Abstract : This paper presents a new open source Python framework for causal discovery from observational data and domain background knowledge, aimed at causal graph and causal mechanism modeling. The Cdt package implements an end-to-end approach, recovering the direct dependencies (the skeleton of the causal graph) and the causal relationships between variables. It includes algorithms from the 'Bnlearn' (Scutari, 2018) and 'Pcalg' (Kalisch et al., 2018) packages, together with algorithms for pairwise causal discovery such as ANM (Hoyer et al., 2009). Cdt is available under the MIT License at https://github.com/FenTechSolutions/CausalDiscoveryToolbox.
https://hal.univ-angers.fr/hal-02945539 Contributeur : Olivier GoudetConnectez-vous pour contacter le contributeur Soumis le : mardi 22 septembre 2020 - 13:56:14 Dernière modification le : jeudi 3 février 2022 - 11:14:51 Archivage à long terme le : : mercredi 23 décembre 2020 - 18:07:47