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Abstract

The maximum clique problem (MCP) is to determine in a graph a clique (i.e.,
a complete subgraph) of maximum cardinality. The MCP is notable for its ca-
pability of modeling other combinatorial problems and real-world applications.
As one of the most studied NP-hard problems, many algorithms are available in
the literature and new methods are continually being proposed. Given that the
two existing surveys on the MCP date back to 1994 and 1999 respectively, one
primary goal of this paper is to provide an updated and comprehensive review
on both exact and heuristic MCP algorithms, with a special focus on recent
developments. To be informative, we identify the general framework followed
by these algorithms and pinpoint the key ingredients that make them success-
ful. By classifying the main search strategies and putting forward the critical
elements of the most relevant clique methods, this review intends to encourage
future development of more powerful methods and motivate new applications
of the clique approaches.

Keywords : Maximum clique problems; Exact algorithms; Heuristics; Appli-
cations.

1. Introduction

The maximum clique problem (MCP) is to find a complete subgraph of
maximum cardinality in a general graph. Its decision version is among the first
21 NP-complete problems presented in Karp’s seminal paper on computational
complexity (Karp, 1972). The MCP is among the most studied combinatorial
problems.

The MCP has a wide range of practical applications in numerous fields.
Early applications can be found for instance in Ballard & Brown (1982); Bara-
hona, Weintraub, & Epstein (1992) and Christofides (1975) and are surveyed in
Bomze, Budinich, Pardalos, & Pelillo (1999) and Pardalos & Xue (1994). Nowa-
days, more and more practical applications of clique problems arise in a number
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of domains including bioinformatics and chemoinformatics (Dognin, Andonov,
& Yanev, 2010; Ravetti & Moscato, 2008), coding theory (Etzion & Österg̊ard,
1998), economics (Boginski, Butenko, & Pardalos, 2006), examination planning
(Carter, Laporte, & Lee, 1996; Carter & Johnson, 2001), financial networks
(Boginski, Butenko, & Pardalos, 2006), location (Brotcorne, Laporte, & Semet,
2002), scheduling (Dorndorf, Jaehn, & Pesch, 2008; Weide, Ryan, & Ehrgott,
2010), signal transmission analysis (Chen, Zhai, & Fang, 2010), social network
analysis (Balasundaram, Butenko, & Hicks, 2011; Pattillo, Youssef, & Butenko,
2012), wireless networks and telecommunications (Balasundaram & Butenko,
2006; Jain, Padhye, Padmanabhan, & Qiu, 2005). In addition to these applica-
tions, the MCP is tightly related to some important combinatorial optimization
problems such as clique partitioning (Wang, Alidaee, Glover, & Kochenberger,
2006), graph clustering (Schaeffer, 2007), graph vertex coloring (Chams, Hertz,
& Werra, 1987; Wu & Hao, 2012a), max-min diversity (Croce, Grosso, & Lo-
catelli, 2009), optimal winner determination (Shoham, Cramton, & Steinberg,
2006), set packing (Wu, Hao, & Glover, 2012) and sum coloring (Wu & Hao,
2012b). These problems can either be directly formulated as a maximum clique
problem or have a sub-problem which requires to find a maximum clique.

Given its theoretical importance and practical relevance, considerable effort
has been devoted to the development of various solution methods for the MCP.
On the one hand, effective exact methods have been designed mainly based on
the general branch-and-bound (B&B) framework. These methods have the theo-
retical advantage of guaranteeing the optimality of the solution found. However,
due to the inherent computational complexity of the MCP, exact methods can
require a prohibitive computing time in the general case and are often applicable
only to problems of limited sizes. On the other hand, to handle problems whose
optimal solutions cannot be reached within a reasonable time, various heuristic
and metaheuristic algorithms have been devised with the purpose of providing
sub-optimal solutions as good as possible to large problems within an acceptable
time. It is clear that exact and heuristic methods constitute two complementary
solution approaches which can be applied to face different situations and fulfill
different objectives. These two approaches can even be combined to create more
powerful search methods.

Since the Second DIMACS Implementation Challenge dedicated to Max-
imum Clique, Graph Coloring, and Satisfiability organized during 1992-1993
(Johnson & Trick, 1996), studies on these NP-hard problems are becoming more
and more intense. In particular, significant progresses have been achieved re-
garding the MCP, its important generalizations (e.g., maximum vertex weight
clique and maximum edge weight clique) and relaxations (e.g. quasi-clique and
densest k-subgraph). Advances on new algorithms have helped to find improved
results to benchmark problems and deliver effective solutions to new applications
(social network analysis, protein structure alignment, wireless network etc).

At the same time, we observe that the two most influential surveys on the
MCP date back to 1994 and 1999 respectively (Bomze, Budinich, Pardalos, &
Pelillo, 1999; Pardalos & Xue, 1994). To the best of our knowledge, there is
no updated review to report the newest advances achieved during the past 15
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years. This paper thus aims to fill this gap by providing a detailed review of
different solution approaches proposed in the recent literature for maximum
clique problems. We will not only make a general and large survey of the most
representative exact and heuristic algorithms, but also carry out an in-depth
analysis of the studied methods to identify their most relevant ingredients that
make these methods successful.

2. Definitions, problem formulations and computational complexity

Let G = (V,E) be an undirected graph with vertex set V = {1, . . . , n} and
edge set E ⊆ V × V . A clique C of G is a subset of V such that every two
vertices in C are adjacent, i.e., ∀u, v ∈ C, {u, v} ∈ E. A clique is maximal if
it is not contained in any other clique, a clique is maximum if its cardinality is
the largest among all the cliques of the graph. The maximum clique problem
(MCP) is to find a maximum clique of a given graph in the general case. The
clique number ω(G) of G is the number of vertices in a maximum clique in G.
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Figure 1: An illustration of the relation between maximum clique, maximum independent
set and minimum vertex cover. Given the initial graph G with V = {A,B,C,D,E, F} (left)
and its complementary graph G (middle/right), the set of vertices {C,D,E, F} is a maximum
clique of G and an maximum independent set of G while {A,B} = V \ {C,D,E, F} is a
minimum vertex cover of G

The maximum clique problem is strictly equivalent to two other well-known
combinatorial optimization problems: the maximum independent set problem
(MIS) and the minimum vertex cover problem (MVC). Given G = (V,E), an
independent set (also called a stable set) I of G is a subset of V such that
every two vertices in I are not connected by an edge, i.e., ∀u, v ∈ I, {u, v} /∈ E.
The MIS is to determine an independent set of maximum cardinality. A vertex
cover V ′ of G is a subset of V , such that every edge {i, j} ∈ E has at least one
endpoint in V ′. The MVC is to find a vertex cover of minimum cardinality.

Let G = (V,E) be the complementary graph of G such that {i, j} ∈ E if
{i, j} /∈ E. One observes that C is a maximum clique of G if and only if C is a
maximum independent set of G, and if and only if V \ C is a minimum vertex
cover of G. An illustration of the relation between maximum clique, maximum
independent set and minimum vertex cover is given in Fig. 1. Due to the close
connection between the MCP and MIS, we will operate with both problems
while describing the properties and algorithms for the MCP. Clearly a result
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which holds for the MCP in G will also be true for the MIS in G. This paper
focuses thus on the MCP (and the MIS) while putting aside the MVC which
itself has a large body of studies in the literature.

On the other hand, one notices that some generalizations and relaxations of
the MCP are attracting increasing attention recently due to their wide appli-
cations in some emerging areas like bioinformatics and social network analysis.
We will discuss these cases in Section 5. The rest of this section is dedicated to
the issue of problem formulations and complexity of the MCP.

There are numerous studies on the formulation of the MCP. These studies
are of great interest since they can lead to deep understandings of the problem
and the discovery of new results of theoretical and practical nature. For a
comprehensive review of the existing formulations of the MCP, the reader is
refereed to Bomze, Budinich, Pardalos, & Pelillo (1999); Butenko (2003) and
Pardalos & Xue (1994). Below, we review some typical and recently developed
formulations.

The simplest formulation is given by the following binary program:

maximize
n
∑

i=1

xi (1)

subject to xi + xj ≤ 1, ∀{i, j} ∈ E (2)

xi ∈ {0, 1}, i = 1, ..., n. (3)

In this edge formulation, any feasible solution defines a clique C in G as
follows: vertex i is in the clique if xi = 1 and otherwise xi = 0. The linear
relaxation of this formulation is significant as well. If a variable xi = 1 holds for
an optimal solution to the linear relaxation of the above formulation, then xi = 1
holds for at least one optimal solution to the integer formulation (Nemhauser
& Trotter, 1975). Clearly this result can be used by an algorithm to reduce the
explored search space when seeking an optimal clique.

Let S denote the set of all maximal independent sets in G, an alternative
formulation based on independent sets imposes that any clique of G can contain
no more than a single vertex from any maximal independent set of G:

maximize
n
∑

i=1

xi (4)

subject to
∑

i∈s

xi ≤ 1, ∀s ∈ S (5)

xi ∈ {0, 1}, i = 1, ..., n. (6)

This formulation has the advantage that the expected gap between the op-
timal solution and its linear relaxation is small. However, it is difficult to enu-
merate all independent sets in an arbitrary graph. Furthermore, as the number
of independent sets in the graph grows exponentially with the graph size, it is
not trivial to solve the relaxation of the independent set formulation.
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The above edge formulation can be modified to model the maximum weight
independent set problem (Shor, 1990), leading to a quadratically constrained
problem:

maximize

n
∑

i=1

wixi (7)

subject to xixj = 0, ∀{i, j} ∈ E (8)

x2
i − xi = 0, i = 1, ..., n. (9)

This formulation combined with dual quadratic estimates generates very
good computational results (Shor, 1990).

A remarkable connection exists between the MCP and a certain standard
quadratic programming problem (Motzkin & Straus, 1965). For a given set of
vertices S ⊆ V , let xS be the characteristic vector of S, that is a vector that
satisfies xS

i = 1
|S| if vertex i ∈ S and xS

i = 0 otherwise, for i ∈ V . Let ∆ be

the standard simplex in the n-dimensional Euclidean space ℜn: ∆ = {x ∈ ℜn :
∑n

i=1 xi = 1, xi ≥ 0, i = 1, ..., n}.
Let AG = (aij)i,j∈V be the adjacency matrix of the graph G, and for x ∈ ℜn,

let g(x) = xTAGx. Then the global optimal solution x∗ to maxx∈∆g(x) is related
to the clique number ω(G) by the following formula:

ω(G) =
1

1− g(x∗)
≥

1

1− g(x)
, ∀x ∈ ∆ (10)

Additionally, S is a maximum clique of G if and only if its characteristic
vector xS is a global maximizer of g on ∆.

More recently, discretized formulations for the MCP are proposed in Martins
(2011), leading to tight upper bounds on many benchmark graphs based on lin-
ear relaxations. These formulations use an additional set of auxiliary variables:

wq =

{

1 if the clique size is equal to q,
0 otherwise,

∀q ∈ Q (11)

with Q = {qmin, ..., qmax} (1 ≤ qmin, ω(G) ≤ qmax) being an interval containing
all cliques’ sizes. Then the MCP is formulated as follows:

maximize
n
∑

i=1

xi (12)

subject to
∑

j∈N(i)

xj ≥ (q − 1)xi − (q − 2)(1− wq), ∀i ∈ V, ∀q ∈ Q (13)

∑

i∈V

xi =
∑

q∈Q

qwq (14)

∑

q∈Q

wq = 1 (15)
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xi ∈ {0, 1}, ∀i ∈ V (16)

wq ∈ {0, 1}, ∀q ∈ Q (17)

N(i) in constraint 13 denotes the set of vertices adjacent to i in the graph.
Constraints 15 and 17 impose that only a single clique size is determined. Con-
strains 13, 14 and 16 force that each of the q vertices belonging to the clique
must have at least q − 1 neighbors in the clique. Constraint 13 can be further
strengthened in an extended and discretized variable space, leading to an ex-
tended and discretized formulation to the MCP. This formulation requires the
auxiliary variables {wq} and a new set of node variables that include an extra
index with information on clique size:

xq
i =

{

1 if vertex i is in a clique of size q,
0 otherwise,

∀i ∈ V, ∀q ∈ Q (18)

Using these variables, the following extended and discretized formulation for the
MCP can be given:

maximize
∑

i∈V

∑

q∈Q

xq
i (19)

subject to
∑

q∈Q

wq = 1 (20)

∑

j∈N(i)

xq
j ≥ (q − 1)xq

i , ∀i ∈ V, q ∈ Q (21)

∑

i∈V

xq
i = qwq, ∀q ∈ Q (22)

wq ∈ {0, 1}, ∀q ∈ Q (23)

xq
i ∈ {0, 1}, ∀i ∈ V, ∀q ∈ Q (24)

Obviously, the number of variables and constraints of these formulations
depends on the range of variation of an interval containing the clique number
(ω) of the graph. When a short interval containing ω(G) is known and for sparse
graphs, the LP relaxation of these discretized formulations are able to produce
much stronger upper bounds for ω(G) than other formulations.

The MCP is well studied from the complexity viewpoint, early complexity
results on the problem being reviewed in Bomze, Budinich, Pardalos, & Pelillo
(1999) and Pardalos & Xue (1994). During the last 15 years, a number of ad-
vances on the research of the computational complexity of the MCP appeared,
including inapproximability results, parametric complexity completeness, re-
fined complexity analysis of exponential algorithms. Although a full review of
these theoretical results is clearly beyond the scope of the paper, we provide a
brief summary of some main results.

The current best-known polynomial-time approximation algorithm achieves
only an approximation guarantee of O(n.(loglogn)2/(logn)3) (Feige, 2004). On
the other hand, the study of Engebretsen & Holmerin (2003) shows that the
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MCP is not approximable within a factor of n/2O(log n/
√
log log n) under the as-

sumption that NP * ZPTIME (2O(log n·(log log n)3/2 )). The work of Khot (2001)
further demonstrates that the MCP cannot be approximated within a factor of

n/2(logn)
1−γ′

for some small constant γ′ > 0, assumingNP * ZPTIME (2 (logn)O(1)

).
In H̊astad (1999), it is shown that the MCP is not approximable within n1−ǫ

for any ǫ > 0, unless NP = ZPP . An imrpoved result shows that the MCP
is not approximable within n1−ǫ for any ǫ > 0 unless NP = P (Zuckerman,
2006). Another study (Bourgeoisa, Escoffiera, & Paschosa, 2011) confirms that
if there exists an exact exponential time algorithm for the related MIS with a
worst-case complexity O∗(γn) (γ < 2) where O∗(·) is O(·) ignoring polynomial
factors and n is the order of the graph, then for any ρ ∈ (0, 1], there exists a
ρ-approximation algorithm for the MIS that runs in time O∗(γρn). Recently, it
is established that unless NP ⊆ SUBEXP , for every 0 < δ < 1, there exists a
constant F (δ) > 0 such that the MCP has no Fixed-Parameter Tractable (FPT)

optimum approximation with ratio ρ(OPT ) = OPT 1−δ in 2OPTF

·poly(|V |) time
(Chitnis, Hajiaghayi, & Kortsarz, 2013). This hardness result in the domain of
parameterized complexity is further enhanced very recently in Chalermsook,
Laekhanukit, & Nanongkai (2013), confirming that, for any r larger than some
constant ǫ > 0, any r-approximation algorithm for the MIS must run in at least

2n
1−ǫ/r1+ǫ

time under the exponential time hypothesis.

3. Exact approaches to the MCP

This section is dedicated to an in-depth review of the most recent and influ-
ential exact methods for the MCP. Unsurprisingly, most of them are based on
the general B&B framework. They differ from each other mainly by 1) their spe-
cific techniques to determine the lower and upper bounds and 2) their branching
strategies. Below, we begin with the general B&B scheme which is common to
many studied methods and then review the improvements introduced by the
most representative methods. Comprehensive overviews covering early exact
methods prior to 1999 can be found in Bomze, Budinich, Pardalos, & Pelillo
(1999) and Pardalos & Xue (1994).

3.1. General framework

An early and well-known exact algorithm (denoted by CP) is developed
by Carraghan & Pardalos (1990) which is shown in Algorithm 1. Despite its
simplicity, this algorithm constitutes an important step for exact solving of the
MCP since it provides the basis for many later improved exact clique algorithms.
For this reason, we discuss in detail the functioning of this algorithm and identify
the key elements which impact critically its performance.

The CP algorithm uses two key vertex sets: C (called current solution or
clique) and P (called candidate vertex set or candidate set). C designates the
clique under construction while P is a subset of V \C such that v ∈ P if and
only if ∀u ∈ C, {u, v} ∈ E. In other words, each vertex of P must be connected
to all the vertices of C (the reverse does not necessarily hold). Let N(v) be the
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set of the vertices adjacent to vertex v, then P can equivalently be defined by
P = ∩v∈CN(v). Given the property of P , it is clear that any vertex v of P can
be added to C to obtain a larger clique C ′ = C ∪{v}. This property constitutes
one of the key foundations of Algorithm 1.

The algorithm operates by calling recursively the function Clique(C,P )
(starting with an empty clique C = ∅ and P = V , see lines 2-3, Algorithm
1) and uses a global variable C∗ to maintain the largest clique discovered so
far (|C∗| is thus the current best lower bound of the maximum clique). The
function Clique(C,P ) is mainly defined by two key components: the bounding
(line 10) and branching (line 11) procedures. Precisely, given the current clique
C and its corresponding P set, one observes that |C|+ |P | naturally defines an
upper bound for the maximum clique. As a consequence, if |C|+ |P | ≤ |C∗|, C
cannot lead to a clique larger than C∗ and thus can be safely closed. Other-
wise, the subtree rooted at the clique C needs to be further explored. In this
case, a branching strategy is employed to determine the next vertex v ∈ P to
be selected to expand the current clique C (line 11). In Carraghan & Pardalos
(1990), this is achieved by selecting the first vertex v ∈ P to insert into the
current clique. Initially, the vertices v1, v2, ..., vn of the original graph G are
ordered in such a way that v1 has the smallest degree in V , v2 has the smallest
degree in V \{v1} and so on. After each branching step, P is updated by the
union P = P ∩ N(v) (line 14, Algorithm 1), making the required property of
the set P always verified.

Since the introduction of the CP algorithm, many refinements have been
devised to improve its performance with a focus on two key issues. The first
one is to tighten the upper bound of the maximum clique (other than to use the
size of P ) during the search for the purpose of more efficient subtree pruning.
The second one is to improve the branching rule in order to choose the most
promising vertex of P to expand the clique.

Algorithm 1 A simple algorithm to find the maximum clique C∗

1: Function Main
2: C∗ ← ∅ // the maximum clique
3: Clique(∅, V )
4: return C∗

5: End function
6: Function Clique(set C, set P)
7: if (|C| > |C∗|) then
8: C∗ ← C

9: End if
10: if (|C|+ |P | > |C∗|) then
11: for all p ∈ P in predetermined order, do
12: P ← P \ {p}

13: C
′

← C
⋃
{p}

14: P
′

← P
⋂

N(p)

15: Clique(C
′

, P
′

)
16: End for
17: End if
18: End function
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Around these two issues, four typical methods can be found in the literature.

1. The first one uses an iterative deepening strategy, and tries to obtain im-
proved upper bounds on the size of the maximum clique of P with the aid
of information obtained in some previously computed smaller subgraphs
(Section 3.2).

2. The second one is based on vertex coloring, which serves both as a bound-
ing strategy to approximate the upper bound, as well as a branching strat-
egy to guide the choice of the vertex from P (Section 3.3).

3. The third one is to directly reduce the set P by removing certain vertices
which can no way extend the current clique to a maximum clique or by
using special rules to identify vertices in P which are part of a maximum
clique that contains the current clique C (Section 3.4).

4. The fourth one combines vertex coloring and the most recent MaxSAT
technology to obtain tighter upper bounds (Section 3.5).

In what follows, we review representative works dealing with these issues.

3.2. Exact algorithms based on solving sub-clique problems

Österg̊ard (2002) proposes an iterative deepening strategy which uses a basic
idea similar to dynamic programming to improve the upper bound of the above
CP algorithm. Let Si = {vi, vi+1, ..., vn} be a subgraph of the initial graph G
including the vertices from vi through vn. The CP algorithm seeks a maximum
clique by first considering cliques in S1 that contains {v1, v2, ..., vn} then cliques
in S2 that contains {v2, ..., vn} and so on. In Österg̊ard’s algorithm (called
Cliquer), this ordering is reversed: Cliquer starts on the smallest subgraph Sn

containing only vertex vn and determines a maximum clique of this graph (which
is trivial). Then it considers Sn−1 composed of two vertices {vn−1, vn} and
determines a maximum clique. As such, Cliquer iteratively finds a maximum
clique for subgraphs Sn−2, ..., S1 and ends up with a maximum clique in the last
subgraph S1 which is the original graph to be solved. Instead of using the size of
P to bound the maximum clique, a new strategy is introduced in Cliquer using
information from the previously computed maximum cliques of smaller graphs.

Let c(i) (i = n, n−1, ..., k) be the size of the maximum clique of the subgraph
Si, which is previously computed for each subgraph Sn, Sn−1, ..., Sk. Then we
can use these c(i) values to define a new pruning strategy when searching on the
subgraph Sk−1. In fact, to obtain a clique greater than |C∗| from the current
clique C (and its associate P ), one can safely prune the search if |C|+c(i) ≤ |C∗|
where i = min{j : vj ∈ P}, since P is a subset of Si and c(i) is an upper bound
to the maximum clique of the subgraph induced by P . With this technique,
Cliquer is able to boost its performance significantly. Indeed, comparisons with
several other approaches before Cliquer on random and DIMACS instances show
that Cliquer is superior in many cases to the reference approaches. Cliquer,
however, has not proved for the moment as successful as some sophisticated
vertex coloring based exact algorithms like MCQ (Tomita & Seki, 2003) and
BB-MaxClique (Segundo, Rodŕıguez-Losada, & Jiménez, 2011).
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3.3. Exact methods based on vertex coloring

To estimate the upper bound of the maximum clique, graph coloring tech-
niques are frequently applied to the subgraph induced by the candidate set P .
This is based on the general fact that if a graph can be colored with k colors,
then the maximum clique in this graph is smaller or equal to k. As such, a
smaller k for the subgraph induced by P corresponds to a better upper bound
of the maximum clique (see Section 3.1). Since the number of color classes
is a much more precise estimation than the number of vertices in P , using a
coloring instead of |P | improves generally the upper bound and consequently
reduces the size of the search tree. However, since coloring itself is NP-hard,
finding k-coloring with k close to the chromatic number may be extremely dif-
ficult and time consuming. It is therefore important to find a proper trade-off
between computing time and bound quality. In addition, vertex coloring can be
also served in defining branching rules to guide the choice of the vertices from
the candidate vertex set P during the search process.

Basically, two different ways of using vertex coloring for branching and
bounding are explored in the literature. The first one colors the initial graph
only once before the B&B routine starts and uses this coloring throughout the
search. This strategy has the main advantage of running the coloring algorithm
only once. However, since the clique algorithm manipulates many and different
subgraphs of the initial graph G, the coloring for G is not necessarily appro-
priate for bound estimation of these reduced subgraphs. The second strategy
applies repeatedly a coloring algorithm to different subgraphs at different nodes
of the search tree. This strategy makes it possible to obtain tighter bounds of
the maximum clique of the subgraphs. However, coloring multiple graphs may
be also time consuming. For the purpose of saving computing time, fast greedy
coloring heuristics are usually employed.

3.3.1. Branch-and-bound strategies based on subgraphs coloring

An early classic B&B algorithm (denoted by BT) which employs a heuristic
coloring for finding maximum cliques can be find in Babel & Tinhofer (1990).
This algorithm employs two strategies for bounding and pruning. The first
strategy, which uses the number of vertices in P , is done exactly in the same way
as the algorithm of Carraghan and Pardalos. In the second pruning strategy, the
algorithm employs a coloring algorithm based on the greedy DSATUR procedure
(Brélaz, 1979) to find a better upper bound. In addition, DSATUR also provides
a heuristic maximum clique of P which is then used to update the lower bound of
the original graph. At each node of the search tree, the algorithm first computes
a coloring of the candidate vertex set P , then it chooses a vertex according to
the lexicographical order and adds it into the current clique C.

The MCQ algorithm (Tomita & Seki, 2003) goes one step further, based
on the idea that the coloring of the subgraph induced by the candidate set P
not only provides a bound on the size of the maximum clique, but also serves
as a branching strategy. The main ingredient of MCQ is to use a numbering
and sorting procedure to sort the vertices of P in an ascending order with
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respect to the color numbers at each branching step. The numbering and sorting
procedure first employs a greedy coloring algorithm to color the vertices of P
in a predetermined order as follows. For each coloring step, a vertex v ∈ P is
inserted into the first possible color class, so that v is non-adjacent to any vertex
already in this color class. If such a color class does not exist, a new color class
is opened to insert v. After all vertices in P are assigned to their respective color
classes, these vertices are sorted in an ascending order with respect to their color
numbers, and then copied back to P according to this sorting order. Then, at
each search step of the algorithm, MCQ selects a vertex v ∈ P in reverse order
(the last vertex in the reordered set P belongs to the highest color class) and
the color number associated with each vertex becomes an upper bound for the
maximum clique in the remaining subgraph to be searched.

There are two noteworthy differences in the use of coloring in the MCQ algo-
rithm with respect to an early algorithm also using coloring (Babel & Tinhofer,
1990). First, instead of computing a coloring at each node of the search tree,
the MCQ algorithm looks for a heuristic coloring only for a new branch. Second,
at each step, a vertex in the candidate set is selected from the final color class
of the coloring of the candidate set. With this strategy, the number of colors
of the coloring for the candidate set tends to be reduced more quickly than if a
vertex is chosen according to the lexicographical order.

MCR (Tomita & Kameda, 2007) improves MCQ with a better initial sorting
of vertices of the input graph G which is similar to that of the CP algorithm, but
uses the same coloring process to compute the upper bound as in MCQ. In MCR,
the vertices of G is ordered into a list L = (v1, ..., vn) where vn is the vertex of
minimum degree in G, vn−1 is the vertex of minimum degree in G\{vn}, vn−2

is the vertex of minimum degree in G\{vn−1, vn}, and so on. Furthermore, the
authors of MCR carried out additional computational experiments to confirm
the usefulness of the initial sorting of vertices by comparing the performance of
MCR with MCQ.

The numbering and sorting procedure of MCQ is further improved in the
MaxCliqueDyn algorithm (Konc & Janežič, 2007). This is based on the ob-
servation that a better upper bound is achieved, when the vertices in P are
presented to the greedy coloring procedure in a non-increasing order of their
degrees (Carraghan & Pardalos, 1990). The authors of MaxCliqueDyn realize
that it is necessary to reorder only those vertices in the candidate set P with
color numbers large enough to be added to the current clique C in a direct
descendant order with respect to the color numbers. Any vertex v ∈ P with a
color number below a threshold Kmin < |C∗| − |C| + 1 will never be added to
the current clique and is kept in the same order as it was presented to the color-
ing algorithm. In addition, MaxCliqueDyn dynamically recomputes the degree
of vertices at some nodes near the root of the search tree, and re-orders the
vertices in the non-increasing order with respect to their degrees before coloring
these vertices. This coloring strategy makes MaxCliqueDyn faster than MCQ,
especially for dense graphs.

In Segundo, Rodŕıguez-Losada, & Jiménez (2011), an exact bit-parallel al-
gorithm (BB-MaxClique) for the MCP is proposed. BB-MaxClique uses an
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improved approximate coloring procedure which relies on a new implicit global
degree branching rule to obtain tighter upper bounds to the candidate set P .
The basic idea of this branching rule is to keep the vertices in the candidate set P
in the same order as they are presented initially to the BB-MaxClique procedure
(conveniently sorted by non-increasing degree) at each level of recursion so that
the vertices in the candidate set P can be presented to the coloring procedure
in a roughly non-increasing order with respect to their degrees. Moreover, BB-
MaxClique makes full use of bit strings to efficiently compute basic operations
during the search. Their experiments confirm that the implicit global degree
branching rule prunes the search tree better than the two reference algorithms
MCQ and MaxCliqueDyn for a wide range of DIMACS graph, notably for dense
graphs.

The greedy coloring procedure in the MCQ algorithm (Tomita & Seki, 2003)
is further improved by MCS (Tomita, Sutani, Higashi, Takahashi, & Wakatsuki,
2010), which uses a recoloring strategy to improve the coloring obtained by the
greedy coloring procedure. The basic idea of MCS is that if a vertex v ∈ P with
color number kv > kmin (kmin = |C∗|− |C|) is moved to a color class with color
index l ≤ kmin, then the number of vertices to be searched in the candidate
set P can be reduced since all vertices with a color number below kmin will be
pruned in the derived child subproblem. It is possible to reassign a vertex v
belonging to a color class Ck (k > kmin) to a different color class Cj (j ≤ kmin)
if the following two conditions hold:

1. There exists a vertex w ∈ Cj such that N(v)
⋂

Cj = {w}, i.e., w is the
only member of the neighbor set of v in Cj .

2. There exists a color class Cl such that N(w)
⋂

Cl = ∅ and l ≤ kmin, i.e.,
Cl does not contain any neighbor of w.

In this case, v is moved from its current color class to another color class Cj

with j ≤ kmin, the subproblem hanging from v will be pruned. Very recently,
this recoloring strategy is integrated in a bit string framework, leading to an
improved bit parallel exact algorithm (Segundo, Matia, Rodriguez-Losada, &
Hernando, 2013).

3.3.2. Branch-and-bound strategies based on a unique coloring

B&B algorithms like MCQ, MCR, MaxCliqueDyn and BB-MaxClique need
to compute a coloring at each branching step. Since finding a coloring is time
consuming, frequently calculating colorings could affect the performance of these
algorithms. Another class of B&B algorithms which use coloring as an aid for
bounding and branching apply only once a coloring algorithm to the initial
graph before the B&B routine starts and then use the obtained coloring on the
permanent base during the search. A typical algorithm of this kind (denoted
by DK) is shown in Kumlander (2005).

The DK algorithm integrates a pruning rule similar to MCQ and a back-
tracking search technique which examines the graph in the opposite order of a
standard B&B algorithm. The first step of the algorithm is to obtain a color-
ing c = {C1, C2, ..., Ck} of the vertices of G and re-order the vertices by color
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classes, so that color classes will appear in the decreasing order with respect
to the color index, i.e., V = {Ck, Ck−1, ..., C1}. One first considers all cliques
that could be built using only the vertices of the first color class C1. Then one
considers all cliques that could be built using vertices of C1 and C2, i.e., of the
first and second color classes, and so forth. The i-th step considers all cliques
that contain vertices of {Ci, Ci−1, ..., C1}, the last considered subgraph being
the original graph. The algorithm also uses a special array b to remember the
maximum clique found for each level of the subgraphs during the backtracking
search. So b[i] is the maximum clique for a subgraph formed by the vertices of
{Ci, Ci−1, ..., C1}. The branching rule used by this algorithm is similar to MCQ,
it always selects a vertex v ∈ P with the largest color number to insert into the
current clique. So when one considers v to become the (j + 1)-th vertex in the
current clique and v belongs to the k-th color class, the algorithm can prune
the search if j + b[k] ≤ |C∗| (C∗ is the largest clique found so far), since P is a
subset of Ck∪Ck−1∪ ...∪C1 and b[k] is an upper bound to the maximum clique
of the subgraph induced by Ck ∪ Ck−1 ∪ ... ∪ C1. Computational experiments
on the DIMACS benchmarks show that this algorithm outperforms the CP and
Cliquer algorithms.

3.4. Tightening the candidate set P by filtering algorithms

Another method to improve the basic CP algorithm is to directly tighten the
candidate set P by removing certain vertices which cannot be used to extend
the current clique C to a maximum clique or by fixing vertices in P which are
part of a maximum clique of G that contains the current clique C. Following
this line, three B&B algorithms, denoted by DF , χ and χ + DF , are studied
in Fahle (2002). The basic idea of DF is to use two cost based domain filtering
algorithms to “clean-up the candidate set” before each branching step. Given
the current clique C, its corresponding candidate set P and the largest clique
discovered so far C∗, let NP (v) = {u ∈ P : {u, v} ∈ E}, the DF algorithm is
based on the following filtering properties:

• Lemma 1. For each v ∈ P such that |C|+ |NP (v)| < |C∗|, v cannot extend
C to a maximum clique of G.

• Lemma 2. For each v ∈ P such that |NP (v)| = |P | − 1 is contained in any
maximum clique of G that also contains C.

Lemma 1 allows the algorithm to safely remove from P every vertex of
degree less than |C∗| − |C|, since such a vertex cannot be part of a clique larger
than |C∗| in G. With Lemma 2, one can displace every vertex of degree |P | − 1
from the candidate set P to the current clique C to increase the clique size.

In the χ algorithm, to approximate the chromatic number of the candidate
set P = ∩v∈CN(v), one computes four heuristic colorings of P and retains the
coloring with the smallest number of colors for bounding. These four colorings
are obtained using two different greedy coloring algorithms. Algorithm χ+DF
combines the domain filtering strategy of DF and the coloring-based bounding
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strategy: for each vertex v ∈ P , compute with a coloring algorithm an upper
bound of the chromatic number for the subgraph induced by all the neighbors
of v in P . If this upper bound plus the size of the current clique is smaller
than the lower bound of the graph, then v can be safely removed from P . The
computational experiments reported in the paper show that the combined use
of these two strategies outperforms the CP algorithm as well as approaches that
only apply either of these techniques. Furthermore, χ+DF is shown to be able
to solve to optimality 45 out of the 66 tested DIMACS instances.

One obvious drawback of the filtering algorithm in χ + DF is the time
required to compute the upper bound of the chromatic number of the subgraph
induced by a vertex and its neighbors in the candidate set P . In Régin (2003), a
constraint programming approach (CPR) is used to determine an upper bound
based on a fast matching algorithm rather than a coloring algorithm. This
new upper bound roughly corresponds to the number of independent sets of
cardinality 2 in the subgraph induced by P . This bound is then used to remove
some vertices from P after each branching step in the following way: select a
vertex v and compute the upper bound using the matching algorithm for the
subgraph induced by all the neighbors of v; if this upper bound plus the size of
the current clique is smaller than the lower bound of the graph, then v can be
safely removed from P . In addition to the filtering algorithm, CPR also uses
the diving technique in conjunction with a MIP approach to solve subproblems
and a specific strategy to select the vertex to expand the current clique. CPR
is able to solve seven DIMACS instances to optimality for the first time.

3.5. Exact methods based on MaxSAT

Exact methods based on vertex coloring use the number of colors required
by the subgraph to approximate the upper bound of the maximum clique on the
subgraph induced by the candidate set P . This approach is further improved
by using methods developed for MaxSAT (Li & Quan, 2010). The resulting
method (denoted by MaxCLQ) is based on the following proposition: If G can
be partitioned into k independent sets (thus can be colored with k colors), and
there are s disjoint inconsistent subsets of soft clauses in the independent set
using MaxSAT encoding, then the maximum clique in the graph is smaller or
equal to k−s. To obtain a tighter bound of the maximum clique on the subgraph
G′ induced by P , MaxCLQ first partitions G′ into k independent sets in a similar
way to MCQ (Tomita & Seki, 2003). Based on this partition, one first encodes
the graph into a MaxSAT instance where each independent set is encoded into a
soft clause, and then uses an dedicated approach to detect the number (denoted
by s) of disjoint inconsistent soft clauses in the MaxSAT instance. Finally k− s
is used as an upper bound to the maximum clique of the subgraph G′ induced
by P . This approach leads generally to tighter bounds than the pure coloring
based approaches. Experimental evaluations on the DIMACS benchmarks show
the B&B algorithm integrating this MaxSAT based bounding technique is very
effective and can even close one open problem (p hat1000-3).

Later, a complex approach combining MaxCLQ (Li & Quan, 2010) and
MCS (Tomita, Sutani, Higashi, Takahashi, & Wakatsuki, 2010) with the ILS
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algorithm (Andrade, Resende, & Werneck, 2012) is studied in Maslov, Batsyn,
& Pardalos (2014). The ILS algorithm is used to obtain an initial solution to
the maximum clique problem, which is then served as a lower bound to prune
branches in the main B&B algorithm. The study shows that running ILS before
MaxCLQ and MCS algorithms considerably reduces the total computing time
for some hard DIMACS instances.

3.6. Other exact methods

In addition to the above algorithms, there are some other related studies.
A branch and cut (B&C) algorithm for the equivalent MIS can be found in
Rebennack, Oswald, Theis, Seitz, Reinelt, & Pardalos (2011). This algorithm
is based on the edge-projection theory first introduced in Mannino & Sassano
(1996) and further explored in Rossi & Smriglio (2001). An overview of various
characteristics of effective B&C algorithms for the MCP and MIS is given in
Rebennack, Reineltb, & Pardalos (2012). Some parallel and multi-threading
exact algorithms appear very recently in the literature. For instance, a scalable
and fault-tolerant solution for the MCP based on the MapReduce framework is
presented in Xiang, Guo, & Aboulnaga (2013). The main idea of this approach is
to first partition the graph into smaller subgraphs, which are then independently
solved to optimality with a B&B method on different nodes of a computing clus-
ter. Another recent multi-threading parallel algorithm adapts a B&B algorithm
similar to MCQ and explores the multi-core parallelism with a bit-set encod-
ing mechanism (McCreesh & Prosser, 2013). This algorithm achieves excellent
performances on many DIMACS instances and some BHOSLIB instances.

To conclude this section on exact algorithms, Table 1 summarizes in chrono-
logical order the reviewed algorithms. One observes that very few exact al-
gorithms report their results on the set of 40 BHOSLIB instances with the
exception of the study reported in McCreesh & Prosser (2013). In Section 6,
we provide more information about the relative performance of these exact al-
gorithms.

4. Heuristic approaches to the MCP

In addition to exact algorithms, notable progresses on heuristic algorithms
for the MCP have been made in the recent years. In this section we review the
most representative and effective MCP heuristics.

4.1. Greedy algorithms

The majority of greedy heuristics for the MCP are called “sequential greedy
heuristics”. They generate a maximal clique by starting with an empty clique
and then iteratively adding vertices using greedy rules until no further additions
are possible, or by repeatedly removing vertices from a set of vertices which
do not form a clique. A comprehensive survey of early greedy heuristics are
provided in Bomze, Budinich, Pardalos, & Pelillo (1999); Butenko (2003) and
Pardalos & Xue (1994).
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Table 1: Main exact algorithms for the maximum clique problem
Algorithm name Reference Type of approach Comments on performance

CP Carraghan & Pardalos (1990) The basic B&B algorithm A landmark B&B algorithm providing the basis for
many later B&B algorithms

BT Babel & Tinhofer (1990) B&B based on subgraphs coloring Another classic B&B algorithm which computes a color-
ing for bounding at each search step, slower than mod-
ern B&B algorithms based on graph coloring

Cliquer Österg̊ard (2002) B&B based on solving sub-clique problems Reports better results than its predecessors, but per-
forms less well than sophisticated vertex coloring based
algorithms like MCQ, MCS and BB-MaxClique

χ+DF Fahle (2002) B&B using filtering algorithms to tighten
the candidate set P

Slower than Cliquer on an amount of DIMACS instances

MCQ Tomita & Seki (2003) B&B based on subgraphs coloring Faster than Cliquer and a number of algorithms before
MCQ on many DIMACS instances

CPR Régin (2003) B&B using filtering algorithms to tighten
the candidate set P

Closes seven DIMACS instances for the first time, faster
than another B&B algorithm using filtering algorithms
χ+DF on most DIMACS instances

DK Kumlander (2005) B&B based on a unique coloring Performs better than CP, but seems less competitive as
some sophisticated vertex coloring based algorithms like
MCQ, MCS and BB-MaxClique

MCR Tomita & Kameda (2007) B&B based on subgraphs coloring An improved version of MCQ with a better initial sort-
ing of vertices of the initial graph

MaxCliqueDyn Konc & Janežič (2007) B&B based on subgraphs coloring Faster than MCQ on most DIMACS instances, espe-
cially for dense graphs

MaxCLQ Li & Quan (2010) B&B based on MaxSAT A highly effective exact algorithm, closes a hard instance
p hat1000-3 for the first time

MCS Tomita, Sutani, Higashi, Taka-
hashi, & Wakatsuki (2010)

B&B based on subgraphs coloring An improved version of MCQ, performs better than its
two predecessors MCQ and MCR on many DIMACS in-
stances

BB-MaxClique Segundo, Rodŕıguez-Losada, &
Jiménez (2011)

B&B based on subgraphs coloring Faster than MCQ and MaxCliqueDyn on a number of
DIMACS instances, especially effective for dense graphs

ILS&MaxCLQ Maslov, Batsyn, & Pardalos
(2014)

B&B based on MaxSAT using local search
for initial bounds

Reaches some speedup for some hard DIMACS instances
compared to MaxCLQ, but needs more computing time
for some easy instances
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For these early greedy heuristics, decisions on which vertex to be added in or
moved out are usually based on some static information associated with the ver-
tices in the candidate set like their degrees. However, static greedy algorithms
can easily fall into the usual greedy traps due to their short-sighted nature.
Several improvements to the static greedy heuristics have been proposed in the
literature. For instance, three adaptive restart randomized greedy heuristics
(denoted by AI, AW and NA) are studied in Jagota & Sanchis (2001). The
main ingredient of these heuristics is a probabilistic greedy vertex selection rule
combined with a multi-start strategy. During each run of the greedy algorithm,
the probability distributions used by the selection rule are updated through a
learning-like mechanism. QUALEX-MS (Busygin, 2006) is another determinis-
tic iterated greedy algorithm. In QUALEX-MS, each vertex is assigned a weight
which represents its importance towards inclusion in the evolving clique. Vertex
weights are calculated on the basis of the coordinates of stationary points of non-
linear programs derived from the Motzkin-Straus nonlinear formulation of the
MCP. The deep adaptive greedy search (DAGS) by Grosso, Locatelli, & Croce
(2004) integrates swap moves and vertex weights into a two-phase greedy con-
struction procedure. Two important vertex selection strategies are introduced in
DAGS to avoid usual greedy traps. First, DAGS uses swap moves to transform
the current partial clique into an equal-sized but more promising clique instead
of using only the short-sighted add move operator. Second, DAGS adaptively
adjusts the vertex weights used for vertex selection by a restart mechanism.
This dynamic weighting technique guides the search towards less explored ar-
eas. Computational results show that DAGS is superior to QUALEX-MS for
most of the tested DIMACS instances.

4.2. Local search heuristics

Local search is the most successful framework for designing effective MCP
heuristics. We provide here an in-depth analysis of the most influential heuristic
algorithms mainly developed during the two past decades.

4.2.1. Local search strategies for the MCP

When designing a local search algorithm for solving a particular problem,
one has to define the search space to be explored, the evaluation function and
the neighborhood function. This triplet forms a search strategy. We propose to
classify the search strategies for the MCP into two categories.

• The k-fixed penalty strategy: A target clique size k is provided and the
goal is to find a feasible clique of size k (a k-clique). The search space Ω is
usually composed of all vertex subsets of size k (called k-subsets) including
both feasible and infeasible cliques. To approximate the maximum clique,
one searches for legal k-cliques with increasing k values.

• The legal strategy: The search space Ω contains all legal cliques and the
goal is to find a clique c ∈ Ω whose size is as large as possible.
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These two general strategies can be further classified according to the move
operators used to explore the search space. For the k-fixed penalty strategy, ex-
isting local search algorithms mainly rely on either a constrained swap operator
or a unconstrained swap operator which basically exchanges one (or more) ver-
tex of the current clique with another vertex (or more vertices) out of the clique.
As to the legal strategy, the algorithms typically employ three different move
operators (add, swap and drop). Fig. 2 summarizes this classification which is
also used in this review to guide our presentation of local search algorithms.

search strategies

k-fixed penalty strategy legal strategy

unconstrained swap constrained swap add+ swap add+ swap+ dropadd+ drop

[a,b] [c] [d,e,f] [g,h,i] [j,k,l,m]

Figure 2: Local search strategies for the MCP. a(Fleurent & Ferland (1996b)), b(Friden, Hertz,
& Werra (1989)), c(Wu & Hao (2011)), d(Battiti & Protasi (2001)), e(Gendreau, Soriano, &
Salvail (1993)), f(Katayama, Hamamoto, & Narihisa (2005)), g(Pullan (2006)), h(Pullan &
Hoos (2006)), i(Pullan, Mascia, & Brunato (2011)), j(Benlic & Hao (2013)), k(Jin & Hao
(2015)), l(Hansen, Mladenović, & Uroševié (2004)), m(Wu, Hao, & Glover (2012)).

4.2.2. Local search algorithms based on the k-fixed penalty strategy

For the k-fixed penalty strategy, as noted in Friden, Hertz, & Werra (1989),
the maximum clique problem can be approximated by finding a series of k-
cliques for increasing values of k (a k-clique is a clique of size k). Each time a
k-clique is found, k is incremented by one and a new (larger) k-clique is sought.
This process is repeated until no k-clique can be found. The last k-clique con-
stitutes an approximation of the maximum clique of the graph. Consequently,
the maximum clique problem comes down to the problem of finding k-cliques.

In the k-fixed penalty strategy, a solution is represented as a subset C of
k vertices. The evaluation function f(C) counts the number of edges induced
by C, and the goal of the search algorithm is to maximize function f(C) such
that f(C) reaches its largest value f(C) = k × (k − 1)/2, which means any two
vertices of C are connected by an edge and C is a legal k-clique.

To obtain a neighboring solution from the current solution C, one typically
swaps a vertex in C with another vertex in V \ C. Basically, there are two
different techniques to apply the swap operation in the literature. The first
technique considers all the possible moves induced by C and V \ C; any vertex
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from C and any vertex from V \ C can take part in a swap operation. The
second technique constrains the consideration of the two exchanged vertices to
some specific subsets of C and V \ C. This technique is useful to reduce the
computing time needed to explore the neighborhood.

As early as 1989, the first tabu search application to the equivalent MIS
(called STABULUS) is presented in Friden, Hertz, & Werra (1989) using the
k-fixed penalty strategy. STABULUS tries to minimize the number of edges
contained in the current subset of k vertices to zero (notice that here we are
solving the MIS in the complementary graph, see Section 2). The neighborhood
employed by STABULUS is defined by the unconstrained swap move operator,
which swaps a vertex u ∈ C with another vertex v ∈ V \ C. At each iteration,
STABULUS selects the best swap move which decreases the most the evaluation
function to generate the next neighboring solution. To determine whether a
move is eligible, STABULUS first uses one tabu list T1 containing the |T1| last
solutions. In addition, STABULUS uses two other lists T2 and T3 containing
the last vertices which were removed from (or introduced into) the independent
set for the purpose of preselection. This algorithm reported remarkable results
at the time it was published. STABULUS was later improved in Fleurent &
Ferland (1996b) by introducing a different tabu list and tabu tenure management
mechanism. Instead of putting the visited solutions in the tabu list, each time
a vertex u ∈ C is swapped with another vertex v ∈ V \C, these two exchanged
vertices are added into the tabu list and are forbidden to move for the next Tu

and Tv iterations, where Tu = 0.3× |V \ C| and Tv = 0.3× |C|.
Recently, an adaptive multi-start tabu search algorithm (AMTS) is intro-

duced in Wu & Hao (2011) which is based on the k-fixed penalty strategy and
the constrained swap operator. The constrained neighborhood limits the swap
move to two critical subsets X ⊆ C and Y ⊆ V \ C such that |X| and |Y | are
as small as possible, and the resulting neighborhood contains always the best
solutions of the unconstrained neighborhood induced by C and V \ C. The
critical subset X ⊆ C identifies the vertices of the current solution C that are
not in the tabu list and have the highest number of adjacent vertices in C, and
set Y identifies the vertices of V \ C that are not in the tabu list and have the
smallest number of adjacent vertices in C. A neighboring solution C ′ is then
obtained by swapping one vertex u ∈ X and one vertex v ∈ Y . The constrained
neighborhood is both more focused and smaller-sized compared to the uncon-
strained swap neighborhood and largely improves the computational efficiency
of the search procedure. This algorithm competes well with reference heuristics
like RLS (Battiti & Protasi, 2001) and DLS (Pullan & Hoos, 2006).

4.2.3. Local search algorithms based on the legal strategy

The algorithms presented in Andrade, Resende, & Werneck (2012); Battiti
& Protasi (2001); Jin & Hao (2015); Katayama, Hamamoto, & Narihisa (2005);
Pullan (2006); Pullan & Hoos (2006); Pullan, Mascia, & Brunato (2011) and
Wu, Hao, & Glover (2012) follow the legal strategy. Here the search space Ω is
defined by the set of all legal cliques. The function to be maximized is the clique
size f(C) = |C|, and the neighborhood N(C) is given by subsets of legal cliques
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which can be reached by applying some eligible move operators. From the
literature, we can identify three such operators: add, drop and swap. The add
operator displaces to C a vertex in V \C that is adjacent to all vertices in C. The
drop operator deletes a vertex from C. The standard swap operator exchanges
a vertex v in C with a vertex u in V \C which must be connected to all vertices
in C except v. Note that a swap move can be trivially decomposed into two
separate moves, i.e., a drop move followed by an add move (Battiti & Mascia,
2010). Most local search methods using the legal strategy jointly rely on two or
three of these move operators. For instance, methods that employ the add and
drop moves include the tabu search algorithms (Gendreau, Soriano, & Salvail,
1993), the RLS algorithm (Battiti & Protasi, 2001) and the KLS algorithm
(Katayama, Hamamoto, & Narihisa, 2005) while examples of using all three
moves (add, drop and swap) are the VNS algorithm (Hansen, Mladenović, &
Uroševié, 2004), the family of PLS (Pullan, 2006), DLS (Pullan & Hoos, 2006),
CLS (Pullan, Mascia, & Brunato, 2011) algorithms, the MN/TS algorithm (Wu,
Hao, & Glover, 2012), the BLS algorithm (Benlic & Hao, 2013) and the SBTS
algorithm (Jin & Hao, 2015). Notice that in some rare cases, more general
swap(a, b) could be also useful allowing to exchange a and b vertices between C
and V \ C.

For the algorithms using only add and drop moves, add moves are always
preferred since they increase the clique size, drop moves are applied only when
no add move exists. Associated with the add moves is the vertex set PA (which
corresponds to the candidate set P of Section 3.1), which is composed of the
vertices that are excluded from the clique C and connected to all the vertices of
C: PA = {v : v ∈ V \C, {v, u} ∈ E, ∀u ∈ C}. Algorithms which rely on the add
and drop moves differ from each other chiefly in the scheme of vertex selection
and the prohibition mechanism applied to the performed moves.

For instance, two early tabu search variants (denoted by DT and PT) using
add and move are studied in Gendreau, Soriano, & Salvail (1993). The first
variant is deterministic: when add moves are possible, one vertex v ∈ PA with
the maximum adjacent vertices in PA is selected to join the current clique C.
When no add move exists, one vertex v ∈ C that results in the largest PA is
removed from C. The general prohibition rule adopted by the deterministic
variant is as follows: Only vertices that leave the clique C are forbidden to
move back to C during the prohibition period, vertices that join the clique
C can leave C without restriction. The second variant (PT ) is probabilistic:
if add moves are possible, a random vertex in PA is selected for a possible
addition, otherwise, the current solution C is a local optimum and additions are
impossible, a number of randomly selected vertices in C are removed from it.

Reactive Local Search (RLS) by Battiti & Tecchiolli (1994) is a landmark al-
gorithm to the MCP which applies the add and drop operations. Starting from
an empty clique, RLS explores the search space of cliques by adding/removing
one vertex to/from the current clique. RLS applies add moves whenever this
is possible and selects a vertex with the highest number of adjacent vertices in
PA to add to the clique C. If no allowed addition exists, RLS searches for an
allowed vertex to drop from C such that its removal leads to the largest set of
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vertex additions to C. If no allowed moves are available, a random vertex is
picked from C and is dropped. As soon as a vertex is moved, it is put into the
tabu list and remains prohibited for the next T iterations. The prohibition pe-
riod T is related to the amount of desired diversification, and is determined by
feedback information from the search history. RLS also uses a dynamic restart
strategy to provide additional long-term diversification, assuring that each ver-
tex is eventually tried as part of the current clique. Computational results on
DIMACS instances show that RLS performs better than its predecessors, both
in terms of efficiency and quality.

The k-opt local search (KLS) of Katayama, Hamamoto, & Narihisa (2005)
also relies on the add and drop operations. KLS is generalized from the basic
1-opt local search by moving multiple vertices at each iteration instead of a
single vertex for the purpose of obtaining a larger clique. At each iteration of
KLS, a variable number of k vertices are added to or removed from the current
clique simultaneously by applying a sequence of add and drop move operations.
The vertex selection rule of KLS is similar to that of the deterministic variant
of the tabu search algorithm of Gendreau, Soriano, & Salvail (1993). Each
time a vertex is added to (or removed from) C, it is forbidden to remove from
(or add back to) C during this round of k-opt neighborhood search. A restart
strategy is also employed by the KLS algorithm: The largest clique obtained
in the previous execution becomes a new initial solution for the next round of
k-opt neighborhood search. The reported results on 37 DIMACS benchmarks
show that KLS remains competitive compared to RLS (Battiti & Protasi, 2001).

For the algorithms relying on the add, swap and drop moves, add moves
are always applied whenever this is possible as they are the only moves that
augment the current clique. Drop moves are considered only when no add or
swap move exists. Associated with swap moves is the vertex set OM , which
is composed of the vertices that are excluded from the clique C and connected
to all but one vertex of C: OM = {v : v ∈ V \C, |N(v)

⋂

C| = |C| − 1} where
N(v) = {j : j ∈ V, {j, v} ∈ E} is the set of vertices adjacent to v.

The variable neighborhood search algorithm (VNS) of Hansen, Mladenović,
& Uroševié (2004) uses a distance metric between two solutions T and T ′ which
is the difference in cardinality of T and T ′. Then the neighborhood Nk(T )
consists of all solutions at distance k from T . Three types of moves (add, swap
and drop) are considered for the selected neighborhoods Nk, k = 1, ..., kmax. An
initial solution is obtained by a variable neighborhood descent (VND) heuristic,
which is also used as the local search procedure of the VNS approach. VNS
uses add moves in its descent phase and swap moves in a plateau phase. Upon
reaching a local optimum with respect to both the add and swap neighborhoods,
a new solution is randomly generated from the k-th neighborhood by dropping
k vertices from the current clique. Different selection rules are used by VND
to guide the choice of the vertex to be added to the clique C. The results on a
subset of the DIMACS instances show a globally good performance.

The family of stochastic local search algorithms (dynamic local search (DLS)
(Pullan & Hoos, 2006), phased local search (PLS) (Pullan, 2006) and cooperat-
ing local search (CLS) (Pullan, Mascia, & Brunato, 2011)) employ the add and
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swap moves in their main search procedure and the drop moves for overcoming
search stagnation. These algorithms alternate between a clique expansion phase
and a plateau search phase. The expansion phase seeks to expand the clique
by adding a vertex from PA. When the current clique cannot be extended, a
plateau search phase is triggered during which vertices of the current clique are
swapped with vertices in OM . If the current clique becomes expandable, the
search switches back to the expansion phase. When no add and swap moves
are possible, some perturbation strategies are applied to the clique C. DLS
(Pullan & Hoos, 2006) follows this scheme and uses dynamic vertex penalties
to guide vertex selection during the clique expansion and plateau search phases.
The perturbation mechanism simply reduces the clique C to the last added
vertex v, or adds a vertex v that is chosen at random and then removes all
vertices from C that are not connected to v. To cope with graphs of different
structures, PLS (Pullan, 2006) combines three sub-algorithms which use dif-
ferent vertex selection rules: random selection, random selection among those
with the highest vertex degree or random selection within those with the lowest
vertex penalty. In addition, the perturbation mechanism differs between the
sub-algorithms. CLS (Pullan, Mascia, & Brunato, 2011) further improves over
PLS by following the idea of the hyper-heuristic scheme (Burke, Hart, Kendall,
Newall, Ross, & Schulenburg, 2003). CLS incorporates four low level heuristics
which are effective for different instance types. The difference between these low
level heuristics is their vertex selection techniques and the way they deal with
plateaus. To further enhance the performance of CLS, relevant information is
passed between low level heuristics in order to guide the search to particular
areas of the search domain. DLS, PLS and in particular CLS show excellent
performances on both DIMACS and BOSHLIB benchmarks.

The study of Andrade, Resende, & Werneck (2012) explores general swap
operator in the context of the legal strategy: The (1, 2)-swap move, which ex-
changes a single vertex from C against two other vertices, and the (2, 3)-swap
move, which removes two vertices from C and adds three new vertices. This
study also shows that, given any maximal clique, a (1, 2)-swap move can be
implemented in a linear time, while a (2, 3)-swap move can be implemented in
O(m∆), where m is the number of edges and ∆ is the highest degree in the
graph. These swap operators are integrated in an iterated local search (ILS)
method. The results on the DIMACS and BHOSLIB benchmarks show that ILS
performs very well on two large and difficult MANN instances. However, it is
dominated by some best MCP algorithms on some large brock family instances
from DIMACS as well as some BHOSLIB instances.

The multi-neighborhood tabu search (MN/TS) (Wu, Hao, & Glover, 2012)
for the weighted and unweighted MCP is based on a combined neighborhood
induced by the add, swap and drop moves. For the unweighted case, the vertex
selection rule is based on a random scheme: For the add move, a vertex v ∈ PA
is randomly picked to expand C, and for the swap move, a vertex v ∈ OM
is randomly selected to exchange with the only vertex u ∈ C which is not
connected to v, while for the drop move, a vertex is randomly removed from C.
The general prohibition rule in MN/TS is similar to that of the deterministic
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tabu search procedure of Gendreau, Soriano, & Salvail (1993): Only vertices
that leave the clique C are forbidden to move back to C during the prohibition
period, vertices that join the clique can be removed without restriction. MN/TS
obtains the best-known solutions for all the BHOSLIB instances and 78 out of
the 80 DIMACS instances.

The breakout local search (BLS) (Benlic & Hao, 2013) for the MCP and its
vertex weight version uses the union of the add and swap moves in its search
procedure and the drop and add-repair moves during its perturbation procedure.
BLS explores first search areas around the current local optimum and displaces
the search into a new distant area only if the search seems to be stagnating. This
is achieved by its specific perturbation strategy which determines dynamically
and adaptively the type and strength of perturbations. BLS reaches competitive
results on both DIMACS and BHOSLIB instances.

Very recently, a general swap-based tabu search (SBTS) algorithm (Jin &
Hao, 2015) is introduced for the equivalent MIS. Each iteration of SBTS cor-
responds to either an intensification step or a diversification step by applying
a general (k, 1)-swap (k ≥ 0) operator. Given an independent set S, (k, 1)-
swap exchanges one vertex (which is strategically selected) in V \S against its
k adjacent vertices in S. SBTS alternates dynamically between its (k, 1)-swap
based neighborhoods to find improved solutions or escape from local optima.
SBTS is currently the single heuristic able to attain the best-known result for
all DIMACS and BHOSLIB instances.

4.3. Evolutionary algorithms and other popular heuristics for the MCP

Evolutionary algorithms like genetic algorithms have long been a popular
approach for the MCP. As opposed to local search, this approach uses a pop-
ulation of solutions that are improved via an “evolutionary” process. Early
attempts are reported in 1990s. However, pure genetic algorithms are not effec-
tive for the MCP (Carter & Park, 1993). This approach is often enhanced by
incorporating other techniques like local optimization. A first example is the
genetic tabu search algorithm of Fleurent & Ferland (1996a) which combines
a standard uniform crossover and a tabu search procedure. Another hybrid
genetic algorithm (GENE) mixes a uniform crossover, a swap mutation and
a descent method (Marchiori, 2002). A hybrid evolutionary algorithm with a
guided mutation (EA/G) for the problem is introduced in Zhang, Sun, & Tsang
(2005). The HSSGA algorithm by Singh & Gupta (2006) is a combination of
a steady-state genetic algorithm, a randomized sequential greedy approach and
the exact algorithm of Carraghan & Pardalos (1990) while IEA-PTS blends an
impatient evolutionary algorithm and a probabilistic tabu search (Guturu &
Dantu, 2008).

Despite numerous attempts, the reported evolutionary algorithms for the
MCP are not competitive compared to simpler local search algorithms. This
may be partially explained by the fact that for the MCP, no meaningful re-
combination (or crossover) operator is known yet. Indeed it is not clear how
random crossover operators can help the search to discover improved cliques.
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Even the most effective hybrid evolutionary algorithms for the MCP are ba-
sically driven by some local search procedures. However, better performances
could be achieved if a semantically meaningful crossover for the MCP can be
devised.

Other popular heuristics for the MCP include ant colony optimization (Sol-
non & Fenet, 2006), artificial neural networks (Yang, Yi, Zhang, & Tang, 2009)
and methods based on continuous optimization (Burer, Monteiro, & Zhang,
2002; Busygin, 2006). According to the reported results, the overall perfor-
mance of these heuristics are not competitive compared with recent local search
methods. Finally, it is worthwhile to mention that some recent edge weighting
local search approaches for the equivalent minimum vertex cover problem, such
as COVER (Richter, Helmert, & Gretton, 2007) and EWCC (Cai, Su, & Sattar,
2011), report very good results on the DIMACS and BHOSLIB benchmarks.

To conclude this section, we summarize in Table 2 the main reviewed heuris-
tic algorithms (listed in chronological order). In Section 6, we provide more
information about the relative performance of these heuristic algorithms.

5. Generalizations and relaxations of the MCP

The MCP has some relevant generalizations and relaxations which are useful
to formulate a number of practical applications where the standard MCP is
not appropriate. These problems are not only gaining increasing popularity
in a number of practical applications in particular in graph data analysis and
mining, but also keeps garnering attention as a promising avenue for theoretical
investigations.

Maximum vertex weight clique problem (MVWCP). Given G = (V,E), let
w : V → Z+ be a weighting function that assigns to each vertex i ∈ V a
positive value. For a clique C of G, define its weight as W (C) =

∑

i∈C wi. The
MVWCP is to determine a clique C∗ of maximum weight, i.e., ∀C ∈ Ω,W (C∗) ≥
W (C) where Ω is the set of all possible cliques of the graph. The MCP can be
considered as a special case of the MVWCP where the weight of each vertex is
set equal to 1. It is clear that a maximum clique of the MCP does not necessarily
lead to a maximum vertex weight clique of the MVWCP, and the MVWCP has
at least the same computational complexity as the MCP.

Some exact algorithms for the MVWCP come from and generalize previous
methods designed for the unweighted MCP (Kumlander, 2004; Österg̊ard, 1999).
Three other B&B algorithms are introduced in Warren & Hicks (2006), which
use weighted clique covers to generate upper bounds and branching rules. Sev-
eral heuristics are also available to find sub-optimal solutions for the MVWCP:
Augmentation algorithm (Mannino & Stefanutti, 1999), distributed computa-
tional network algorithm (Bomze, Pelillo, & Stix, 2000), complementary pivot-
ing algorithm (Massaro, Pelillo, & Bomze, 2001), hybrid evolutionary approach
(Singh & Gupta, 2006), adaptation to the weight version of the phased local
search (Pullan, 2008) for the unweighted case, multi-neighborhood tabu search
algorithm (Wu, Hao, & Glover, 2012) and breakout local search (Benlic & Hao,
2013).
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Table 2: Main heuristic algorithms for the maximum clique problem
Algorithm name Reference Type of approach Comments on performance

STABULUS Friden, Hertz, & Werra
(1989)

Tabu search based on the k-
fixed penalty strategy

The first MIS algorithm using tabu search

DT, PT Gendreau, Soriano, & Salvail
(1993)

Tabu search based on the le-
gal strategy

Two early tabu search algorithms without swap
moves

AI, AW, NA Jagota & Sanchis (2001) Greedy algorithm Three adaptive restart randomized greedy
heuristics, the results of these three heuristics
are not available on the DIMACS and BHOSLIB
benchmarks

RLS Battiti & Protasi (2001) Reactive tabu search based
on the legal strategy

A landmark MCP algorithm, reports better re-
sults than its predecessors

GENE Marchiori (2002) Evolutionary algorithm An early hybrid genetic algorithm, outper-
formed by many local search heuristics

DAGS Grosso, Locatelli, & Croce
(2004)

Greedy algorithm A sophisticated greedy algorithm achieving bet-
ter performances than other greedy algorithms
like QUALEX-MS on most DIMACS instances

VNS Hansen, Mladenović, &
Uroševié (2004)

Variable neighborhood
search based on the legal
strategy

Shows a good performance on the MANN in-
stances from DIMACS, its overall performance
is comparable in terms of quality with RLS

KLS Katayama, Hamamoto, &
Narihisa (2005)

Local search based on the le-
gal strategy

Achieves a good performance on the MANN in-
stances from DIMACS but a bad performance
on the keller and brock instances

EA/G Zhang, Sun, & Tsang (2005) Evolutionary algorithm Achieves better performances than an early
evolutionary algorithm GENE, but performs
slightly less well than RLS

QUALEX-MS Busygin (2006) Greedy algorithm Shows good performances on the brock in-
stances from DIMACS

DLS Pullan & Hoos (2006) Dynamic local search based
on the legal strategy

One of the best performing algorithms, shows
highly competitive results compared with a
number of state-of-the-art algorithms before
DLS

PLS Pullan (2006) Phased local search based on
the legal strategy

Achieves similar performances compared to
DLS on the DIMACS benchmarks

HSSGA Singh & Gupta (2006) Evolutionary algorithm Performs worse than many modern local search
algorithms like RLS, DLS, RLS, PLS and
AMTS

COVER Richter, Helmert, & Gretton
(2007)

Edge weighting local search
approach

Shows a good performance for the two large
MANN instances, but fails to reach the best-
known results for some brock family instances
from DIMACS

IEA-PTS Guturu & Dantu (2008) Evolutionary algorithm Outperforms two other evolutionary algorithms
EA/G and HSSGA, reports competitive results
on the DIMACS benchmarks, but fails to reach
the best-known results for some BHOSLIB
benchmarks

CLS Pullan, Mascia, & Brunato
(2011)

Cooperating local search
based on the legal strategy

A fast algorithm using multiple strategies, one
of the current best performing MCP algorithms

EWCC Cai, Su, & Sattar (2011) Edge weighting local search
approach

A recent edge weighting local search approach
for the equivalent minimum vertex cover prob-
lem, reports competitive results on the DI-
MACS and BHOSLIB benchmarks.

MN/TS Wu, Hao, & Glover (2012) Multi-neighborhood tabu
search based on the legal
strategy

Fails to reach the best-known results for two
large MANN instances

ILS Andrade, Resende, & Wer-
neck (2012)

Local search based on the le-
gal strategy

Achieves an excellent performance on two large
MANN instances, but fails to reach the best-
known results for some brock instances from DI-
MACS and some BHOSLIB instances

AMTS Wu & Hao (2011) Tabu search based on the k-
fixed penalty strategy

Shows an overall good performance on the DI-
MACS benchmarks, but slower than DLS

BLS Benlic & Hao (2013) Breakout local search based
on the legal strategy and
adaptive perturbation

Attains, except two large MANN instances,
the best-known results for the DIMACS and
BHOSLIB benchmarks, but slower than DLS

SBTS Jin & Hao (2015) General (k, 1)-swap tabu
search based on the legal
strategy and

Shows an overall good performance on the DI-
MACS and BHOSLIB benchmarks
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Maximum edge weight clique problem (MEWCP). Given an integer m and a
complete graph G = (V,E), each edge {i, j} ∈ E being associated with a weight
dij . The MEWCP is to find a clique C in G such that the sum of the weights
of the edges in C is maximized and the number of vertices in C is no more than
m. Like the MVWCP, the decision version of the MEWCP is NP-complete
(Ausiello, Crescenzi, Gambosi, Kann, Spaccamela, & Protasi, 1999), as far as
it reduces to the maximum clique problem. The MEWCP or its variants are
also studied under other names: Maximum diversity (Mart́ı, Gallego, Duarte,
& Pardo, 2013; Palubeckis, 2007), maxisum dispersion (Kuby, 1987), MAX-
AVG dispersion (Ravi, Rosenkrantz, & Tayi, 1994), remote-clique (Chandra &
Halldórsson, 2001), and maximum edge-weighted subgraph (Macambira, 2003).

Early exact methods for the MEWCP can be found in Dijkhuizen & Faigle
(1993) and Park, Lee, & Park (1996). Three more recent examples of B&B
algorithms are provided in Aringhieri, Bruglieri, & Cordone (2009); Mart́ı, Gal-
lego, & Duarte (2010) and Sørensen (2004) which can solve problems with up
to 150 vertices. On the other hand, there are many heuristics devoted to the
MEWCP: Tabu search (Aringhieri & Cordone, 2011; Macambira, 2003), iter-
ated tabu search (Palubeckis, 2007), iterated greedy algorithm (Lozano, Molina,
& Garćıa-Mart́ınez, 2011), greedy randomized adaptive search procedure (An-
drade, Andrade, Martins, & Plastino, 2005; Silva, De Andrade, Ochi, Martins,
& Plastino, 2007), genetic algorithm (Feng, Jiang, Fan, & Fu, 2010), variable
neighborhood search (Brimberg, Mladenović, Urošević, & Ngai, 2009), scatter
search (Gallego, Duarte, Laguna, & Mart́ı, 2009; Gortázar, Duarte, Laguna, &
Mart́ı, 2010), path-relinking method (Andrade, Andrade, Martins, & Plastino,
2005) and memetic search (Wang, Hao, Glover, & Lü, 2014; Wu & Hao, 2013).
Comprehensive surveys and comparisons of the most significant heuristic and
metaheuristic methods for the MEWCP before 2011 can be found in Aringhieri
& Cordone (2011) and Mart́ı, Gallego, Duarte, & Pardo (2013).

Maximum quasi-clique problem. Given a graph G = (V,E) and a real num-
ber γ ∈ [0, 1], a γ-quasi-clique (γ-clique for short) is defined as a subset of
vertices S ⊆ V such that the number of edges in the subgraph induced by S

is at least γ(
|S|
2 ). Then the maximum γ-clique problem is to find a γ-clique of

maximum cardinality in the given graph (Definition 1, see references like Bour-
geoisa, Giannakos, Lucarelli, Milis, Paschos, & Pottié (2012)). An alternate
definition of a γ-quasi-clique can also be found in the literature like Pei, Jiang,
& Zhang (2005) and Zeng, Wang, Zhou, & Karypis (2007) where S ⊆ V is called
a γ-quasi-clique if every vertex in S has at least γ(|S| − 1) adjacent vertices in
S. Obviously, this definition is more restrictive than Definition 1 since S ⊆ V
satisfying the minimum degree requirement is also a γ-quasi-clique according to
Definition 1. However, the converse is not necessarily true as a γ-quasi-clique
by Definition 1 could include vertices which have less than γ(|S| − 1) adjacent
vertices in S. A more general definition is provided in Brunato, Hoos, & Battiti
(2008) where S ⊆ V is called a (λ, γ)-quasi-clique if the number of edges in

the subgraph induced by S is at least γ(
|S|
2 ) and every vertex in S has at least

λ(|S| − 1) adjacent vertices in S. The maximum γ-clique problem is shown to
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be NP-complete in Patillo, Veremyev, Butenko, & Boginski (2013) for any fixed
γ satisfying 0 < γ < 1.

Mathematical programming formulations, effective pruning techniques and
exact methods are also proposed in the literature to solve the problem exactly.
Mixed-integer programming formulations for the maximum γ-clique problem are
described in Patillo, Veremyev, Butenko, & Boginski (2013) and report prelimi-
nary results obtained with a modern commercial MIP solver. A B&B algorithm
for the problem is recently developed in Pajouh, Miao, & Balasundaram (2014).
There are several heuristics available to find sub-optimal solutions in various
application scenarios. A heuristic algorithm (Matsuda, Ishihara, & Hashimoto,
1999) is developed to find large γ-cliques for classifying a large and mixed set of
uncharacterized biological sequences. GRASP procedures are studied in Abello,
Resende, & Sudarsky (2002) for detecting large quasi-cliques in graphs rep-
resenting telecommunications data. Two existing local search algorithms for
the MCP are extended to the quasi-clique problem (Brunato, Hoos, & Bat-
titi, 2008). A greedy algorithm for a quasi-clique finding problem is proposed
within the context of studying the human protein-protein interaction networks
(Bhattacharyya & Bandyopadhyay, 2009).

Densest k-subgraph problem. Given a graph G = (V,E) and an integer
k ≤ |V |, the densest k-subgraph problem is to find a subgraph of k vertices with
the largest number of edges in the subgraph. Its edge weight version (called the
heaviest k-subgraph problem) is to find a k-vertices induced subgraph with the
maximum total edge weight. The densest k-subgraph problem is NP-hard in
the general case (Feige, Kortsarz, & Peleg, 2001).

There are some solution approaches for the problem. For instance, several
integer programming formulations are studied in Billionnet (2005). A B&C
algorithm to solve the problem exactly is introduced in Bourgeois, Giannakos,
Lucarelli, Milis, & Paschos (2013). A variable neighborhood search algorithm is
described in Brimberg, Mladenović, Urošević, & Ngai (2009) for an edge weight
version of the problem.

Finally, there are some other interesting models related to the MCP, such
as the maximum k-plex problem (Balasundaram, Butenko, & Hicks, 2011), the
maximum k-club problem (Bourjolly, Laporteb, & Pesant, 2002) and the maxi-
mum/minimum edge neighborhood density clique problem (Martins, 2012).

6. Benchmarks and performance evaluation

This section is devoted to performance evaluation of MCP algorithms. First
of all, one must keep in mind that performance evaluation is a delicate task since
many factors can affect such an assessment like the programming language and
the data structures used to code the algorithm, the computing plate-form, the
experimental protocol (stop condition, parameter tuning...). Moreover, evalua-
tion criteria may also become a delicate issue since a criterion suitable for an
exact algorithm may be unsuitable for a heuristic, and vice versa. Even for a
given type of algorithms, several criteria would be possible. To simplify the
presentation and highlight some main trends, we focus on two most popular
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indicators: the quality of solutions (main indicator) and the computing time
(secondary indicator). In any case, the comparisons presented in this section
are only for indicative purposes and should be interpreted with caution.

6.1. Benchmarks

For the purpose of computational assessment of MCP algorithms, there are
two main benchmarks available in the literature. The DIMACS benchmark is
historically the most popular while the BHOSLIB benchmark is more recent.

DIMACS benchmark: The DIMACS benchmark set is created in the
1990’s for the second DIMACS challenge on Clique, Satisfiability and Graph
Coloring (Johnson & Trick, 1996)1. It is composed of 80 graphs and represents
the standard set for evaluating MCP algorithms. The benchmark covers a num-
ber of real-world problems from e.g., coding theory, fault diagnosis problems and
Keller’s conjecture, etc., in addition to randomly generated graphs and graphs
where the maximum clique is hidden by incorporating low-degree vertices. The
size of the DIMACS instances ranges from less than 50 vertices and 1,000 edges
up to more than 3,300 vertices and 5,000,000 edges. According to the results
reported in the literature, among these 80 DIMACS instances, the maximum
clique is now known for most of them except for 4 graphs: 3 (large and dense)
random graphs with at least 500 vertices (C500.9, C1000.9, C2000.9) and 1
structured graph (johnson32 2 4).

BHOSLIB benchmark: The BHOSLIB benchmark set is composed of 40
graphs with hidden optimal solutions (Xu, Boussemart, Hemery, & Lecoutre,
2007) 2, which are translated from hard random SAT instances generated at the
exact phase transition of the RB model (Xu, Boussemart, Hemery, & Lecoutre,
2005). These instances have sizes ranging from 450 vertices and 17,794 edges
up to 1,534 vertices and 12,7011 edges. These instances are supposed to be
hard theoretically for exact algorithms and only few exact algorithms (see for
instance McCreesh & Prosser (2013)) report results on these instances. On the
other hand, several recent heuristic algorithms can attain the known optimal
solutions for these instances with no particular difficulty (Benlic & Hao, 2013;
Cai, Su, & Chen, 2010; Cai, Su, & Sattar, 2011; Grosso, Locatelli & Pullan,
2008; Jin & Hao, 2015; Pullan, Mascia, & Brunato, 2011; Richter, Helmert, &
Gretton, 2007; Wu, Hao, & Glover, 2012).

In addition to these benchmarks, a set of instances from code theory (less
used in the literature) is available at http://neilsloane.com/doc/graphs.

html.

6.2. Indicative performance evaluation

To compare different exact algorithms for the MCP, we summarize in Ta-
ble 3 the computational results of 10 recent exact algorithms on the DIMACS
benchmark. To be concise, we exclude the very easy instances that are solved

1ftp://dimacs.rutgers.edu/pub/challenge/graph/
2http://www.nlsde.buaa.edu.cn/~kexu/benchmarks/graph-benchmarks.htm
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by most of the reviewed algorithms in less than 2 seconds and the ten hard
instances on which few exact algorithms reports their results (C500.9, C1000.9,
C2000.5, C2000.9, C4000.5, MANN a81, hamming10-4, johnson32-2-4, keller6,
and p hat1500-3). The results of Cliquer, CPR, MaxCliqueDyn, MCR and Max-
CLQ are directly extracted from Li & Quan (2010), while the results of χ+DF ,
MCS, BBclique and ILS&MaxCLQ are taken from the papers describing these
algorithms and the results of MCQ are obtained from Konc & Janežič (2007).
The running times shown in Table 3 are all adjusted and expressed in seconds
of the computer used in Li & Quan (2010) to run MaxCLQ. The method for
adjusting the running times is as follows. If the original paper provides machine
benchmarking information on running the DIMACS MCP Machine Benchmark
program (ftp://dimacs.rutgers.edu in directory /pub/dsj/clique) on the three
benchmark graphs r300.5, r400.5 and r500.5, then the CPU time is transformed
using the benchmark information. Otherwise, the CPU time is adjusted using
the SPEC - Standard Performance Evaluation Corporation (www.spec.org). To
interpret the data in Table 3, we should keep in mind that the results are often
obtained under different time limits and the SPEC time conversion is not as
precise as running the DIMACS Machine Benchmark program.

Comparative studies of exact algorithms are available in a number of studies
like Carmo & Züge (2012); Konc & Janežič (2007); Li & Quan (2010); Österg̊ard
(2002); Prosser (2012); Régin (2003); Segundo, Matia, Rodriguez-Losada, &
Hernando (2013); Segundo, Rodŕıguez-Losada, & Jiménez (2011); Tomita &
Kameda (2007); Tomita & Seki (2003) and Tomita, Sutani, Higashi, Takahashi,
& Wakatsuki (2010). A summary of 10 most effective exact algorithms is pro-
vided in Table 3. From these results, one finds that the most effective algorithms
are those that use vertex coloring for both bounding and branching like MCQ
(Tomita & Seki, 2003), MCR (Tomita & Kameda, 2007), MCS (Tomita, Su-
tani, Higashi, Takahashi, & Wakatsuki, 2010), MaxCliqueDyn (Konc & Janežič,
2007) and BB-MaxClique (Segundo, Rodŕıguez-Losada, & Jiménez, 2011), and
the MaxSAT based algorithms like MaxCLQ (Li & Quan, 2010). In Carmo &
Züge (2012); Li & Quan (2010) and Tomita & Seki (2003), extensive compar-
isons are presented between the coloring based algorithm MCQ and some other
algorithms before MCQ, like Cliquer (Österg̊ard, 2002) and χ + DF (Fahle,
2002), disclosing that MCQ is superior on a wide range of DIMACS instances.
Given that χ+DF uses coloring only for bounding, the comparative results be-
tween MCQ and χ+DF also indicate that it is better to use coloring as an aid
for both branching and bounding than for bounding only. MCR, MCS, Max-
CliqueDyn and BB-MaxClique can be viewed as improved versions of MCQ by
embedding more effective branching rules. When comparing the MaxSAT based
algorithms like MaxCLQ and the coloring based algorithms like MCR, MCS and
MaxCliqueDyn, one observes that MaxCLQ solves most of the large and dense
DIMACS instances faster than other coloring based algorithms while the reverse
is true for some small instances (Li & Quan, 2010; Maslov, Batsyn, & Pardalos,
2014).

Similarly, Table 4 summarizes the results of 21 heuristics on 9 representative
DIMACS instances. These instances are selected since they are known to be hard
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Table 3: Performance comparison of 10 stat-of-art exact MCP algorithms on 35 popular
DIMACS instances. Entries “-” signify that the data is unavailable. The average running
time of each algorithm is adjusted and expressed in seconds of the computer used in Li &
Quan (2010). The compared algorithms are: χ+DF (Fahle, 2002), Cliquer (Österg̊ard, 2002),
CPR (Régin, 2003), MaxCliqueDyn (Konc & Janežič, 2007), MCQ (Tomita & Seki, 2003),
MCR (Tomita & Kameda, 2007), MCS (Tomita, Sutani, Higashi, Takahashi, & Wakatsuki,
2010), MaxCLQ (Li & Quan, 2010), BBclique (Segundo, Rodŕıguez-Losada, & Jiménez, 2011)
and ILS&MaxCLQ (Maslov, Batsyn, & Pardalos, 2014).
Instance χ+DF Cliquer CPR MaxCliqueDyn MCQ MCR MCS MaxCLQ BBclique ILS&MaxCLQ

brock200 1 52.83 6.37 4.60 0.96 1.79 1.13 - 0.67 0.43 11.05
brock400 1 - 22182.00 4867.00 703.50 1905.22 1137.00 444.23 370.84 433.44 428.70
brock400 2 - 5617.00 3395.00 309.00 787.49 465.10 190.38 178.70 182.08 214.83
brock400 3 - 1667.00 1922.00 565.00 1501.30 766.51 300.00 290.06 289.81 341.69
brock400 4 - 247.70 2597.00 320.40 772.52 409.43 158.97 167.30 172.57 160.34
brock800 1 - - - 8821.00 - 10712.00 5991.66 8815.00 7413.90 8649.49
brock800 2 - - - 8125.00 - 9679.00 5375.64 7690.00 6768.85 7575.36
brock800 3 - 26014.00 - 5565.00 11143.79 6546.00 3689.10 5285.00 4364.83 5008.19
brock800 4 - 6108.00 - 4240.00 8589.54 4561.00 2562.17 3880.00 3080.45 3800.02
MANN a27 5891.03 - 7.93 3.10 4.52 1.98 0.51 0.66 0.47 3.07
MANN a45 - - - 2006.00 3581.69 2931.00 180.12 255.67 209.13 58.28
hamming10-2 2.92 0.19 0.45 2.26 0.84 0.16 - 7.92 0.16 10.07
keller5 - - - 31038.00 - - - 9687.00 - 9227.09
p hat300-3 487.73 496.60 17.47 4.91 20.01 7.45 1.60 2.07 1.65 18.38
p hat500-2 116.03 134.60 14.03 1.53 4.29 2.12 0.44 0.90 0.52 70.48
p hat500-3 - - 5470.00 349.40 3714.37 1256.00 96.15 55.95 109.88 115.49
p hat700-1 1.50 0.09 2.58 0.14 0.11 0.07 - 0.80 0.06 251.86
p hat700-2 1187.73 15417.00 109.80 12.60 57.18 30.19 3.58 4.87 4.71 135.83
p hat700-3 - - - 6187.00 - - 1533.33 1033.00 2344.24 1402.21
p hat1000-1 9.43 1.11 11.93 0.58 0.67 0.35 - 2.53 0.39 519.46
p hat1000-2 - - 7230.00 412.90 3391.50 1656.00 141.66 146.54 234.98 474.47
p hat1000-3 - - - - - - - 200760.00 - 228357.60
p hat1500-1 68.39 8.01 206.40 4.31 5.48 2.97 - 15.85 3.81 1202.00
p hat1500-2 - - - 61461.00 - - 10584.61 8848.00 - 14136.59
san1000 1732.54 0.08 44.12 0.74 7.43 3.35 1.34 1.46 0.75 794.33
san200 0.9 2 1099.05 13.36 1.12 0.79 3.60 2.92 0.25 0.10 0.16 3.44
san200 0.9 3 110.84 503.40 78.41 3.43 11.69 0.11 - 0.22 0.04 4.04
san400 0.7 1 242.45 - 9.99 0.52 1.85 1.09 0.34 0.21 0.30 44.10
san400 0.7 2 91.03 3081.00 28.98 0.20 1.17 0.21 0.08 0.09 0.12 56.21
san400 0.7 3 351.41 4.47 117.30 2.04 3.79 2.12 0.89 0.75 0.66 59.26
san400 0.9 1 4109.43 - 729.60 30.95 1377.77 2.50 0.06 1.97 0.20 10.90
sanr200 0.7 14.15 1.88 1.85 0.39 0.60 0.37 0.21 0.38 0.16 12.75
sanr200 0.9 - 46593.00 64.41 51.57 381.21 204.72 26.28 5.72 23.96 8.37
sanr400 0.5 13.20 0.97 7.35 0.74 0.87 0.52 - 1.73 0.37 85.49
sanr400 0.7 9065.09 2852.00 1347.00 177.80 394.05 237.26 116.02 141.48 115.15 198.61
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Table 4: Performance of 21 effective heuristics on the 9 hard DIMACS instances, entries of “-” signify that the data is not available. The average
clique size is indicated in the brackets when a 100% success rate is not reached. The average running time required by each algorithm is adjusted
and expressed in seconds of the computer used in Cai, Su, & Sattar (2011). The compared algorithms are: RLS (Battiti & Protasi, 2001), GENE
(Marchiori, 2002), DAGS (Grosso, Locatelli, & Croce, 2004), VNS (Hansen, Mladenović, & Uroševié, 2004), KLS (Katayama, Hamamoto, & Narihisa,
2005), EA/G (Zhang, Sun, & Tsang, 2005), QUALEX-MS (Busygin, 2006), DLS (Pullan & Hoos, 2006), PLS (Pullan, 2006), HSSGA (Singh & Gupta,
2006), COVER (Richter, Helmert, & Gretton, 2007), IEA-PTS (Guturu & Dantu, 2008), CLS (Pullan, Mascia, & Brunato, 2011), EWCC (Cai, Su,
& Sattar, 2011), MN/TS (Wu, Hao, & Glover, 2012), ILS (Andrade, Resende, & Werneck, 2012), AMTS (Wu & Hao, 2011), BLS (Benlic & Hao,
2013) and SBTS (Jin & Hao, 2015).

Instance brock400 2 brock400 4 brock800 2 brock800 4 C2000.9 C4000.5 MANN a45 MANN a81 keller6

Best(Avg) Time Best(Avg) Time Best(Avg) Time Best(Avg) Time Best(Avg) Time Best(Avg) Time Best(Avg) Time Best(Avg) Time Best(Avg) Time
RLS 29(26.06) 3.06 33(32.42) 7.89 21 0.34 21 0.48 78(77.58) 59.83 18 158.65 345(343.60)28.98 1098 205.72 59 13.79

GENE 24(22.5) 0.27 25(23.6) 0.19 20(19.3) 0.75 20(18.9) 1.12 72(68.2) 4.89 16(15.4) 1.95 343(342.4) 19.56 1097(1096.3) 401.41 55(51.8) 8.71

DAGS 29(28.10) 0.62 33 0.62 24(20.82) 3.73 26(22.60) 3.75 76(75.40) 405.33 18(17.50) 717.55 344(343.95)426.95 - - 57(56.40) 2739.11

VNS 29(27.4) 4.17 33 2.69 21 0.85 21 3.16 78(77.2) 22.74 18 310.71 345(344.5) 1.51 1100(1099.3) 65.47 59(58.2) 17.90

KLS 25(24.84) 0.04 25 0.01 21(20.86) 0.16 21(20.67) 0.39 77(74.90) 4.80 18(17.02) 7.76 345(343.88)2.02 1100(1098.07)12.88 57(55.59) 17.08

EA/G 25(24.7) 1.42 33(25.1) 1.42 21(20.1) 3.42 21(19.9) 3.42 72(70.9) 17.38 17(16.1) 23.46 345(343.7) 30.84 1098(1097.2) 319.04 56(53.4) 24.26

QUALEX-MS 29 0.67 33 0.44 24 4.00 26 4.00 72 47.78 17 521.11 342 3.78 1096 106.00 53 286.89

DLS 29 0.12 33 0.02 24 3.97 26 2.24 78(77.93) 48.79 18 45.76 344 13.12 1098(1097.96)66.66 59 43.05

PLS 29 0.12 33 0.02 24 4.08 26 2.30 78 50.11 18 47.01 344 84.27 1098 172.17 59(57.75) 172.17

HSSGA 29(25.1) 0.14 33(27.0) 0.29 21(20.7) 1.35 21(20.1) 0.38 74(71.0) 14.83 17(16.8) 19.97 343(342.6) 8.22 1095(1094.2) 503.99 57(54.2) 39.67

COVER 28(-) - 33(-) 42.63 - - - - 78(77.84) 139.36 18 260.27 345(344.41)- 1100(-) - 59 5.89

IEA-PTS 29(27.52) 1.08 33 0.84 24(21.06) 1.03 26(21.4) 2.07 79(76.4) 19.71 18(17.66) 104.21 345(343.97)9.43 1099(1097.01)237.55 59(57.06) 45.40

CLS 29 0.08 33 0.02 24 1.73 26 0.58 78 7.28 18 13.63 344 15.40 1098 20.80 59 0.91

EWCC 29(25.48) 374.52 33 25.37 21 0.49 21 0.62 79(78.56) 858.73 18 738.91 345(344.94)698.50 1100(1098.11)634.46 59 3.76

MN/TS 29 0.81 33 0.17 24(23.88) 94.25 26 37.57 80(78.37) 339.57 18 86.96 340 54.56 1090 380.87 59 58.96

ILS 25 11.57 33(30.3) 11.57 21 63.15 26(21.3) 63.15 77(76.9) 108.42 18(17.1) 1996.84 345(344.5) 3.15 1100 10.52 59 546.31

AMTS 29 0.69 33 0.35 24 19.61 26 9.01 80(78.95) 266.33 18 74.93 345(344.04)66.77 1098 16.30 59 6.39

BLS 29 10.29 33 1.87 24(23.04) 637.94 26 356.05 80(78.6) 2846.84 18 387.33 342(340.82)- 1094(1092.17)- 59 14.67

SBTS 29 11.97 33 0.49 24(22.29) 464.12 26(25.90) 249.47 80(77.29) 896.78 18 919.07 345 16.30 1100 13.43 59 446.67
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for most existing MCP heuristic algorithms and thus can be used to differentiate
the compared heuristics. The results in terms of solution quality (i.e., best
and average clique size) are directly extracted from the original papers while
the average CPU running times are adjusted and expressed in seconds of the
computer used by EWCC (Cai, Su, & Sattar, 2011) using the same method
as for exact algorithms of Table 3. The solution quality (i.e., clique size) is
the primary criterion while the computing times are provided for indicative
purposes.

From Table 4 as well as the results reported by the original papers, one
first observes that the newest heuristic SBTS (Jin & Hao, 2015) is the only
method able to attain the best-known clique size for these 9 graphs (in fact
this remains true for all DIMACS and BHOSLIB instances) while the other
heuristics miss at least one best-known result. Secondly, algorithms based on
the vertex penalty mechanism such as DLS (Pullan & Hoos, 2006), PLS (Pullan,
2006), CLS (Pullan, Mascia, & Brunato, 2011) perform very well on the brock
instances, but have troubles to find an optimal (or best known) solution for
the large MANN instances. On the other hand, algorithms designed for the
vertex cover problem (EWLS (Cai, Su, & Chen, 2010), EWCC (Cai, Su, &
Sattar, 2011), COVER (Richter, Helmert, & Gretton, 2007)) and two other
algorithms (VNS (Hansen, Mladenović, & Uroševié, 2004) and KLS (Katayama,
Hamamoto, & Narihisa, 2005)) are able to reach the optimal (or best known)
solution for the two large MANN instances, but perform less well on some large
brock graphs.

In light of the computational results of Table 4 as well as the analysis in Cai,
Su, & Sattar (2011); Jin & Hao (2015); Pullan & Hoos (2006); Pullan (2006);
Pullan, Mascia, & Brunato (2011); Richter, Helmert, & Gretton (2007); Wu
& Hao (2011), the dominant heuristics are DLS (Pullan & Hoos, 2006), PLS
(Pullan, 2006), COVER (Richter, Helmert, & Gretton, 2007), CLS (Pullan,
Mascia, & Brunato, 2011), EWCC (Cai, Su, & Sattar, 2011), AMTS (Wu &
Hao, 2011), SBTS (Jin & Hao, 2015). As shown in Pullan & Hoos (2006), DLS
dominates previous state-of-the-art heuristics KLS (Katayama, Hamamoto, &
Narihisa, 2005), RLS (Battiti & Protasi, 2001) and DAGS (Grosso, Locatelli, &
Croce, 2004) on several DIMACS instances. In Pullan (2006), PLS is compared
directly with DLS using the assessment criteria listed in Pullan & Hoos (2006),
showing a comparable or better performance than DLS for almost all DIMACS
instances. In Richter, Helmert, & Gretton (2007); Cai, Su, & Sattar (2011);
Pullan, Mascia, & Brunato (2011) and Wu & Hao (2011), EWCC, CLS, COVER
and AMTS are compared with DLS or PLS, showing that they are as competitive
as or even more efficient than DLS or PLS. Therefore, we can roughly conclude
that EWCC, SBTS, DLS, PLS, CLS, COVER and AMTS are among the most
effective heuristic algorithms currently available for the MCP.

7. Perspectives and conclusion

Based on this review, we now take on the challenge of discussing some per-
spective research directions.
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7.1. Improving exact methods

From the perspective of exact solution of the MCP, we consider two direc-
tions for further improvement. First, as shown in Section 3, the most popular
exact algorithms use a (very simple) graph coloring procedure to estimate their
upper bounds. Since the quality of the coloring impacts directly the quality
of the bounds, it would be interesting to investigate recent and more powerful
coloring algorithms. At the same time, since the coloring procedure is repeat-
edly called as a subroutine in the B&B process, a comprise between the coloring
quality and the computing time needs to be reached.

Second, it is possible to take advantages of both exact and heuristic methods
and combine these two approaches. For instance, before the branch-and-bound
routine starts, we could use a highly effective local search procedure to obtain
some high quality initial solutions, which could be served then as lower bounds
of the main B&B algorithm. Such a combination was very recently investigated
in Maslov, Batsyn, & Pardalos (2014) and proves to be effective. In addition to
this loose combination, we can consider more subtle cooperation between these
two search methods. For instance, during the B&B process, for each active node
of the search tree, one can call a (fast) local search procedure which determines
a best possible path from the current node to the leaf of the search tree, leading
thus to a hopefully good lower bound of the maximum clique.

Other ways of integrating heuristics with exact methods can also be consid-
ered. For instance, information from high quality solutions found in several runs
of a heuristic can be used to define smaller problems solvable by an exact algo-
rithm. This is motivated by the observation that many optimization problems
show some type of “backbone” structure in the sense that high quality solutions
share a number of solution components with optimal solutions. We could use
an effective local search method to collect some high quality solutions, then fix
the vertices which are shared by all these high quality solutions. By excluding
the vertices which are adjacent to all these preserved vertices shared by the
high quality solutions, we obtain a subproblem which may be small enough to
be solved by exact algorithms. Notice that such an approach does not always
guarantee the completeness of the search.

7.2. Improving heuristic methods

As shown in Section 4.2, local search is the most popular and globally the
most effective heuristic approach for the clique problems. However, if we exam-
ine the existing local search algorithms on an individual base, we observe that
very few single algorithm dominates all the other algorithms. This happens be-
cause when the search operators used in an algorithm are suitable to explore the
structures of some graphs, these same operators may fail to handle other graphs
with quite different structures. One possible way to mitigate this deficiency
would be to incorporate multiple search operators or strategies within a single
algorithm and equip the algorithm with a capacity to dynamically decide the
most suitable operators to trigger during the search process. Moreover, it would
also be interesting to explore a portfolio approach using several algorithms.
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From the population-based search perspective, as discussed in Section 4.3,
the most effective algorithms of this family for the MCP are memetic meth-
ods which combine the genetic search framework and local search. Unfortu-
nately, these complex hybrid methods are often surpassed by simpler local search
heuristics for the MCP. One reason is that the recombination (crossover) op-
erators used in these algorithms are not really meaningful with respect to the
clique problem. On the other hand, it is now well acknowledged that with the
memetic framework, a carefully designed recombination operator, i.e., able to
recombine the “building blocks” of the given problem, constitutes a key factor
for the effectiveness of the algorithm (Hao, 2012). Consequently, an interesting
perspective to boost the performance of population-based search is to devise
dedicated recombination operators. For this purpose, it is necessary to obtain
a deep understanding of the properties and structures of the solutions in order
to identify meaningful building blocks. Dedicated recombination operators can
then be designed which can generate new promising solutions by blending prop-
erly existing solutions. Such an recombination operator will allow the memetic
algorithm to make a difference when it is combined with a powerful local search
procedure.

Finally, exact methods could be used to help the heuristics to visit promising
regions of the search space. For instance, as the maximum clique problem can be
formulated as an integer programming problem, its LP relaxation can be solved
easily by any LP solver. The resulting LP optimal solution could be a sources
of useful information. One possibility would be to fix some variables according
to the LP optimum and exclude them from the search space examined by the
heuristic method. Such a strategy helps the heuristic method to intensify its
search within more focuses areas.

To conclude, the maximum clique problem and its generalized and relaxed
variants are generic models which find more and more applications in numerous
domains. Advances in exact and heuristic methods for these clique problems will
help to find satisfying solutions to many practical problems. On the other hand,
studies of challenging real-world problems will encourage the development of
more effective solution methods. Given the increasing interest in clique problems
and their applications, it is reasonable to believe that research in these domains
will become even more intense and fruitful in the forthcoming years.
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memetic algorithm for the maximum diversity problem. Engineering Appli-
cations of Artificial Intelligence, 27, 103–114.

Warren, J.S., & Hicks, I.V. (2006). Combinatorial branch-and-bound for the
maximum weight independent set problem. Technical Report, Texas A&M
University.

Weide, O., Ryan, D., & Ehrgott, M. (2010). An iterative approach to robust
and integrated aircraft routing and crew scheduling. Computers & Operations
Research, 37(5), 833–844.

Wu, Q., & Hao, J.K. (2012a). Coloring large graphs based on independent set
extraction. Computers & Operations Research, 39(2), 283–290.

Wu, Q., & Hao, J.K. (2012b). An effective heuristic algorithm for sum coloring
of graphs. Computers & Operations Research, 39(7), 1593–1600.

Wu, Q., Hao, J.K. & Glover, F. (2012). Multi-neighborhood tabu search for
the maximum weight clique problem. Annals of Operations Research, 196(1),
611–634.

Wu, Q., & Hao, J.K. (2011). An adaptive multistart tabu search approach to
solve the maximum clique problem. Journal of Combinatorial Optimization,
26(1), 86–108.

Wu, Q., & Hao, J.K. (2013). A hybrid metaheuristic method for the maximum
diversity problem. European Journal of Operational Research, 231(2), 452–
464.

Xiang, J., Guo, C., & Aboulnaga, A. (2013). Scalable Maximum Clique Com-
putation Using MapReduce. IEEE 29th International Conference on Data
Engineering, 74–85.

44



Xu, K., Boussemart, F., Hemery, F., & Lecoutre, C. (2005). A simple model to
generate hard satisfiable instances. In Proceedings of the Nineteenth Interna-
tional Joint Conference on Artificial Intelligence (IJCAI-05), 337–342.

Xu, K., Boussemart, F., Hemery, F., & Lecoutre, C. (2007). Random con-
straint satisfaction: easy generation of hard (satisfiable) instances. Artificial
intelligence, 171(8–9), 514–534.

Yang, G., Yi, J., Zhang, Z., & Tang, Z. (2009). A TCNN filter algorithm to
maximum clique problem. Neurocomputing, 72(4–6), 1312–1318.

Zeng, Z., Wang, J., Zhou, L., & Karypis, G. (2007). Out-of-core coherent closed
quasi-clique mining from large dense graph databases. ACM Transactions on
Database System, 32(2): Article 13.

Zhang, Q., Sun, J., & Tsang, E. (2005). An evolutionary algorithm with guided
mutation for the maximum clique problem. IEEE Transactions on Evolution-
ary Computation, 9(2), 192–200.

Zuckerman, D. (2006). Linear degree extractors and the inapproximability of
max clique and chromatic number. In Proceedings of the 38th ACM Sympo-
sium on Theory of Computing, 681–690.

45


