Accéder directement au contenu Accéder directement à la navigation
Communication dans un congrès

Kahler geometry and Burgers' vortices

Abstract :

We study the Navier-Stokes and Euler equations of incompressible hydrodynamics in two spatial dimensions. Taking the divergence of the momentum equation leads, as usual, to a Poisson equation for the pressure: in this paper we study this equation using Monge-Amp`ere structures. In two dimensional flows where the laplacian of the pressure is positive, a K¨ahler geometry is described on the phase space of the fluid; in regions where the laplacian of the pressure is negative, a product structure is described. These structures can be related to the ellipticity and hyperbolicity (respectively) of a Monge-Amp`ere equation. We then show how this structure can be extended to a class of canonical vortex structures in three dimensions.

Type de document :
Communication dans un congrès
Liste complète des métadonnées

https://hal.univ-angers.fr/hal-03031588
Contributeur : Okina Université d'Angers <>
Soumis le : lundi 30 novembre 2020 - 15:20:16
Dernière modification le : jeudi 3 décembre 2020 - 03:25:38
Archivage à long terme le : : lundi 1 mars 2021 - 19:28:12

Fichier

roulstone_et_al_2009_kahler_ge...
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-03031588, version 1
  • OKINA : ua65

Collections

Citation

Ian Roulstone, Bertrand Banos, J. Gibbon, Vladimir Roubtsov. Kahler geometry and Burgers' vortices. Ukrainian Mathematical Congress, Aug 2009, Kiev, Ukraine. pp.303 - 321. ⟨hal-03031588⟩

Partager

Métriques

Consultations de la notice

32

Téléchargements de fichiers

18