R. Curtis, J. Goldhahn, R. Schwyn, P. Regazzoni, and N. Suhm, Fixation principles in metaphyseal bone-a patent based review, Osteoporos Int, vol.16, issue.2, pp.54-64, 2005.

L. Claes, A. Veeser, M. Gockelmann, U. Simon, and A. Ignatius, A novel model to study metaphyseal bone healing under defined biomechanical conditions, Arch Orthop Trauma Surg, vol.129, pp.923-928, 2009.

F. Shapiro, Bone development and its relation to fracture repair. The role of mesenchymal osteoblasts and surface osteoblasts, Eur Cells Mater, vol.15, pp.53-76, 2008.

P. Aspenberg, Drugs and fracture repair, Acta Orthop, vol.76, pp.741-748, 2005.

J. Goldhahn, J. M. Feron, J. Kanis, S. Papapoulos, J. Y. Reginster et al., Implications for fracture healing of current and new osteoporosis treatments: an ESCEO consensus paper, Calcif Tissue Int, vol.90, pp.343-353, 2012.

G. Zacchetti, R. Dayer, R. Rizzoli, and P. Ammann, Systemic treatment with strontium ranelate accelerates the filling of a bone defect and improves the material level properties of the healing bone, Biomed Res Int, p.549785, 2014.

U. Tarantino, M. Celi, L. Saturnino, A. Scialdoni, and I. Cerocchi, Strontium ranelate and bone healing: report of two cases. Clinical Cases Miner Bone Metab, Off Journal Ital Soc Osteoporos Miner Metab Skelet Dis, vol.7, pp.65-68, 2010.

D. N. Alegre, C. Ribeiro, C. Sousa, J. Correia, L. Silva et al., Possible benefits of strontium ranelate in complicated long bone fractures, Rheumatol Int, vol.32, pp.439-443, 2012.

K. E. Ozturan, B. Demir, I. Yucel, H. Cakici, F. Yilmaz et al., Effect of strontium ranelate on fracture healing in the osteoporotic rats, J Orthop Res : Off Publ Orthop Res Soc, vol.29, pp.138-142, 2011.

Y. F. Li, E. Luo, G. Feng, S. S. Zhu, J. H. Li et al., Systemic treatment with strontium ranelate promotes tibial fracture healing in ovariectomized rats, Osteoporos Int : J Established Result Coop Eur Found Osteoporos Natl Osteoporos Found USA, vol.21, pp.1889-1897, 2010.

B. Habermann, K. Kafchitsas, G. Olender, P. Augat, and A. Kurth, Strontium ranelate enhances callus strength more than PTH 1-34 in an osteoporotic rat model of fracture healing, Calcif Tissue Int, vol.86, pp.82-89, 2010.

J. Wang, X. Zhu, L. Liu, X. Shi, L. Yin et al., Effects of strontium on collagen content and expression of related genes in rat chondrocytes cultured in vitro, Biol Trace Elem Res, vol.153, pp.212-219, 2013.

Y. Henrotin, A. Labasse, S. X. Zheng, P. Galais, Y. Tsouderos et al., Strontium ranelate increases cartilage matrix formation, J Bone Miner Res : Off J Am Soc Bone Miner Res, vol.16, pp.299-308, 2001.

S. D. Bain, C. Jerome, V. Shen, I. Dupin-roger, and P. Ammann, Strontium ranelate improves bone strength in ovariectomized rat by positively influencing bone resistance determinants, Osteoporos Int : J Established Result Coop Eur Found Osteoporos Natl Osteoporos Found USA, vol.20, pp.1417-1428, 2009.

A. M. Parfitt, M. K. Drezner, F. H. Glorieux, J. A. Kanis, H. Malluche et al., Bone histomorphometry: standardization of nomenclature, symbols, and units. Report of the ASBMR Histomorphometry Nomenclature Committee, J Bone Miner Res, vol.2, pp.595-610, 1987.

L. C. Junqueira, G. Bignolas, and R. R. Brentani, Picrosirius staining plus polarization microscopy, a specific method for collagen detection in tissue sections, Histochem J, vol.11, pp.447-455, 1979.

D. Dayan, Y. Hiss, A. Hirshberg, J. J. Bubis, and M. Wolman, Are the polarization colors of picrosirius red-stained collagen determined only by the diameter of the fibers, Histochemistry, vol.93, pp.27-29, 1989.

P. Roschger, P. Fratzl, J. Eschberger, and K. Klaushofer, Validation of quantitative backscattered electron imaging for the measurement of mineral density distribution in human bone biopsies, Bone, vol.23, pp.319-326, 1998.

C. Gaudin-audrain, N. Irwin, S. Mansur, P. R. Flatt, B. Thorens et al., Glucose-dependent insulinotropic polypeptide receptor deficiency leads to modifications of trabecular bone volume and quality in mice, Bone, vol.53, pp.221-230, 2013.

J. Beuvelot, Y. Mauras, G. Mabilleau, H. Marchand-libouban, and D. Chappard, Adsorption and release of strontium from hydroxyapatite crystals developed in simulated body fluid (SBF) on poly (2-hydroxyethyl) methacrylate substrates, Dig J Nanomater Biostruct, pp.207-217, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00829784

G. E. Lloyd, Atomic number and crystallographic contrast images with SEM: a review of backscattered electron techniques, Mineralog Mag, vol.51, pp.3-19, 1987.

C. Lavet, A. Martin, and M. T. Linossier, Fat and sucrose intake induces obesity-related bone metabolism disturbances: kinetic and reversibility studies in growing and adult rats, J Bone Miner Res : Off J Am Soc Bone Miner Res, vol.31, pp.98-115, 2016.

M. Hadjiargyrou, F. Lombardo, S. Zhao, W. Ahrens, J. Joo et al., Transcriptional profiling of bone regeneration. Insight into the molecular complexity of wound repair, J Biol Chem, vol.277, pp.30177-30182, 2002.

G. Schmidmaier, B. Wildemann, B. Melis, G. Krummrey, A. Einhorn et al., Development and characterization of a standard closed tibial fracture model in the rat, Eur J Trauma, vol.30, pp.35-42, 2004.

M. Fisher, S. Hyzy, R. E. Guldberg, Z. Schwartz, and B. D. Boyan, Regeneration of bone marrow after tibial ablation in immunocompromised rats is age dependent, Bone, vol.46, pp.396-401, 2010.

L. Monfoulet, B. Rabier, O. Chassande, and J. C. Fricain, Drilled hole defects in mouse femur as models of intramembranous cortical and cancellous bone regeneration, Calcif Tissue Int, vol.86, pp.72-81, 2010.

L. G. Raisz and E. Seeman, Causes of age-related bone loss and bone fragility: an alternative view, J Bone Miner Res : Off J Am Soc Bone Miner Res, vol.16, pp.1948-1952, 2001.

M. A. Mcnulty, A. S. Virdi, K. W. Christopherson, K. Sena, R. R. Frank et al., Adult stem cell mobilization enhances intramembranous bone regeneration: a pilot study, Clin Orthop Relat Res, vol.470, pp.2503-2512, 2012.

J. K. Wise, K. Sena, K. Vranizan, J. F. Pollock, K. E. Healy et al., Temporal gene expression profiling during rat femoral marrow ablation-induced intramembranous bone regeneration, p.5, 2010.

P. Chavassieux, P. J. Meunier, J. P. Roux, N. Portero-muzy, M. Pierre et al., Bone histomorphometry of transiliac paired bone biopsies after 6 or 12 months of treatment with oral strontium ranelate in 387 osteoporotic women: randomized comparison to alendronate, J Bone Miner Res : Off J Am Soc Bone Miner Res, vol.29, pp.618-628, 2014.

R. R. Recker, F. Marin, and S. Ish-shalom, Comparative effects of teriparatide and strontium ranelate on bone biopsies and biochemical markers of bone turnover in postmenopausal women with osteoporosis, J Bone Miner Res : Off J Am Soc Bone Miner Res, vol.24, pp.1358-1368, 2009.

C. Fournier, A. Perrier, M. Thomas, N. Laroche, V. Dumas et al., Reduction by strontium of the bone marrow adiposity in mice and repression of the adipogenic commitment of multipotent C3H10T1/2 cells, Bone, vol.50, pp.499-509, 2012.

S. Peng, X. S. Liu, T. Wang, Z. Li, G. Zhou et al., In vivo anabolic effect of strontium on trabecular bone was associated with increased osteoblastogenesis of bone marrow stromal cells, J Orthop Res, vol.28, pp.1208-1214, 2010.

M. Komrakova, A. Weidemann, C. Dullin, J. Ebert, M. Tezval et al., The impact of strontium ranelate on metaphyseal bone healing in ovariectomized rats, Calcif Tissue Int, 2015.

S. L. Kates and C. L. Ackert-bicknell, How do bisphosphonates affect fracture healing?, Injury Suppl, vol.1, pp.65-73, 2016.

K. D. Stathopoulos, E. Giannitsioti, A. N. Fragkou, A. B. Zoubos, P. J. Papaggelopoulos et al., Strontium ranelate improves delayed healing of osteolytic lesions of the jaw in a man with chronic osteomyelitis. Case report. Clin Cases Miner Bone Metab, Off J Ital Soc Osteoporos Miner Metab Skelet Dis, vol.11, pp.77-81, 2014.

A. Doublier, D. Farlay, Y. Bala, and G. Boivin, Strontium does not affect the intrinsic bone quality at tissue and BSU levels in iliac samples from Macaca fascicularis monkeys, Bone, vol.64, pp.18-24, 2014.

G. Boivin, D. Farlay, M. T. Khebbab, X. Jaurand, P. D. Delmas et al., In osteoporotic women treated with strontium ranelate, strontium is located in bone formed during treatment with a maintained degree of mineralization, Osteoporos Int : J Established Result Coop Eur Found Osteoporos Natl Osteoporos Found USA, vol.21, pp.667-677, 2010.

M. Cattani-lorente, R. Rizzoli, and P. Ammann, In vitro bone exposure to strontium improves bone material level properties, Acta Biomater, vol.9, pp.7005-7013, 2013.

D. E. Heiner, M. H. Meyer, S. L. Frick, J. F. Kellam, J. Fiechtl et al., Gene expression during fracture healing in rats comparing intramedullary fixation to plate fixation by DNA microarray, J Orthop Trauma, vol.20, pp.27-38, 2006.

T. C. Brennan, R. Rizzoli, and P. Ammann, The mode of action of strontium ranelate involves the stimulation of IGF-I production and a decrease in signals for osteoclastogenesis in vivo, Bone, vol.44, p.236, 2009.

J. Jiang, A. C. Lichtler, G. A. Gronowicz, D. J. Adams, S. H. Clark et al., Transgenic mice with osteoblast-targeted insulin-like growth factor-I show increased bone remodeling, Bone, vol.39, pp.494-504, 2006.

M. Zhang, S. Xuan, and M. L. Bouxsein, Osteoblast-specific knockout of the insulin-like growth factor (IGF) receptor gene reveals an essential role of IGF signaling in bone matrix mineralization, J Biol Chem, vol.277, pp.44005-44012, 2002.

A. P. Kusumbe, S. K. Ramasamy, and R. H. Adams, Coupling of angiogenesis and osteogenesis by a specific vessel subtype in bone, Nature, vol.507, pp.323-328, 2014.

J. Street and M. Bao, Vascular endothelial growth factor stimulates bone repair by promoting angiogenesis and bone turnover, Proc Natl Acad Sci U S A, vol.99, pp.9656-9661, 2002.

K. Tatsuyama, Y. Maezawa, H. Baba, Y. Imamura, and M. Fukuda, Expression of various growth factors for cell proliferation and cytodifferentiation during fracture repair of bone, Eur J Histochem : EJH, vol.44, pp.269-278, 2000.

Z. Gu, H. Xie, L. Li, X. Zhang, F. Liu et al., Application of strontium-doped calcium polyphosphate scaffold on angiogenesis for bone tissue engineering, J Mater Sci Mater Med, vol.24, pp.1251-1260, 2013.

F. Liu, X. Zhang, X. Yu, Y. Xu, T. Feng et al., In vitro study in stimulating the secretion of angiogenic growth factors of strontiumdoped calcium polyphosphate for bone tissue engineering, J Mater Sci Mater Med, vol.22, pp.683-692, 2011.

S. G. Dahl, P. Allain, P. J. Marie, Y. Mauras, G. Boivin et al., Incorporation and distribution of strontium in bone, Bone, vol.28, pp.446-453, 2001.