M. H. Keefe, K. D. Benkstein, and J. T. Hupp, Luminescent sensor molecules based on coordinated metals: a review of recent developments, Coordin. Chem. Rev, vol.205, pp.201-228, 2000.

M. Shortreed, R. Kopelman, M. Kuhn, and B. Hoyland, Fluorescent Fiber-Optic Calcium Sensor for Physiological Measurements, Anal. Chem, vol.68, pp.1414-1418, 1996.

E. Bakker, Electrochemical Sensors. Anal. Chem, vol.76, pp.3285-3298, 2004.

J. Huang, S. Virji, B. H. Weiller, and R. B. Kaner, Polyaniline Nanofibers: Facile Synthesis and Chemical Sensors, J. Am. Chem. Soc, vol.125, pp.314-315, 2003.

M. Biesaga, K. Pyrzynska, and M. Trojanowicz, Porphyrins in analytical chemistry. A review, Talanta, vol.51, pp.209-224, 2000.

B. Timmer, W. Olthuis, . Van-den, and A. Berg, Ammonia sensors and their applications-a review, Sens Actuators B Chem, vol.107, pp.666-677, 2005.

Y. Shao, J. Wang, H. Wu, J. Liu, I. A. Aksay et al., Graphene Based Electrochemical Sensors and Biosensors: A Review, Electroanalysis, vol.22, pp.1027-1036, 2010.

C. R. Lohani and K. Lee, The effect of absorbance of Fe3+ on the detection of Fe3+ by fluorescent chemical sensors, Sens Actuators B Chem, vol.143, pp.649-654, 2010.

H. Wang, Y. Li, S. Xu, Y. Li, C. Zhou et al., Rhodamine-based highly sensitive colorimetric off-on fluorescent chemosensor for Hg 2+ in aqueous solution and for live cell imaging, Org. Biomol. Chem, vol.9, pp.2850-2855, 2011.

K. Kudo, A. Momotake, Y. Kanna, Y. Nishimura, and T. Arai, Development of a quinoxalinebased fluorescent probe for quantitative estimation of protein binding site polarity, Chem. Commun, vol.47, pp.3867-3869, 2011.

G. Liu, W. Zhou, J. Zhang, and P. Zhao, Polymeric temperature and pH fluorescent sensor synthesized by reversible addition-fragmentation chain transfer polymerization, J. Polym. Sci. A: Polym. Chem, vol.50, pp.2219-2226, 2012.

D. Ma, B. Li, X. Zhou, Q. Zhou, K. Liu et al., A dual functional MOF as a luminescent sensor for quantitatively detecting the concentration of nitrobenzene and temperatura, Chem. Commun, vol.49, pp.8964-8966, 2013.

Z. Zhou, Y. Du, and S. Dong, DNA-Ag nanoclusters as fluorescence probe for turn-on aptamer sensor of small molecules, Biosens. Bioelectron, vol.28, pp.33-37, 2011.

A. Kálai, É. Hideg, F. Ayaydin, and K. Hideg, Synthesis and potential use of 1,8-naphthalimidetype 1 O2 sensor molecules, Photochem. Photobiol. Sci, vol.12, pp.432-438, 2013.

Y. Xing, H. Lin, F. Wang, and P. Lu, An efficient D-A dyad for solvent polarity sensor, Sens Actuators B Chem, vol.114, pp.28-31, 2006.

H. F. Higginbotham, R. P. Cox, S. Sandanayake, B. A. Graystone, S. J. Langford et al., A fluorescent "2 in 1" proton sensor and polarity probe based on core substituted naphthalene diimide, Chem. Commun, vol.49, pp.5061-5063, 2013.

E. Ortega, R. Montecinos, L. Cattin, F. R. Díaz, M. A. Valle et al., Synthesis, characterization and photophysical-theoretical analysis of compounds A-p-D. 1. Effect of alkyl-phenyl substituted amines in photophysical properties, J. Mol. Struc, vol.1141, pp.615-623, 2017.

E. Ortega, A. Ramirez, L. Cattin, F. R. Díaz, M. A. Valle et al., Synthesis, characterization and photo physical-theoretical analysis of D-p-A compounds. 2. Chain length effect through even-odd effect on the photophysical properties, Dyes and Pigments, vol.147, pp.75-82, 2017.

W. Liptay, Electrochromism and Solvatochromism, Angew. Chem. Int. Edit, vol.8, pp.177-188, 1969.

V. W. Yam, K. M. Wong, and N. Zhu, Solvent-Induced Aggregation through Metal···Metal/?···? Interactions: Large Solvatochromism of Luminescent Organoplatinum(II) Terpyridyl Complexes, J. Am. Chem. Soc, vol.124, pp.6506-6507, 2002.

E. Buncel and S. Rajagopa, Solvatochromism and Solvent Polarity Scales, Acc. Chem. Res, vol.23, pp.226-231, 1990.

J. Gierschner, H. Mack, L. Lüer, and D. Oelkrug, Fluorescence and absorption spectra of oligophenylenevinylenes: Vibronic coupling, band shapes, and solvatochromism, J. Chem. Phys, vol.19, pp.8596-8609, 2002.

C. Reichardt, Solvatochromism, thermochromism, piezochromism, halochromism, and chirosolvatochromism of pyridinium N-phenoxide betaine dyes, Chem. Soc. Rev, vol.21, pp.147-153, 1992.

X. Y. Shen, Y. J. Wang, E. Zhao, W. Z. Yuan, Y. Liu et al., Effects of Substitution with Donor-Acceptor Groups on the Properties of Tetraphenylethene Trimer: Aggregation-Induced Emission, Solvatochromism, and Mechanochromism, J. Phys. Chem. C, vol.117, pp.7334-7347, 2013.

Y. Niko, Y. Cho, S. Kawauchi, and G. Konishi, Pyrene-based D-?-A dyes that exhibit solvatochromism and high fluorescence brightness in apolar solvents and water, vol.4, pp.36480-36484, 2014.

Z. Wei, Z. Gu, R. K. Arvapally, Y. Chen, R. N. Mcdougald et al., Rigidifying Fluorescent Linkers by Metal?Organic Framework Formation for Fluorescence Blue Shift and Quantum Yield Enhancement, J. Am. Chem. Soc, vol.136, pp.8269-8276, 2014.

M. Hidalgo, R. Rivelino, and S. Canuto, Origin of the Red Shift for the Lowest Singlet ? ? ?* Charge-Transfer Absorption of p-Nitroaniline in Supercritical CO2, J. Chem. Theory Comput, vol.10, pp.1554-1562, 2014.

F. Qu, L. L. Dou, N. B. Li, and H. Q. Luo, Solvatofluorochromism of polyethyleneimine-encapsulated Ag nanoclusters and their concentration-dependent fluorescence, J. Mater. Chem. C, vol.1, pp.4008-4013, 2013.

R. M. Clegg, A. I. Murchiet, A. Zechel, and D. M. Lilleyt, Observing the helical geometry of double-stranded DNA in solution by fluorescence resonance energy transfer, Proc. Natl. Acad. Sci. U.S.A, vol.90, pp.2994-2998, 1993.

T. C. Werner and R. M. Hoffman, Relation between an Excited State Geometry Change and the Solvent Dependence of 9-Methyl Anthroate Fluorescence, J. Phys. Chem, vol.77, pp.1611-1615, 1973.

M. K. Singhi, H. Pal, A. C. Bhasikutta, and A. V. Sapre, Dual solvatochromism of Neutral Red, Photochem. Photobiol, vol.68, pp.32-38, 1998.