, World Health Organization. World malaria report; World Health Organization, 2018.

A. Corte?, K. W. Deitsch, and . Epigenetics, Cold Spring Harbor Perspect, vol.7, 2017.

A. Scherf, J. J. Lopez-rubio, and L. Riviere, Antigenic variation in Plasmodium falciparum, Annu. Rev. Microbiol, vol.62, pp.445-470, 2008.

C. Doerig, J. C. Rayner, A. Scherf, and A. B. Tobin, Post-translational protein modifications in malaria parasites, Nat. Rev. Microbiol, vol.13, issue.3, pp.160-172, 2015.

N. A. Malmquist, T. A. Moss, S. Mecheri, A. Scherf, and M. J. Fuchter, Small-molecule histone methyltransferase inhibitors display rapid antimalarial activity against all blood stage forms in Plasmodium falciparum, Proc. Natl. Acad. Sci. U. S. A, vol.2012, issue.41, pp.16708-16713
URL : https://hal.archives-ouvertes.fr/pasteur-01103641

N. A. Malmquist, S. Sundriyal, J. Caron, P. Chen, B. Witkowski et al., Histone methyltransferase inhibitors are orally bioavailable, fast-acting molecules with activity against different species causing malaria in humans, Antimicrob. Agents Chemother, vol.59, issue.2, pp.950-959, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02560661

N. Ponts, L. Fu, E. Y. Harris, J. Zhang, D. D. Chung et al., Genome-wide mapping of DNA methylation in the human malaria parasite Plasmodium falciparum, Cell Host Microbe, vol.14, issue.6, pp.696-706, 2013.

E. Hammam, G. Ananda, A. Sinha, C. Scheidig-benatar, M. Bohec et al., Discovery of a new predominant cytosine DNA modification that is linked to gene expression in malaria parasites, Nucleic Acids Res, 2019.
URL : https://hal.archives-ouvertes.fr/pasteur-02385713

G. Govindaraju, C. A. Jabeena, D. V. Sethumadhavan, N. Rajaram, and A. Rajavelu, DNA methyltransferase homologue TRDMT1 in Plasmodium falciparum specifically methylates endogenous aspartic acid tRNA, Biochim. Biophys. Acta, vol.2017, issue.10, pp.1047-1057

A. Bouchut, D. Rotili, C. Pierrot, S. Valente, S. Lafitte et al., Identification of novel quinazoline derivatives as potent antiplasmodial agents, Eur. J. Med. Chem, vol.161, pp.277-291, 2019.

L. Halby, Y. Menon, E. Rilova, D. Pechalrieu, V. Masson et al., Rational Design of Bisubstrate-Type Analogues as Inhibitors of DNA Methyltransferases in Cancer Cells, J. Med. Chem, vol.2017, issue.11, pp.4665-4679

A. Ceccaldi, A. Rajavelu, C. Champion, C. Rampon, R. Jurkowska et al., C5-DNA methyltransferase inhibitors: from screening to effects on zebrafish embryo development, ChemBioChem, vol.12, issue.9, pp.1337-1345, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00632453

C. Gros, L. Chauvigne, A. Poulet, Y. Menon, F. Ausseil et al., Development of a universal radioactive DNA methyltransferase inhibition test for high-throughput screening and mechanistic studies, Nucleic Acids Res, vol.8, issue.19, pp.543-548, 2013.

Q. L. Fivelman, I. S. Adagu, and D. C. Warhurst, Modified fixedratio isobologram method for studying in vitro interactions between atovaquone and proguanil or dihydroartemisinin against drug-resistant strains of Plasmodium falciparum, Antimicrob. Agents Chemother, vol.48, issue.11, pp.4097-4102, 2004.

B. Witkowski, V. Duru, N. Khim, L. S. Ross, B. Saintpierre et al., A surrogate marker of piperaquine-resistant Plasmodium falciparum malaria: a phenotype-genotype association study, Lancet Infect. Dis, vol.17, issue.2, pp.174-183, 2017.
URL : https://hal.archives-ouvertes.fr/pasteur-01400955

S. Agrawal, K. A. Moser, L. Morton, M. P. Cummings, A. Parihar et al., Association of a Novel Mutation in the Plasmodium falciparum Chloroquine Resistance Transporter With Decreased Piperaquine Sensitivity, J. Infect. Dis, vol.216, issue.4, pp.468-476, 2017.

L. S. Ross, S. K. Dhingra, S. Mok, T. Yeo, K. J. Wicht et al., Emerging Southeast Asian PfCRT mutations confer Plasmodium falciparum resistance to the first-line antimalarial piperaquine, Nat. Commun, vol.2018, issue.1, p.3314
URL : https://hal.archives-ouvertes.fr/hal-02558701

W. L. Hamilton, R. Amato, R. W. Van-der-pluijm, C. G. Jacob, H. H. Quang et al., Evolution and expansion of multidrug-resistant malaria in southeast Asia: a genomic epidemiology study, Lancet Infect. Dis, vol.19, issue.9, pp.943-951, 2019.

R. W. Van-der-pluijm, M. Imwong, N. H. Chau, N. T. Hoa, N. T. Thuy-nhien et al., Determinants of dihydroartemisinin-piperaquine treatment failure in Plasmodium falciparum malaria in Cambodia, Lancet Infect. Dis, vol.19, issue.9, pp.952-961, 2019.

D. W. Wilson, C. Langer, C. D. Goodman, G. I. Mcfadden, and J. G. Beeson, Defining the timing of action of antimalarial drugs against Plasmodium falciparum, Antimicrob. Agents Chemother, vol.57, issue.3, pp.1455-1467, 2013.

W. Trager and J. B. Jensen, Human malaria parasites in continuous culture, J. Parasitol, vol.91, issue.3, pp.484-486, 1976.

B. Witkowski, N. Khim, P. Chim, S. Kim, S. Ke et al., Reduced artemisinin susceptibility of Plasmodium falciparum ring stages in western Cambodia, Antimicrob. Agents Chemother, vol.57, issue.2, pp.914-923, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02378668

K. Moll, A. Kaneko, A. Scherf, and M. Wahlgren, Telomere repeat amplification protocol in Plasmodium falciparum (PfTRAP), In Methods in Malaria Research

. Evimalar, , pp.308-310, 2013.

W. Peters, The chemotherapy of rodent malaria, XXII. The value of drug-resistant strains of P. berghei in screening for blood schizontocidal activity, Ann. Trop. Med. Parasitol, vol.69, issue.2, pp.155-171, 1975.

T. Ishino, Y. Orito, Y. Chinzei, and M. Yuda, A calcium-dependent protein kinase regulates Plasmodium ookinete access to the midgut epithelial cell, Mol. Microbiol, vol.59, issue.4, pp.1175-1184, 2006.