V. Wagner, A. Dullaart, A. K. Bock, and A. Zweck, The emerging nanomedicine landscape, Nat Biotechnol, vol.24, pp.1211-1217, 2006.

M. Jones and J. Leroux, Polymeric micelles -a new generation of colloidal drug carriers, Eur J Pharm Biopharm, vol.48, pp.101-111, 1999.

B. K. Nanjwade, H. M. Bechra, G. K. Derkar, F. V. Manvi, and V. K. Nanjwade, Dendrimers: emerging polymers for drug-delivery systems, Eur J Pharm Sci, vol.38, pp.185-196, 2009.

P. Dey and N. Das, Carbon Nanotubes: Its role in modern health care, Int J Pharm Pharm Sci, vol.5, pp.9-13, 2003.

A. V. Kabanov and S. V. Vinogradov, Nanogels as pharmaceutical carriers: finite networks of infinite capabilities, Angew Chem Int Ed Engl, vol.48, pp.5418-5429, 2009.

F. Lai, A. M. Fadda, and C. Sinico, Liposomes for brain delivery, Expert Opin Drug Deliv, vol.10, pp.1003-1022, 2013.

B. Lasa-saracibar, E. De-mendoza, A. Guada, M. Dios-vieitez, C. Blanco-prieto et al., Lipid nanoparticles for cancer therapy: state of the art and future prospects, Expert Opin Drug Deliv, vol.9, pp.1245-1261, 2012.

E. Mendoza, A. Campanero, M. A. Mollinedo, F. Blanco-prieto, and M. J. , Lipid nanomedicines for anticancer drug therapy, J Biomed Nanotechnol, vol.5, pp.323-343, 2009.

E. Garbayo, E. De-mendoza, A. Blanco-prieto, and M. J. , Diagnostic and therapeutic uses of nanomaterials in the brain, Curr Med Chem, vol.21, pp.4100-4131, 2014.

D. J. Begley, Delivery of therapeutic agents to the central nervous system: the problems and the possibilities, Pharmacol Ther, vol.104, pp.29-45, 2004.

J. Bernacki, A. Dobrowolska, K. Nierwiåska, and A. Maå?ecki, Physiology and pharmacological role of the blood-brain barrier, Pharmacol Rep, vol.60, pp.600-622, 2008.

K. Hosoya, S. Ohtsuki, and T. Terasaki, Recent advances in the brain-to-blood efflux transport across the blood-brain barrier, Int J Pharm, vol.248, pp.15-29, 2002.

M. Srikanth and J. A. Kessler, Nanotechnology-novel therapeutics for CNS disorders, Nat Rev Neurol, vol.8, pp.307-318, 2012.

K. Riehemann, S. W. Schneider, T. A. Luger, B. Godin, and M. Ferrari, Nanomedicine--challenge and perspectives, Angew Chem Int Ed Engl, vol.48, pp.872-897, 2009.

H. W. Querfurth and F. M. Laferla, Alzheimer's disease, N Engl J Med, vol.362, pp.329-344, 2010.

S. Salomone, F. Caraci, G. M. Leggio, J. Fedotova, and F. Drago, New pharmacological strategies for treatment of Alzheimer's disease: focus on disease modifying drugs, Br J Clin Pharmacol, vol.73, pp.504-517, 2012.

K. P. Pagar, S. M. Sardar, and P. R. Vavia, Novel L-lactide-depsipeptide polymeric carrier for enhanced brain uptake of rivastigmine in treatment of Alzheimer's disease, J Biomed Nanotechnol, vol.10, pp.415-426, 2014.

M. Fazil, S. Md, S. Haque, M. Kumar, and S. Baboota, Development and evaluation of rivastigmine loaded chitosan nanoparticles for brain targeting, Eur J Pharm Sci, vol.47, pp.6-15, 2012.

B. Wilson, M. K. Samanta, K. Santhi, K. P. Kumar, and N. Paramakrishnan, Poly(n-butylcyanoacrylate) nanoparticles coated with polysorbate 80 for the targeted delivery of rivastigmine into the brain to treat Alzheimer's disease, Brain Res, vol.1200, pp.159-168, 2008.

B. Wilson, M. K. Samanta, K. Santhi, K. P. Kumar, and N. Paramakrishnan, Targeted delivery of tacrine into the brain with polysorbate 80-coated poly(n-butylcyanoacrylate) nanoparticles, Eur J Pharm Biopharm, vol.70, pp.75-84, 2008.

B. Wilson, M. K. Samanta, K. Santhi, K. P. Kumar, and M. Ramasamy, Chitosan nanoparticles as a new delivery system for the anti-Alzheimer drug tacrine, Nanomedicine, vol.6, pp.144-152, 2010.

S. Md, M. Ali, S. Baboota, J. K. Sahni, and A. Bhatnagar, Preparation, characterization, in vivo biodistribution and pharmacokinetic studies of donepezil-loaded PLGA nanoparticles for brain targeting, Drug Dev Ind Pharm, vol.40, pp.278-287, 2014.

L. Zhang, L. Han, J. Qin, W. Lu, and J. Wang, The use of borneol as an enhancer for targeting aprotininconjugated PEG-PLGA nanoparticles to the brain, Pharm Res, vol.30, pp.2560-2572, 2013.

E. Herrán, R. Pérez-gonzález, M. Igartua, J. L. Pedraz, and E. Carro, VEGF-releasing biodegradable nanospheres administered by craniotomy: a novel therapeutic approach in the APP/Ps1 mouse model of Alzheimer's disease, J Control Release, vol.170, pp.111-119, 2013.

Z. Liu, X. Gao, T. Kang, M. Jiang, and D. Miao, B6 peptide-modified PEG-PLA nanoparticles for enhanced brain delivery of neuroprotective peptide, Bioconjug Chem, vol.24, pp.997-1007, 2013.

J. Li, C. Zhang, J. Li, L. Fan, and X. Jiang, Brain delivery of NAP with PEG-PLGA nanoparticles modified with phage display peptides, Pharm Res, vol.30, pp.1813-1823, 2013.

G. Mittal, H. Carswell, R. Brett, S. Currie, and M. N. Kumar, Development and evaluation of polymer nanoparticles for oral delivery of estradiol to rat brain in a model of Alzheimer's pathology, J Control Release, vol.150, pp.220-228, 2011.

B. Ray, S. Bisht, A. Maitra, A. Maitra, and D. K. Lahiri, Neuroprotective and neurorescue effects of a novel polymeric nanoparticle formulation of curcumin (NanoCurc?) in the neuronal cell culture and animal model: implications for Alzheimer's disease, J Alzheimers Dis, vol.23, pp.61-77, 2011.

E. K. Agyare, K. M. Jaruszewski, G. L. Curran, J. T. Rosenberg, and S. C. Grant, Engineering theranostic nanovehicles capable of targeting cerebrovascular amyloid deposits, J Control Release, vol.185, pp.121-129, 2014.

K. K. Cheng, C. F. Yeung, S. W. Ho, S. F. Chow, and A. H. Chow, Highly stabilized curcumin nanoparticles tested in an in vitro blood-brain barrier model and in Alzheimer's disease Tg2576 mice, AAPS J, vol.15, pp.324-336, 2013.

I. M. Neelov, A. Janaszewska, B. Klajnert, M. Bryszewska, and N. Z. Makova, Molecular properties of lysine dendrimers and their interactions with Aβ-peptides and neuronal cells, Curr Med Chem, vol.20, pp.134-143, 2013.

Z. Songjiang and W. Lixiang, Amyloid-beta associated with chitosan nano-carrier has favorable immunogenicity and permeates the BBB, AAPS PharmSciTech, vol.10, pp.900-905, 2009.

C. Zhang, X. Wan, X. Zheng, X. Shao, and Q. Liu, Dual-functional nanoparticles targeting amyloid plaques in the brains of Alzheimer's disease mice, Biomaterials, vol.35, pp.456-465, 2014.

C. A. Davie, A review of Parkinson's disease, Br Med Bull, vol.86, pp.109-127, 2008.

E. Garbayo, E. Ansorena, and M. J. Blanco-prieto, Drug development in Parkinson's disease: from emerging molecules to innovative drug delivery systems, Maturitas, vol.76, pp.272-278, 2013.

F. Salawu, A. Olokoba, and A. Danburam, Current management of Parkinson's disease, Ann Afr Med, vol.9, pp.55-61, 2010.

S. Pillay, V. Pillay, Y. E. Choonara, D. Naidoo, and R. A. Khan, Design, biometric simulation and optimization of a nano-enabled scaffold device for enhanced delivery of dopamine to the brain, Int J Pharm, vol.382, pp.277-290, 2009.

A. Trapani, E. De-giglio, D. Cafagna, N. Denora, and G. Agrimi, Characterization and evaluation of chitosan nanoparticles for dopamine brain delivery, Int J Pharm, vol.419, pp.296-307, 2011.

E. De-giglio, A. Trapani, D. Cafagna, L. Sabbatini, and S. Cometa, Dopamine-loaded chitosan nanoparticles: formulation and analytical characterization, Anal Bioanal Chem, vol.400, pp.1997-2002, 2011.

C. Pardeshi, V. S. Belgamwar, A. R. Tekade, and S. J. Surana, Novel surface modified polymer-lipid hybrid nanoparticles as intranasal carriers for ropinirole hydrochloride: in vitro, ex vivo and in vivo pharmacodynamic evaluation. See comment in PubMed Commons below, J Mater Sci Mater Med, vol.24, pp.2101-2115, 2013.

Z. Wen, Z. Yan, K. Hu, Z. Pang, and X. Cheng, Odorranalectin-conjugated nanoparticles: Preparation, brain delivery and pharmacodynamic study on Parkinson's disease following intranasal administration, J Controlled Release, vol.151, pp.131-138, 2011.

K. Hu, Y. Shi, W. Jiang, J. Han, and S. Huang, Lactoferrin conjugated PEG-PLGA nanoparticles for brain delivery: preparation, characterization and efficacy in Parkinson's disease, Int J Pharm, vol.415, pp.273-283, 2011.

R. Huang, W. Ke, Y. Liu, D. Wu, and L. Feng, Gene therapy using lactoferrin-modified nanoparticles in a rotenone-induced chronic Parkinson model, J Neurol Sci, vol.290, pp.123-130, 2010.

R. Huang, L. Han, J. Li, F. Ren, and W. Ke, Neuroprotection in a 6-hydroxydopamine-lesioned Parkinson model using lactoferrin-modified nanoparticles, J Gene Med, vol.11, pp.754-763, 2009.

R. Huang, W. Ke, Y. Liu, C. Jiang, and Y. Pei, The use of lactoferrin as a ligand for targeting the polyamidoaminebased gene delivery system to the brain, Biomaterials, vol.29, pp.238-246, 2008.

D. M. Yurek, A. M. Flectcher, T. H. Kowalczyk, L. Padegimas, and M. J. Cooper, Compacted DNA nanoparticle gene transfer of GDNF to the rat striatum enhances the survival of grafted fetal dopamine neurons, Cell Transplant, vol.18, pp.1183-1196, 2009.

K. B. Kurakhmaeva, T. A. Voronina, I. G. Kapica, J. Kreuter, and L. N. Nerobkova, Antiparkinsonian effect of nerve growth factor adsorbed on polybutylcyanoacrylate nanoparticles coated with polysorbate-80, Bull Exp Biol Med, vol.145, pp.259-262, 2008.

A. M. Brynskikh, Y. Zhao, R. L. Mosley, S. Li, and M. D. Boska, Macrophage delivery of therapeutic nanozymes in a murine model of Parkinson's disease, Nanomedicine (Lond), vol.5, pp.379-396, 2010.

E. V. Batrakova, S. Li, A. D. Reynolds, R. L. Mosley, and T. K. Bronich, A macrophage-nanozyme delivery system for Parkinson's disease, Bioconjug Chem, vol.18, pp.1498-1506, 2007.

A. Rekas, V. Lo, G. E. Gadd, R. Cappai, and S. I. Yun, PAMAM dendrimers as potential agents against fibrillation of alpha-synuclein, a Parkinson's disease-related protein, Macromol Biosci, vol.9, pp.230-238, 2009.

K. Milowska, M. Malachowska, and T. Gabryelak, PAMAM G4 dendrimers affect the aggregation of α-synuclein, Int J Biol Macromol, vol.48, pp.742-746, 2011.

K. Milowska, T. Gabryelak, M. Bryszewska, A. M. Caminade, and J. P. Majoral, Phosphorus-containing dendrimers against α-synuclein fibril formation, Int J Biol Macromol, vol.50, pp.1138-1143, 2012.

K. Milowska, J. Grochowina, N. Katir, E. Kadib, A. Majoral et al., Viologen-Phosphorus Dendrimers Inhibit α-Synuclein Fibrillation, Mol Pharm, vol.10, pp.1131-1137, 2013.

A. P. Fernandez, J. Serrano, M. A. Amorim, A. Pozo-rodrigalvarez, and R. Martinez-murillo, Adrenomedullin and nitric oxide: implications for the etiology and treatment of primary brain tumors, CNS Neurol Disord Drug Targets, vol.10, pp.820-833, 2011.

A. Omuro and L. M. Deangelis, Glioblastoma and other malignant gliomas: a clinical review, JAMA, vol.310, pp.1842-1850, 2013.

L. S. Del-burgo, R. M. Hernández, G. Orive, and J. L. Pedraz, Nanotherapeutic approaches for brain cancer management, Nanomedicine, vol.10, pp.905-919, 2014.

P. Bailey and H. Cushing, A classification of the tumors of the glioma group on a histogenic basis with a correlated study of prognosis, J B Lippincott Co. Philadelphia. USA, 1926.

E. A. Maher, F. B. Furnari, R. M. Bachoo, D. H. Rowitch, and D. N. Louis, Malignant glioma: genetics and biology of a grave matter, Genes Dev, vol.15, pp.1311-1333, 2001.

J. Zhou, T. R. Patel, R. W. Sirianni, G. Strohbehn, and M. Q. Zheng, Highly penetrative, drug-loaded nanocarriers improve treatment of glioblastoma, Proc Natl Acad Sci U S A, vol.110, pp.11751-11756, 2013.

Y. E. Koo, G. R. Reddy, M. Bhojani, R. Schneider, and M. A. Philbert, Brain cancer diagnosis and therapy with nanoplatforms, Adv Drug Deliv Rev, vol.58, pp.1556-1577, 2006.

J. Zhou, T. R. Patel, M. Fu, J. P. Bertram, and W. M. Saltzman, Octa-functional PLGA nanoparticles for targeted and efficient siRNA delivery to tumors, Biomaterials, vol.33, pp.583-591, 2012.

E. A. Nance, G. F. Woodworth, K. A. Sailor, T. Y. Shih, and Q. Xu, A dense poly(ethylene glycol) coating improves penetration of large polymeric nanoparticles within brain tissue, Sci Transl Med, vol.4, pp.149-119, 2012.

C. Zhan, B. Gu, C. Xie, J. Li, and Y. Liu, Cyclic RGD conjugated poly(ethylene glycol)-co-poly(lactic acid) micelle enhances paclitaxel anti-glioblastoma effect, J Control Release, vol.143, pp.136-142, 2010.

G. Gu, H. Xia, Q. Hu, Z. Liu, and M. Jiang, PEG-co-PCL nanoparticles modified with MMP-2/9 activatable low molecular weight protamine for enhanced targeted glioblastoma therapy, Biomaterials, vol.34, pp.196-208, 2013.

M. Li, H. Deng, H. Peng, and Q. Wang, Functional nanoparticles in targeting glioma diagnosis and therapies, J Nanosci Nanotechnol, vol.14, pp.415-432, 2014.

M. Demeule, J. C. Currie, Y. Bertrand, C. Ché, and T. Nguyen, Involvement of the low-density lipoprotein receptor-related protein in the transcytosis of the brain delivery vector angiopep-2, J Neurochem, vol.106, pp.1534-1544, 2008.

L. Maletínská, E. A. Blakely, K. A. Bjornstad, D. F. Deen, and L. J. Knoff, Human glioblastoma cell lines: levels of low-density lipoprotein receptor and low-density lipoprotein receptor-related protein, Cancer Res, vol.60, pp.2300-2303, 2000.

H. Xin, X. Jiang, J. Gu, X. Sha, and L. Chen, Angiopep-conjugated poly(ethylene glycol)-co-poly(εcaprolactone) nanoparticles as dual-targeting drug delivery system for brain glioma, Biomaterials, vol.32, pp.4293-4305, 2011.

H. Xin, X. Sha, X. Jiang, W. Zhang, and L. Chen, Anti-glioblastoma efficacy and safety of paclitaxelloading Angiopep-conjugated dual targeting PEG-PCL nanoparticles, Biomaterials, vol.33, pp.8167-8176, 2012.

C. A. Shaifer, J. Huang, and P. C. Lin, Glioblastoma cells incorporate into tumor vasculature and contribute to vascular radioresistance, Int J Cancer, vol.127, pp.2063-2075, 2010.

B. Zhang, H. Wang, Z. Liao, Y. Wang, and Y. Hu, EGFP-EGF1-conjugated nanoparticles for targeting both neovascular and glioma cells in therapy of brain glioma, Biomaterials, vol.35, pp.4133-4145, 2014.

H. Mei, W. Shi, Z. Pang, H. Wang, and W. Lu, EGFP-EGF1 protein-conjugated PEG-PLA nanoparticles for tissue factor targeted drug delivery, Biomaterials, vol.31, pp.5619-5626, 2010.

H. Gao, J. Qian, S. Cao, Z. Yang, and Z. Pang, Precise glioma targeting of and penetration by aptamer and peptide dual-functioned nanoparticles, Biomaterials, vol.33, pp.5115-5123, 2012.

H. Gao, S. Zhang, Z. Yang, S. Cao, and X. Jiang, In vitro and in vivo intracellular distribution and antiglioblastoma effects of docetaxel-loaded nanoparticles functioned with IL-13 peptide, Int J Pharm, vol.466, pp.8-17, 2014.