R. Stupp, M. E. Hegi, and W. P. Mason, Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial, Lancet Oncol, vol.10, issue.5, pp.459-466, 2009.

R. Stupp, W. P. Mason, and M. J. Van-den-bent, Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma, N Engl J Med, vol.352, issue.10, pp.987-996, 2005.

J. De-groot, R. Da, and T. T. Batchelor, Antiangiogenic therapy for glioblastoma: the challenge of translating response rate into efficacy, Am Soc Clin Oncol Educ Book, 2013.

T. T. Batchelor, P. Mulholland, and B. Neyns, Phase III randomized trial comparing the efficacy of cediranib as monotherapy, and in combination with lomustine, versus lomustine alone in patients with recurrent glioblastoma, J Clin Oncol Off J Am Soc Clin Oncol, vol.31, issue.26, pp.3212-3218, 2013.

M. Khasraw, M. Ameratunga, and C. Grommes, Bevacizumab for the treatment of high-grade glioma: an update after phase III trials, Expert Opin Biol Ther, vol.14, issue.5, pp.729-740, 2014.

K. Lenting, R. Verhaak, T. Laan, M. Wesseling, P. Leenders et al., Glioma: experimental models and reality, Acta Neuropathologica, vol.133, issue.2, pp.263-282, 2017.

J. Folkman, Tumor angiogenesis: therapeutic implications, N Engl J Med, vol.285, issue.21, pp.1182-1186, 1971.

S. Das and P. A. Marsden, Angiogenesis in glioblastoma, N Engl J Med, vol.369, issue.16, pp.1561-1563, 2013.

M. E. Hardee and D. Zagzag, Mechanisms of glioma-associated neovascularization, Am J Pathol, vol.181, issue.4, pp.1126-1141, 2012.

K. H. Plate, A. Scholz, and D. J. Dumont, Tumor angiogenesis and antiangiogenic therapy in malignant gliomas revisited. Acta Neuropathologica, vol.124, pp.763-775, 2012.

N. Wang, R. K. Jain, and T. T. Batchelor, New directions in anti-angiogenic therapy for glioblastoma, Neurotherapeutics, vol.14, issue.2, pp.321-332, 2017.

A. Dimberg, The glioblastoma vasculature as a target for cancer therapy, Biochm Soc Trans, vol.42, issue.6, pp.1647-1652, 2014.

R. K. Jain, E. Di-tomaso, D. G. Duda, J. S. Loeffler, A. G. Sorensen et al., Angiogenesis in brain tumours, Nat Rev Neurosci, 2007.

N. Rao, Y. F. Lee, and R. Ge, Novel endogenous angiogenesis inhibitors and their therapeutic potential, Acta Pharmacol Sin, vol.36, issue.10, pp.1177-1190, 2015.

F. Chen, L. Chen, and H. He, Up-regulation of microRNA-16 in glioblastoma inhibits the function of endothelial cells and tumor angiogenesis by targeting Bmi-1, ACAMC, vol.16, issue.5, pp.609-620, 2016.

J. Gagner, M. Law, I. Fischer, E. W. Newcomb, and D. Zagzag, Angiogenesis in gliomas: imaging and experimental therapeutics, Brain Pathology, vol.15, issue.4, pp.342-363, 2005.

T. A. Rege, C. Y. Fears, and C. L. Gladson, Endogenous inhibitors of angiogenesis in malignant gliomas: nature's antiangiogenic therapy, Neuro-Oncol, vol.7, issue.2, pp.106-121, 2005.

L. B. Nabors, J. B. Fiveash, and J. M. Markert, A phase 1 trial of ABT-510 concurrent with standard chemoradiation for patients with newly diagnosed glioblastoma, Arch Neurol, vol.67, issue.3, pp.313-319, 2010.

D. Kong, M. R. Kim, J. H. Jang, H. Na, and S. Lee, A review of antiangiogenic targets for monoclonal antibody cancer therapy, Int J Mol Sci, vol.18, issue.8, p.1786, 2017.

O. L. Chinot and D. A. Reardon, The future of antiangiogenic treatment in glioblastoma, Current Opinion in Neurology, vol.27, issue.6, pp.675-682, 2014.

M. R. Gilbert, E. P. Sulman, and M. P. Mehta, Bevacizumab for newly diagnosed glioblastoma, N Engl J Med, vol.370, issue.21, pp.2048-2049, 2014.

T. Cloughesy, G. Finocchiaro, and C. Belda-iniesta, Randomized, double-blind, placebo-controlled, multicenter phase ii study of onartuzumab plus bevacizumab versus placebo plus bevacizumab in patients with recurrent glioblastoma: efficacy, safety, and hepatocyte growth factor and O 6 -methylguanine-DNA methyltransferase biomarker analyses, J Clin Oncol Off J Am Soc Clin Oncol, vol.35, issue.3, pp.343-351, 2017.

K. J. Gotink and H. Verheul, Anti-angiogenic tyrosine kinase inhibitors: what is their mechanism of action?, Angiogenesis, vol.13, issue.1, pp.1-14, 2010.

A. M. Popescu, S. O. Purcaru, O. Alexandru, and A. Dricu, New perspectives in glioblastoma antiangiogenic therapy, Wspó?czesna Onkologia, 2016.

J. F. De-groot, K. R. Lamborn, and S. M. Chang, Phase II study of aflibercept in recurrent malignant glioma: a North American brain tumor Consortium study, J Clin Oncol Off J Am Soc Clin Oncol, vol.29, pp.2689-2695, 2011.

D. A. Reardon, A. B. Lassman, and D. Schiff, Phase 2 and biomarker study of trebananib, an angiopoietin-blocking peptibody, with and without bevacizumab for patients with recurrent glioblastoma, Cancer, vol.124, issue.7, pp.1438-1448, 2018.

M. Weller, L. B. Nabors, and T. Gorlia, Cilengitide in newly diagnosed glioblastoma: biomarker expression and outcome, Oncotarget, 2016.

R. K. Jain, Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy, Science, vol.307, issue.5706, pp.58-62, 2005.

C. Calabrese, H. Poppleton, and M. Kocak, A perivascular niche for brain tumor stem cells, Cancer Cell, vol.11, issue.1, pp.69-82, 2007.

L. Cheng, Z. Huang, and W. Zhou, Glioblastoma stem cells generate vascular pericytes to support vessel function and tumor growth, Cell, vol.153, issue.1, pp.139-152, 2013.

C. Folkins, S. Man, P. Xu, Y. Shaked, D. J. Hicklin et al., Anticancer therapies combining antiangiogenic and tumor cell cytotoxic effects reduce the tumor stem-like cell fraction in glioma xenograft tumors, Cancer Res, vol.67, issue.8, pp.3560-3564, 2007.

J. F. De-groot, Y. Piao, and H. Tran, Myeloid biomarkers associated with glioblastoma response to anti-VEGF therapy with aflibercept, Clinical Cancer Research, vol.17, issue.14, pp.4872-4881, 2011.

H. X. Chen and J. N. Cleck, Adverse effects of anticancer agents that target the VEGF pathway, Nat Rev Clin Oncol, vol.6, issue.8, pp.465-477, 2009.

A. Jahangiri, A. T. Chin, P. M. Flanigan, R. Chen, K. Bankiewicz et al., Convection-enhanced delivery in glioblastoma: a review of preclinical and clinical studies, J Neurosurg, vol.269, issue.3, pp.191-200, 2017.

A. M. Mehta, A. M. Sonabend, and J. N. Bruce, Convection-enhanced delivery, Neurotherapeutics, vol.14, issue.2, pp.358-371, 2017.

V. M. Ndesendo, Convection-enhanced delivery of neurotherapeutics, Advances in Neurotherapeutic Delivery Technologies, vol.8, 2015.

M. A. Vogelbaum and M. K. Aghi, Convection-enhanced delivery for the treatment of glioblastoma, Neuro-Oncology, vol.17, issue.2, pp.3-8, 2015.

W. Wang, W. Sivakumar, and S. Torres, Effects of convection-enhanced delivery of bevacizumab on survival of glioma-bearing animals, Neurosurg Focus, vol.62, issue.3, p.8, 2015.

J. R. Ohlfest, Z. L. Demorest, and Y. Motooka, Combinatorial antiangiogenic gene therapy by nonviral gene transfer using the sleeping Beauty transposon causes tumor regression and improves survival in mice bearing intracranial human glioblastoma, Molecular Therapy, 2005.

D. L. Gillespie, M. T. Aguirre, and S. Ravichandran, RNA interference targeting hypoxia-inducible factor 1? via a novel multifunctional surfactant attenuates glioma growth in an intracranial mouse model, J Neurosurg, vol.122, issue.2, pp.331-341, 2015.

J. Huang, D. Yuan, and D. Liu, Efficacy of antiangiogenic targeted immunotoxin DTAT and DTATEGF against glioblastoma multiforme

, Zhong Nan Da Xue Xue Bao Yi Xue Ban, vol.39, pp.1-5, 2014.

R. Grossman, B. Tyler, and L. Hwang, Improvement in the standard treatment for experimental glioma by fusing antibody Fc domain to endostatin, J Neurosurg, vol.284, issue.6, pp.1139-1146, 2011.

N. O. Schmidt, M. Ziu, and G. Carrabba, Antiangiogenic therapy by local intracerebral microinfusion improves treatment efficiency and survival in an orthotopic human glioblastoma model, Clin Cancer Res, vol.10, issue.4, pp.1255-1262, 2004.

D. Zagorac, D. Jakovcevic, D. Gebremedhin, and D. R. Harder, Antiangiogenic effect of inhibitors of cytochrome P450 on rats with glioblastoma multiforme, J Cereb Blood Flow Metab, vol.28, issue.8, pp.1431-1439, 2008.

A. Clavreul, E. Roger, M. Pourbaghi-masouleh, L. Lemaire, C. Tétaud et al., Development and characterization of sorafenib-loaded lipid nanocapsules for the treatment of glioblastoma, Drug Delivery, vol.25, issue.1, pp.1756-1765, 2018.
URL : https://hal.archives-ouvertes.fr/inserm-01908758

J. H. Sampson, G. Akabani, and G. E. Archer, Intracerebral infusion of an EGFR-targeted toxin in recurrent malignant brain tumors, Neuro-Oncol, vol.10, issue.3, pp.320-329, 2008.

, International Journal of Nanomedicine, 2019.

S. A. Chew and S. Danti, Biomaterial-based implantable devices for cancer therapy, Adv Healthcare Mater, vol.6, issue.2, p.1600766, 2017.

S. D. Wait, R. S. Prabhu, S. H. Burri, T. G. Atkins, and A. L. Asher, Polymeric drug delivery for the treatment of glioblastoma, Neuro-Oncology, vol.17, issue.2, pp.9-23, 2015.

A. Basu and A. J. Domb, Recent advances in polyanhydride based biomaterials, Adv Mater Deerfield Beach Fla, vol.30, issue.41, p.1706815, 2018.

D. A. Bota, A. Desjardins, J. A. Quinn, M. L. Affronti, and H. S. Friedman, Interstitial chemotherapy with biodegradable BCNU (Gliadel) wafers in the treatment of malignant gliomas, Ther Clin Risk Manag, vol.3, issue.5, pp.707-715, 2007.

H. Brem and P. Gabikian, Biodegradable polymer implants to treat brain tumors, J Control Release, vol.74, issue.1-3, pp.63-67, 2001.

R. J. Tamargo, J. S. Myseros, J. I. Epstein, M. B. Yang, M. Chasin et al., Interstitial chemotherapy of the 9L gliosarcoma: controlled release polymers for drug delivery in the brain, Cancer Res, vol.53, issue.2, pp.329-333, 1993.

D. D'avella and A. Dellapuppa, Safety and efficacy of Gliadel wafers for newly diagnosed and recurrent glioblastomas, Acta Neurochirurgica, vol.154, issue.8, pp.1379-1381, 2012.

L. S. Ashby, K. A. Smith, and B. Stea, Gliadel wafer implantation combined with standard radiotherapy and concurrent followed by adjuvant temozolomide for treatment of newly diagnosed high-grade glioma: a systematic literature review, World J Surg Onc, vol.14, issue.1, p.225, 2016.

H. Bow, L. S. Hwang, and N. Schildhaus, Local delivery of angiogenesisinhibitor minocycline combined with radiotherapy and oral temozolomide chemotherapy in 9L glioma, J Neurosurg, vol.11, issue.4, pp.662-669, 2014.

J. L. Frazier, P. P. Wang, and D. Case, Local delivery of minocycline and systemic BCNU have synergistic activity in the treatment of intracranial glioma, J Neurooncol, vol.64, issue.3, pp.203-209, 2003.

J. D. Weingart, E. P. Sipos, and H. Brem, The role of minocycline in the treatment of intracranial 9L glioma, J Neurosurg, vol.48, issue.4, pp.635-640, 1995.

C. Martins, F. Sousa, F. Araújo, and B. Sarmento, Functionalizing PLGA and PLGA derivatives for drug delivery and tissue regeneration applications, Adv Healthcare Mater, vol.7, issue.1, p.1701035, 2018.

M. Mir, N. Ahmed, and A. U. Rehman, Recent applications of PLGA based nanostructures in drug delivery, Colloids and Surfaces B: Biointerfaces, vol.159, pp.217-231, 2017.

Y. Tseng, Y. Wang, and Y. , Targeted concurrent and sequential delivery of chemotherapeutic and antiangiogenic agents to the brain by using drug-loaded nanofibrous membranes, Int J Nanomedicine, vol.12, pp.1265-1276, 2017.

M. Hadjiargyrou and J. B. Chiu, Enhanced composite electrospun nanofiber scaffolds for use in drug delivery, Expert Opin Drug Deliv, vol.5, issue.10, pp.1093-1106, 2008.

Y. Tseng, Y. Wang, and C. Su, Concurrent delivery of carmustine, irinotecan, and cisplatin to the cerebral cavity using biodegradable nanofibers: in vitro and in vivo studies, Colloids and Surfaces B: Biointerfaces, vol.134, pp.254-261, 2015.

C. Lei, Y. Cui, L. Zheng, K. Chow, P. Wang et al., Development of a gene/drug dual delivery system for brain tumor therapy: potent inhibition via RNA interference and synergistic effects, Biomaterials, vol.34, issue.30, pp.7483-7494, 2013.

Y. Tseng, C. Su, Y. , and S. , Advanced interstitial chemotherapy combined with targeted treatment of malignant glioma in rats by using drug-loaded nanofibrous membranes, Oncotarget, 2016.

O. Benny, S. Kim, and K. Gvili, In vivo fate and therapeutic efficacy of PF-4/CTF microspheres in an orthotopic human glioblastoma model, Faseb J, vol.22, issue.2, pp.488-499, 2008.

J. A. Floyd, A. Galperin, and B. D. Ratner, Drug encapsulated polymeric microspheres for intracranial tumor therapy: a review of the literature, Adv Drug Deliv Rev, vol.91, pp.23-37, 2015.

P. Menei, L. Capelle, and J. Guyotat, Local and sustained delivery of 5-fluorouracil from biodegradable microspheres for the radiosensitization of malignant glioma: a randomized phase II trial, Neurosurgery, vol.56, issue.2, pp.242-248, 2005.

R. W. Chakroun, P. Zhang, R. Lin, P. Schiapparelli, A. Quinones-hinojosa et al., Nanotherapeutic systems for local treatment of brain tumors, Wiley Interdiscip Rev Nanomed Nanobiotechnol, vol.10, issue.1, p.1479, 2018.

Q. Ong, F. H. Hochberg, and M. J. Cima, Depot delivery of dexamethasone and cediranib for the treatment of brain tumor associated edema in an intracranial rat glioma model, J Controlled Release, vol.217, pp.183-190, 2015.

A. Grayson, I. S. Choi, and B. M. Tyler, Multi-pulse drug delivery from a resorbable polymeric microchip device, Nat Mater, vol.2, issue.11, pp.767-772, 2003.

R. Karim, C. Palazzo, B. Evrard, and G. Piel, Nanocarriers for the treatment of glioblastoma multiforme: current state-of-the-art, J Control Release, vol.227, pp.23-37, 2016.

P. Kumari, B. Ghosh, and S. Biswas, Nanocarriers for cancer-targeted drug delivery, J Drug Target, vol.24, issue.3, pp.179-191, 2016.

A. Narayana, Applications of nanotechnology in cancer: a literature review of imaging and treatment, J Nucl Med Radiat Ther, vol.05, issue.04, p.195, 2014.

Y. F. Tan, L. L. Lao, G. M. Xiong, and S. Venkatraman, Controlled-release nanotherapeutics: state of translation, J Controlled Release, vol.284, pp.39-48, 2018.

Y. Li, J. Li, and Y. M. Woo, Enhanced expression of Vastatin inhibits angiogenesis and prolongs survival in murine orthotopic glioblastoma model, BMC Cancer, vol.17, issue.1, p.126, 2017.

A. M. Sonabend, S. Velicu, and I. V. Ulasov, A safety and efficacy study of local delivery of interleukin-12 transgene by PPC polymer in a model of experimental glioma. Anti-Cancer Drugs, vol.19, pp.133-142, 2008.

L. Gasperini, J. F. Mano, and R. L. Reis, Natural polymers for the microencapsulation of cells, J R Soc Interface, vol.11, issue.100, p.20140817, 2014.

A. Gonzalez-pujana, E. Santos, G. Orive, J. L. Pedraz, and R. M. Hernandez, Cell microencapsulation technology: current vision of its therapeutic potential through the administration routes, J Drug Delivery Sci Technol, vol.42, pp.49-62, 2017.

R. M. Olabisi, Cell microencapsulation with synthetic polymers, J Biomed Mater Res, vol.103, issue.2, pp.846-859, 2015.

E. C. Opara, Applications of cell microencapsulation, Methods Mol Biol Clifton NJ, vol.1479, pp.23-39, 2017.

K. Shah, Encapsulated stem cells for cancer therapy, Biomatter, vol.3, issue.1, p.24278, 2013.

T. Read, D. R. Sorensen, and R. Mahesparan, Local endostatin treatment of gliomas administered by microencapsulated producer cells, Nat Biotechnol, vol.19, issue.1, pp.29-34, 2001.

R. Bjerkvig, T. A. Read, and P. Vajkoczy, Cell therapy using encapsulated cells producing endostatin, Acta Neurochir Suppl, vol.88, pp.137-141, 2003.

T. A. Read, M. Farhadi, and R. Bjerkvig, Intravital microscopy reveals novel antivascular and antitumor effects of endostatin delivered locally by alginate-encapsulated cells, Cancer Res, vol.61, issue.18, pp.6830-6837, 2001.

M. Roger, A. Clavreul, M. Venier-julienne, C. Passirani, C. Montero-menei et al., The potential of combinations of drug-loaded nanoparticle systems and adult stem cells for glioma therapy, Biomaterials, vol.32, issue.8, pp.2106-2116, 2011.

S. H. Choi, K. Tamura, and R. K. Khajuria, Antiangiogenic variant of TSP-1 targets tumor cells in glioblastomas, Mol Ther, vol.23, issue.2, pp.235-243, 2015.

S. De-boüard, J. Guillamo, and C. Christov, Antiangiogenic therapy against experimental glioblastoma using genetically engineered cells producing interferon-alpha, angiostatin, or endostatin, Hum Gene Ther, vol.14, issue.9, pp.883-895, 2003.

M. Ehtesham, P. Kabos, A. Kabosova, T. Neuman, K. L. Black et al., The use of interleukin 12-secreting neural stem cells for the treatment of intracranial glioma, Cancer Res, vol.62, issue.20, pp.5657-5663, 2002.

S. Kim, T. G. Cargioli, and M. Machluf, PEX-producing human neural stem cells inhibit tumor growth in a mouse glioma model, Clin Cancer Res, vol.11, issue.16, pp.5965-5970, 2005.

A. Lorico, J. Mercapide, and V. Soloduschko, Primary neural stem/ progenitor cells expressing endostatin or cytochrome P450 for gene therapy of glioblastoma, Cancer Gene Ther, vol.15, issue.9, pp.605-615, 2008.

C. H. Ryu, S. Park, and S. A. Park, Gene therapy of intracranial glioma using interleukin 12-secreting human umbilical cord blood-derived mesenchymal stem cells, Hum Gene Ther, vol.22, issue.6, pp.733-743, 2011.

, International Journal of Nanomedicine, 2019.

M. Van-eekelen, L. S. Sasportas, and R. Kasmieh, Human stem cells expressing novel TSP-1 variant have anti-angiogenic effect on brain tumors, Oncogene, vol.29, issue.22, pp.3185-3195, 2010.

S. Yang, H. Liu, and J. Zhang, Gene therapy of rat malignant gliomas using neural stem cells expressing IL-12, DNA and Cell Biol, vol.23, issue.6, pp.381-389, 2004.

J. Yin, J. Kim, and J. Moon, hMSC-mediated concurrent delivery of endostatin and carboxylesterase to mouse xenografts suppresses glioma initiation and recurrence, Mol Ther, vol.19, issue.6, pp.1161-1169, 2011.

A. Clavreul, N. Lautram, F. Franconi, A. Montagu, and A. Lainé, Targeting and treatment of glioblastomas with human mesenchymal stem cells carrying ferrociphenol lipid nanocapsules, IJN, vol.10, pp.1259-1271, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01392451

A. Clavreul, M. Pourbaghi-masouleh, R. E. Lautram, N. Montero-menei, C. N. Menei et al., Human mesenchymal stromal cells as cellular drug-delivery vectors for glioblastoma therapy: a good deal?, J Exp Clin Cancer Res, vol.36, issue.1, p.135, 2017.
URL : https://hal.archives-ouvertes.fr/inserm-01631360

U. M. Fischer, M. T. Harting, and F. Jimenez, Pulmonary passage is a major obstacle for intravenous stem cell delivery: the pulmonary first-pass effect, Stem Cells Dev, vol.18, issue.5, pp.683-692, 2009.

Y. Ramot, M. Steiner, and V. Morad, Pulmonary thrombosis in the mouse following intravenous administration of quantum dot-labeled mesenchymal cells, Nanotoxicology, vol.4, issue.1, pp.98-105, 2010.

D. J. Glover, H. J. Lipps, D. A. Jans, and T. Safe, Towards safe, non-viral therapeutic gene expression in humans, Nat Rev Genet, vol.6, issue.4, pp.299-310, 2005.

S. M. Ridge, F. J. Sullivan, and S. A. Glynn, Mesenchymal stem cells: key players in cancer progression, Mol Cancer, vol.16, issue.1, p.31, 2017.

L. S. Sherman, M. Shaker, V. Mariotti, and P. Rameshwar, Mesenchymal stromal/stem cells in drug therapy: new perspective, Cytotherapy, vol.19, issue.1, pp.19-27, 2017.

Y. Shi, L. Du, L. Lin, and Y. Wang, Tumour-associated mesenchymal stem/ stromal cells: emerging therapeutic targets, Nat Rev Drug Discov, vol.16, issue.1, pp.35-52, 2017.

C. Zhang, S. Yang, and Q. Wen, Human-derived normal mesenchymal stem/stromal cells in anticancer therapies, J Cancer, vol.8, issue.1, pp.85-96, 2017.

A. Bronckaers, P. Hilkens, and W. Martens, Mesenchymal stem/stromal cells as a pharmacological and therapeutic approach to accelerate angiogenesis, Pharmacol Ther, vol.143, issue.2, pp.181-196, 2014.

C. Merino-gonzález, F. A. Zuñiga, and C. Escudero, Mesenchymal stem cell-derived extracellular vesicles promote angiogenesis: Potencial clinical application, Front Physiol, vol.7, issue.99, p.24, 2016.

M. Roger, A. Clavreul, and L. Sindji, In vitro and in vivo interactions between glioma and marrow-isolated adult multilineage inducible (Miami) cells, Brain Res, vol.1473, pp.193-203, 2012.

A. Clavreul, A. Etcheverry, and C. Tétaud, Identification of two glioblastoma-associated stromal cell subtypes with different carcinogenic properties in histologically normal surgical margins, J Neurooncol, vol.122, issue.1, pp.1-10, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01117114

A. Clavreul, C. Guette, and R. Faguer, Glioblastoma-associated stromal cells (GASCs) from histologically normal surgical margins have a myofibroblast phenotype and angiogenic properties, J Pathol, vol.233, issue.1, pp.74-88, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01064615

A. Clavreul, A. Etcheverry, and A. Chassevent, Isolation of a new cell population in the glioblastoma microenvironment, J Neurooncol, vol.106, issue.3, pp.493-504, 2012.
URL : https://hal.archives-ouvertes.fr/inserm-00626532

F. Appaix, M. Nissou, and B. Van-der-sanden, Brain mesenchymal stem cells: The other stem cells of the brain?, World J Stem Cells, vol.6, issue.2, pp.134-143, 2014.

A. Hossain, J. Gumin, and F. Gao, Mesenchymal stem cells isolated from human gliomas increase proliferation and maintain stemness of glioma stem cells through the IL-6/gp130/STAT3 pathway, Stem Cells, vol.33, issue.8, pp.2400-2415, 2015.

B. Kong, H. Shin, and S. Kim, Increased in vivo angiogenic effect of glioma stromal mesenchymal stem-like cells on glioma cancer stem cells from patients with glioblastoma, Int J Oncol, vol.42, issue.5, pp.1754-1762, 2013.

E. Lim, Y. Suh, and K. Yoo, Tumor-associated mesenchymal stem-like cells provide extracellular signaling cue for invasiveness of glioblastoma cells, Oncotarget, vol.8, issue.1, pp.1438-1448, 2017.

A. Svensson, T. Ramos-moreno, S. Eberstål, S. Scheding, and J. Bengzon, Identification of two distinct mesenchymal stromal cell populations in human malignant glioma, J Neurooncol, vol.131, issue.2, pp.245-254, 2017.

T. Shahar, U. Rozovski, and K. R. Hess, Percentage of mesenchymal stem cells in high-grade glioma tumor samples correlates with patient survival, Neuro Oncol, vol.19, issue.5, pp.660-668, 2017.

S. Yoon, J. Shim, and J. H. Chang, Tumor mesenchymal stemlike cell as a prognostic marker in primary glioblastoma, Stem Cells International, vol.2016, issue.1, pp.1-7, 2016.

A. A. Argyriou, E. Giannopoulou, and H. P. Kalofonos, Angiogenesis and anti-angiogenic molecularly targeted therapies in malignant gliomas, Oncology, vol.77, issue.1, pp.1-11, 2009.

N. Ferrari, J. Glod, J. Lee, D. Kobiler, and H. A. Fine, Marrow-Derived B. Bone marrow-derived, endothelial progenitor-like cells as angiogenesisselective gene-targeting vectors, Gene Ther, vol.10, issue.8, pp.647-656, 2003.

D. J. Nolan, A. Ciarrocchi, and A. S. Mellick, Bone marrow-derived endothelial progenitor cells are a major determinant of nascent tumor neovascularization, Genes Dev, vol.21, issue.12, pp.1546-1558, 2007.

B. A. Peters, L. A. Diaz, and K. Polyak, Contribution of bone marrowderived endothelial cells to human tumor vasculature, Nat Med, vol.11, issue.3, pp.261-262, 2005.

M. Wong, A. Prawira, A. H. Kaye, and C. M. Hovens, Tumour angiogenesis: its mechanism and therapeutic implications in malignant gliomas, J Clin Neurosci, vol.16, issue.9, pp.1119-1130, 2009.

. Sonali, M. K. Viswanadh, and R. P. Singh, Nanotheranostics: emerging strategies for early diagnosis and therapy of brain cancer, Nanotheranostics, vol.2, issue.1, pp.70-86, 2018.

, International Journal of Nanomedicine, 2019.