations. We run the propagation code
until the soliton and the dispersive waves (or radiation) are well
separated, then we replace the field at some distance from the
soliton center with zero to remove the dispersive waves, and
we repeat the operation until the amount of dispersive waves
is low enough that the total energy of the optical field can be
considered as being the energy of the emerging soliton, with
an acceptable accuracy (in practice, we stop the procedure as
the amplitude of the dispersive waves far from the pulse goes
below 10−3).

We find that two kinds of discrete spatiotemporal solitons
exist when computing them by using the above described
numerical procedure: the breathing soliton, as expected when
dealing with mKdV-type equations, but also the single-humped
soliton, which is mainly the fundamental soliton of the mKdV
equation, if we “forget” the transverse dimension.

The single-humped soliton is shown in Fig. 6. It is localized
in both space and time and forms spontaneously from Gaussian
spatiotemporal inputs after long enough propagation distance.
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FIG. 7. Breathing soliton with amplitude maxt,n(|un|) = 3.1801.
(a) The optical field in the (n,t) plane. (b) The temporal profile of the
optical breather.

The single-humped solitons can be either positive or negative,
depending on the value of the initial phase. The breathing
soliton is shown in Fig. 7; it is also localized in space and time,
but it is an oscillating wave packet. The main characteristics
of solitons, that is, their amplitude, energy, and duration, are
recorded for a large number of numerical trials. The energy
E is plotted against the maximum amplitude maxt,n(|un|) in
Fig. 8. It is seen from Fig. 8 that the energy of breathers is
higher than the energy of fundamental solitons for the same
maximum amplitude.

The soliton duration is computed using the standard devia-
tion σ =

√
〈t2〉 − 〈t〉2, where the mean value 〈·〉 is defined by

〈f (t)〉 =
∫ ∞
−∞ f (t)u4dt∫ ∞

−∞ u4dt
. (19)

(The usual definition, which involves a power 2 instead of 4,
leads to erroneous results, since it lends too much weight to the
noisy background.) We consider only the central component
n = 0 that carries most of the energy, since the accuracy of the
extraction of the pulse duration from numerical data strongly
decreases with the signal-to-noise ratio. In order that the
definition of soliton duration τ coincides with the half-width
at 1/e in the case where the pulse profile is of the hyperbolic
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FIG. 8. The soliton energy E as a function of the soliton’s
maximum amplitude maxt,n(|un|). Blue crosses: breathers; green
stars: fundamental solitons.

secant type, we define it as

τ = 2σ

√
3

π2 − 6
. (20)

Then it is seen that the duration τ oscillates with z due to the
phase-carrier velocity mismatch. We denote by τ0 the average
of τ over z. Comparison between the actual pulse profile and a
hyperbolic secant with width τ or τ0 shows that only the mean
value τ0 is relevant.

The duration τ0, which is computed this way, is shown
in Fig. 9, versus the maximum amplitude maxt,n(|un|) of
the solitons. It is seen that the duration slowly decreases
as the maximum amplitude increases, and that the duration of
the breathing solitons is about twice that of the single-humped
ones. Since the duration decreases very slowly as the maximum
amplitude increases, it is natural that the corresponding soliton
energy then increases.

The spatial width of the soliton is rather small; most of its
energy is concentrated in the central guide n = 0. However,
some finite amount of energy propagates in the lateral guides.
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FIG. 9. The soliton duration τ0 as a function of the soliton’s
maximum amplitude maxt,n(|un|). Blue crosses: breathers; green
stars: fundamental solitons.
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FIG. 10. The soliton spatial width W0 as a function of the soliton’s
maximum amplitude maxt,n(|un|). Blue crosses: breathers; green
stars: fundamental solitons.

This amount can be evaluated only by considering the ampli-
tude in the few guides closest to the central ones (typically,
−2 � n � 2, but in a few cases −1 � n � 1 only). Otherwise
a reasonable accuracy cannot be reached, due to the presence
of remaining dispersive waves. The transverse profile can be
fitted by an expression of the form maxt |un| = Ae−|n|/W0 , by
applying a least-squares method to ln (maxt |un|) for 0 � n �
2 (0 � n � 1 only for 4 among the 35 computed solitons).
The results are shown in Fig. 10. It is seen that the solitons
are indeed narrow, with W0 < 1, and that the fundamental
solitons are appreciably narrower than the breathers with the
same maximum amplitude. We also observe from Fig. 10
that the width of the solitons decreases as their maximum
amplitude grows; we note that the soliton duration also
decreases slowly as the soliton maximum amplitude increases;
see Fig. 9.

IV. CONCLUSION

We have explored the existence and key features of ultra-
short spatiotemporal optical solitons propagating in waveguide
arrays, which are discrete solitons in the transverse direction,
and few-cycle solitons in the longitudinal one. We have shown
that such discrete-continuous few-cycle solitons can be of
two types: either breathing solitons or single-humped ones.
They form starting from an input Gaussian-type wave packet
provided that the pulse energy is high enough. However,
strictly speaking, an energy threshold does not exist. We
also arrived at the conclusion that high energies of such
discrete-continuous few-cycle solitons are reached for solitons
with the smallest values of their duration; see Figs. 8 and 9.
It was shown in [71] that nonlinear or dispersive coupling
between waveguides, although they are negligible for long
pulses, may have some appreciable importance in the few-
cycle regime. An interesting problem for future research is to
investigate how such coupling effects modify the formation
and the structure of few-cycle pulse solitons in waveguide
arrays.
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