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We study a class of matrices with noncommutative entries, which
were first considered by Yu.l. Manin in 1988 in relation with quan-
tum group theory. They are defined as “noncommutative endomor-
phisms” of a polynomial algebra. More explicitly their defining con-
ditions read: (1) elements in the same column commute; (2) com-
mutators of the cross terms are equal: [M;j, My] = [My;, Mj] (e.g.
[M11, M22] = [M21, M12]). The basic claim is that despite noncom-
mutativity many theorems of linear algebra hold true for Manin
matrices in a form identical to that of the commutative case. More-
over in some examples the converse is also true, that is, Manin
matrices are the most general class of matrices such that linear
algebra holds true for them. The present paper gives a complete
list and detailed proofs of algebraic properties of Manin matrices
known up to the moment; many of them are new. In particular we
provide complete proofs that an inverse to a Manin matrix is again
a Manin matrix and for the Schur formula for the determinant of
a block matrix; we generalize the noncommutative Cauchy-Binet
formulas discovered recently arXiv:0809.3516, which includes the
classical Capelli and related identities. We also discuss many other
properties, such as the Cramer formula for the inverse matrix,
the Cayley-Hamilton theorem, Newton and MacMahon-Wronski
identities, Pliicker relations, Sylvester’s theorem, the Lagrange-
Desnanot-Lewis Carroll formula, the Weinstein-Aronszajn formula,
some multiplicativity properties for the determinant, relations with
quasideterminants, calculation of the determinant via Gauss de-
composition, conjugation to the second normal (Frobenius) form,
and so on and so forth. Finally several examples and open question
are discussed. We refer to [A. Chervov, G. Falqui, Manin matrices
and Talalaev’s formula, ]J. Phys. A 41 (2008) 194006; V. Rubtsov,
A. Silantiev, D. Talalaev, Manin matrices, elliptic commuting fam-
ilies and characteristic polynomial of quantum gl, elliptic Gaudin
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model, in press] for some applications in the realm of quantum

integrable systems.

© 2009 Elsevier Inc. All rights reserved.
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1. Introduction

It is well known that matrices with generically noncommutative elements do not admit a natural
construction of the determinant with values in a ground ring and basic theorems of the linear algebra
fail to hold true. On the other hand, matrices with noncommutative entries play a basic role in the
theory of quantum integrability (see, e.g. [31]), in Manin’s theory of “noncommutative symmetries”
[76], and so on and so forth. Further we prove that many results of commutative linear algebra can be
applied with minor modifications in the case of “Manin matrices”.

We will consider the simplest case of those considered by Manin, namely - in the present pa-
per — we will restrict ourselves to the case of commutators, and not of (super)-g-commutators, etc.
Let us mention that Manin matrices are defined, roughly speaking, by half of the relations of the
corresponding quantum group Fung(GL(n)) and taking q =1 (see Section 3.3).

Definition 1. Let M be an n x n’ matrix with elements M;; in (not necessarily commutative) ring R.
We will call M a Manin matrix if the following two conditions hold:

1. Elements in the same column commute between themselves.
2. Commutators of cross terms of 2 x 2 submatrices of M are equal:

[Mij, Mig] = [Myj, Myl, Vi, j, kI, e.g [M11, Maz2] = [Ma1, M12]. (11)

A more intrinsic definition of Manin matrices via coaction on polynomial and Grassmann algebras
will be recalled in Proposition 1 below. (Roughly speaking variables x; = Zj M;jjxj commute among
themselves if and only if M is a Manin matrix, where x; are commuting variables, also commuting
with elements of M).

In the previous paper [16] two of the authors have shown that Manin matrices have various ap-
plications in quantum integrability and outlined some of their basic properties. This paper is devoted
solely to algebraic properties providing a complete amount of facts known up to the moment. Quite
probably the properties established here can be transferred to some other classes of matrices with
noncommutative entries, for example, to super-q-Manin matrices (see [20]) and quantum Lax ma-
trices of most of the integrable systems. Such questions seems to be quite important for quantum
integrability, quantum and Lie groups, as well as in the geometric Langlands correspondence theory
[16,18]. But before studying these complicated issues, it seems to be worth to understand the sim-
plest case in depth, this is one of the main motivations for us. The other one is that many statements
are so simple and natural extension of the classical results, that can be of some interest just out of
curiosity or pedagogical reasons for wide range of mathematicians.
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1.1. Results and organization of the paper

The main aim of the paper is to argue the following claim: linear algebra statements hold true for
Manin matrices in a form identical to the commutative case. Let us give a list of main properties discussed
below. Some of these results are new, some - can be found in a previous literature: Yu. Manin has
defined the determinant and has proven a Cramer’s inversion rule, Laplace formulas, as well as Pliicker
identities; in S. Garoufalidis, T. Le, D. Zeilberger [39] the MacMahon-Wronski formula was proved;
M. Konvalinka [66,67] found the Sylvester’s identity and the Jacobi ratio’s theorem, along with partial
results on an inverse matrix and block matrices.! Some other results were announced in [16], where
applications to integrable systems, quantum and Lie groups can be found.

e Section 3.4: Determinant can be defined in the standard way and it satisfies standard properties,
e.g. it is completely antisymmetric function of columns and rows:

N
detM =det®'M= > " (-1)" [] Moa. (12)
n

oeSy i=1,...,

e Proposition 4: let M be a Manin matrix and N satisfies: Vi, j, k,I: [M;j, Niy] = 0:

det® (MN) = det® (M)det® (N). (1.3)

Let N be additionally a Manin matrix, then MN and M 4+ N are Manin matrices.
Moreover in case [M;jj, Ny # 0, but obeys certain conditions we prove (Theorem 6):

det (MY + Q diag(n — 1,n - 2,...., 1,0)) = det (M)det (Y). (14)

This generalizes [12] and the classical Capelli identity [11], here Q is a matrix related to the
commutators of M;;, Yy and diag(as, az, ..., a) is a diagonal matrix with a; on the diagonal.
e Section 4.1: Cramer’s rule:

M~!is a Manin matrix and Mi;l = (=) det® (M)~ et (My)). (1.5)

Here as usual 1\71”< is the (n — 1) x (n — 1) submatrix of M obtained removing the Ith row and the
kth column.

e Section 7.1: the Cayley-Hamilton theorem: det®(t — M)|;—p = O.

e Section 5.2: the formula for the determinant of block matrices:

det (’é g) = det®(A)det® (D — CA™'B) = det®(D)det™ (A — BD~'C). (1.6

Also, we show that D — CA~!B, A — BD~!C are Manin matrices. This is equivalent to the so-
called Jacobi ratio theorem, stating that any minor of M~! equals, up to a sign, to the product of
(det®'M)~! and the corresponding complementary minor of the transpose of M.

e Section 7.2: the Newton and MacMahon-Wronski identities between Tr MK, coefficients of
detwl(l —tM) and Tr(S¥M). Denote by o (t), S(t), T(t) the following generating functions:

1 These authors actually considered more general classes of matrices.
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M
o(t)=det”(1—tM), StO)= Y t*Trs*m, TO=Tr+— (1.7)

then: 1=0()S(t), —oro (t) =o ()T (1), o S(E) =T()S(). (1.8)

e Other facts are also discussed: Pliicker relations (Section 7.3), Sylvester’s theorem (Section 5.4),
Lagrange-Desnanot-Lewis Carroll formula (Section 4.2), Weinstein-Aronszajn formula (Sec-
tion 5.3), calculation of the determinant via Gauss decomposition (Section 7.4), conjugation to
the second normal (Frobenius) form (Section 7.1), some multiplicativity properties for the deter-
minant (Proposition 8), etc.

e Section 8.2: The matrix (Leningrad) notations form of the definition:

M is a Manin matrix (1.9)

¢ [M®1,1T®M]=PM®1,1Q M] (1.10)
1-P 1-P 1-P

( 5 )(M®1)(1®M)( 2 )=( 5 )(M®1)(1®M). (111)

e No-go facts: M¥ is not a Manin matrix; elements Tr(M), detwl(M), etc. are not central. Moreover
[Tr(M), det (M)] # 0 (Section 3.6.1); det!(eM) ™) det® (1 + M) # T INA+M) (Section 12).

We also discuss relations with the quantum groups (Section 3.3) and mention some examples
which are related to integrable systems, Lie algebras and quantum groups (Section 3.7).

Few more comments about the internal structure of the paper: Section 3 contains main defini-
tions and properties. This material is crucial for what follows. The other sections can be read in an
arbitrary order. We tried to make the exposition in each section independent of the others at least at
formulations of the main theorems and notations. Though the proofs sometimes use the results from
the previous sections. The short Section 2 is a kind if warm-up, which gives some simple examples
to get the reader interested and to demonstrate some of results of the paper in the simplest possible
case of 2 x 2 matrices. The content of each section can be read in the table of contents.

1.2. Context, history and related works

Manin matrices first appeared in [76], see also [21,75,77,78], where some basic facts like the de-
terminant, Cramer’s rule, Pliicker identities etc. were established. The lectures [76] is the main source
on the subject. Actually Manin’s construction defines “noncommutative endomorphisms” of an arbi-
trary ring (and in principle of any algebraic structure). Here we restrict ourselves with the simplest
case of the commutative polynomial ring C[x1, ..., X;], its “noncommutative endomorphisms” will be
called Manin matrices. Some linear algebra facts were also established for a class of “good” rings (we
hope to develop this in future). The main attention and application of the original works were on
quantum groups, which are defined by “doubling” the set of the relations. The literature on “quantum
matrices” (N. Reshetikhin, L. Takhtadzhyan, L. Faddeev) [98] is enormous - let us only mention [25,69]
and especially D. Gurevich, A. Isaev, O. Ogievetsky, P. Pyatov, P. Saponov papers [53,97], where related
linear algebra facts has been established for various quantum matrices.

Concerning “not-doubled” case let us mention the papers S. Wang [115], T. Banica, J. Bichon,
B. Collins [4]. They investigate Manin’s construction applied to finite-dimensional algebras for ex-
ample to C" (quantum permutation group). Such algebras appears to be C*-algebras and are related
to various questions in operator algebras. Linear algebra of such matrices is not known, (and, maybe
it does not exist at all).

The simplest case which is considered here was somehow forgotten for many years after Manin’s
work (see however [99,100]). The situation changed after S. Garoufalidis, T. Le, D. Zeilberger [39], who
discovered MacMahon-Wronski relations for g-Manin matrices. This result was followed by a flow of
papers [28,36,54,68] etc.; let us in particular mention M. Konvalinka [66,67] which contains Sylvester’s
identity and Jacobi’s ratio theorem, along with partial results on an inverse matrix and block matrices.
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We came to this subject from another other direction. In [16] we observed that some examples of
quantum Lax matrices in quantum integrability are exactly examples of Manin matrices. Moreover lin-
ear algebra of Manin matrices appears to have various applications in quantum integrability, quantum
and Lie group theories. Numerous other quantum integrable systems provide various examples of ma-
trices with noncommutative elements - quantum Lax matrices. This rises the question how to define
the proper determinant and to develop linear algebra for such matrices. And, more generally does a
proper notion of determinant exist? If yes, how to develop linear algebra? Such questions seem to be
quite important for quantum integrability: they are related to the notion of “quantum spectral curve”
which promises to be a key concept in the theory [17-20,102]. Manin’s approach, applied for more
general rings, provides classes of matrices where such questions can be possibly resolved. However
we must remark that many examples from integrable systems do not fit in this approach.

From a more general point of view we deal with the question of the linear algebra of matrices with
noncommutative entries. It should be remarked that the first appearance of a determinant for matri-
ces with noncommutative entries goes back to A. Cayley. He was the first who had applied the notion
of what we call a column determinant in the noncommutative setting. (We are thankful to V. Retakh
for this remark). Let us mention the initial significative difference between our situation and the work
I. Gelfand, S. Gelfand, V. Retakh, R. Wilson [45], where generic matrices with noncommutative entries
are considered. There is no natural definition of the determinant (n® of “quasi-determinants” instead)
in the “general noncommutative case” and their analogs of the linear algebra propositions are some-
times quite different from the commutative ones. Nevertheless their results of can be fruitfully applied
to some questions here. Our approach is also different from the classical theory of ]. Dieudonné [22]
(see also [1]), since in this theory the determinant is an element of the quotient C*/[K*, K*], where
K* is the multiplicative group of non-zero elements of the basic ring X, while for Manin matrices
the determinant is an element of the ring /C itself.

We provide more detailed bibliographic notes in the text but we would like to add, as a general
disclaimer, that our bibliographic notes are neither exhaustive nor historically ordered. We simply
want to comment those papers and books that are more strongly related to our work.

We refer to “The Theory of Determinants in the Historical Order of Development” [86] for the early
history of many results, which generalization to the noncommutative case are discussed below.

1.3. Remarks

In [39,66,67] the name “right quantum matrices” was used, in [71,99,100] the names “left” and
“right quantum group”, in [12] the name “row-pseudo-commutative”. We prefer to use the name
“Manin matrices”.

All the considerations below work for an arbitrary field of characteristic not equal to 2, but we
prefer to restrict ourselves with C.

In subsequent papers [20] we plan to generalize the constructions below to the case of the Manin
matrices related to the more general quadratic algebras as well as there applications to quantum
integrable systems and some open problems.

2. Warm-up 2 x 2 examples: Manin matrices “everywhere”

Here we present some examples of the appearance of the Manin property in various very sim-
ple and natural questions concerning 2 x 2 matrices. The general idea is the following: we consider
well-known facts of linear algebra and look how to relax the commutativity assumption for matrix
elements such that the results will be still true. The answer is: if and only if M is a Manin matrix.

This section is a kind of warm-up, we hope to get the reader interested in the subsequent material
and to demonstrate some results in the simplest examples. The expert reader may wish to skip this
section.

Let us consider a 2 x 2 matrix M:

M= (‘5 Z) : (2.1)
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From Definition 1, M is a “Manin matrix” if the following commutation relations hold true:

e column-commutativity: [a,c] =0, [b,d] =0;
e equality of commutators of the cross-term: [a, d] = [c, b].

The fact below can be considered as Manin’s original idea about the subject.

Observation 1 (Coaction on a plane). Consider the polynomial ring C[x1, x2], and assume that the ma-
trix elements a, b, c,d commute with x1, x,. Define X1,%; by (:;) = (Z 3)(;‘;) Then %;,X, commute
among themselves iff M is a Manin matrix.

Proof.

[X1, %] = [ax1 + bxa, cx1 +dx2] = [a, c]x2 + [b,d]x3 + ([a,c] + [b,d)x1x2. O  (2.2)

Similar fact holds true for Grassmann variables (see Proposition 1 below).

Observation 2 (Cramer rule). The inverse matrix is given by the standard formula M~! = adlcb (i ;b)
iff M is a Manin matrix.
Proof.
d —b\({a b\ _ (da-bc db — bd (2.3)
—c a c d)  \—ca+ac —cb+ad ’
. . . . ad —cb 0
=iff M is a Manin matrix = ( 0 ad — cb) . a (2.4)

Observation 3 (Cayley-Hamilton). The equality M? — (a + d)M + (ad — cb)12x2 = 0 holds iff M is a
Manin matrix.

Proof.
M? — (@ +d)M + (ad — ch) 13,2
_(a*+bc ab+bd\ (a*+da ab+db L (ad—cb 0
“\ca+dc ch+d? ac+dc ad+ d? 0 ad —cb

__ ((bc—da)+ (ad —cb) bd—db\ (la,d]—[c,b] [b,d] (2.5)
o ca—ac 0 o [c,a] 0o /) ’
This vanishes iff M is a Manin matrix.

Let us mention that similar facts can be seen for the Newton identities, but not in such a strict
form (see Example 12).

Observation 4 (Multiplicativity of determinants (Binet Theorem)). det® (MN) = det®® (M)det(N) holds
true for all C-valued matrices N iff M is a Manin matrix.

det®(MN) — det® (M)det(N) = [M11, M21]N11N12 + [M12, M22]N21 Na»
+ (IM11, M22] — [M21, M12])N21 N12. (2.6)
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here and in the sequel, detwl(X) is the column-determinant: X11X22 — X21 X712, i.e. elements from the
first column stand first in each term.

2.1. Further properties in 2 x 2 case
Let us also present some other properties of 2 x 2 Manin matrices.

It is well known that in commutative case a matrix can be conjugated to the so-called Frobenius
normal form. Let us show that the same is possible for Manin matrices, see also Section 7.1.

Observation 5 (Frobenius form of a matrix).

1 0 a b 1 0 -1 0 1
(a b) (C d) (a b) - <—(ad —ch) a+ d) J (2.7)
iff [d,al =1[b,c] and db = bd.

Here it is enough to use two of three Manin’s commutation relations. We shall see also the role
the third relation in Example 11 of Section 7.

Let us denote the matrix in the right-hand side of (2.7) by Mg, and the first matrix at the left-
hand side by D.

To see that (2.7) is true we just write the following.

1 0\(fa b a b
DM = (a b) (c d> - (az +bc ab+ bd) : (2.8)
0 1 1 0 a b
Merop D = <—(ad —cb) a+ d) (a b) - (—(ad —ch)+a?+da ab+ db) (2.9)

a b
N (a2 +bc+(Id,a] - [b,cl) ab+bd+Id, b]) - (2.10)

Observation 6 (Inversion). The two sided inverse of a Manin matrix M is Manin, and det®(M~!) =
(detM)~1.

See Theorem 1 and Corollary 2.

Proof. Let us briefly prove this fact. From the Cramer’s rule above, one knows the formula for the left
inverse, which by assumption is also the right inverse. To prove the theorem one only needs to write
explicitly that the right inverse is given by Cramer rule and the desired commutation relations appear
automatically. Explicitly, from Cramer’s formula (see Observation 2) we see that:

1 d —b\fa b 10
ad—cb(—c a)(c d>=<0 1)' (2.11)

One knows that if both left and right inverses exist then associativity guarantees that they coincide:
a,’l = a,’l(aar‘l) = (al’la)ar‘1 = ar‘l. So assuming that the right inverse to A exists, and denoting
ad — cb = § we have:

1 0\_(a by (d -b)_ (@ d=b@'c —a®)'b+b®)a
(0 1>_<C d>(8 )<—C a>_(c(6)_ld—d(8)_]c —c(®)b+d@®)la) (212)
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Let us multiply the identity above by §~! on the left. We have:

@ T=©®)"aG)"'d— (8)"'b(8)"c, element(1,1), (213)

& T==©®""c® b+ ()"'d@) 'a, element (2,2). (2.14)

So we see that (det® (M))~! equals to det®(M~1) and the last does not depend on the ordering of
columns.
Moreover, equating (2.13) to (2.14) yields

@ a@®)d =) le==)"Tc@®) b+ )" 1d() a, (2.15)
hence: [(8)7'a, (8)"'d]=[(®)""b, §)"'c]. (2.16)

So the commutators of the cross-terms of M~ are equal.
From the non-diagonal elements of equality 2.12 multiplied on the left by §~! we have:

&) 'e®'d— (7' 'e=0, @ 'a@®) b+ )"b©G)'a=0,
hence: [(8)7'c, (7 'd]=0, [®)'a. (8 'b]=0. (217)

So we also have the column commutativity of the elements of M~!. Hence the proposition is proved
in2x2case. O

Observation 7 (A puzzle with det® (M) =1). Let M be a 2 x 2 Manin matrix, suppose that det® (M)
is central element and it is invertible (for example det“’l(M) =1). Then all elements of M commute
among themselves.

From the Observation 6 above one gets that

Ml—_ L+ (d -b (2.18)
~ det©l(my \—¢ @ '

is again a Manin matrix. This gives the commutativity of all elements. It is quite a surprising fact that
imposing only one condition we “kill” the three commutators: [a, b], [a, d] = [c, b], [c, d].

3. Manin matrices. Definitions and elementary properties

In this section we recall the definition of Manin matrices and describe their basic properties in
the general (n x n) case. The material is rather a simple one, but it is necessary for the sequel. First
we will give an explicit definition of Manin matricesin terms of commutation relations, and then we
will provide a more conceptual point of view which defines them by the coaction property on the
polynomial and Grassmann algebras. (This is the original point of view of Manin.) We also explain the
relation of Manin matrices with quantum groups. As it was shown by Yu. Manin there exists a natural
definition of the determinant which satisfies most of the properties of commutative determinants;
this will be also recalled below. The main reference for this part is Yu. Manin’s book [76], as well as
[21,75,77,78].
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3.1. Definition

Definition 2. Let us call a matrix M with elements in an associative ring /C a “Manin matrix” if the
properties below are satisfied:

e elements which belong to the same column of M commute among themselves;
e commutators of cross terms are equal: Vp,q,k,l [Mpq, Myl = [Myq, Mp], eg. [Mi1, M22] =
[M21, M12], [M11, Mak] = [M21, Myg].

Remark 1. The second condition for the case g =1 obviously implies the first one. Nevertheless we
deem it more convenient for the reader to formulate it explicitly.
The conditions can be restated as: for each 2 x 2 submatrix:

of M it holds [a, d] = [c, b], [a,c]=0=[b,d]. (3.1)

Obviously, by a “submatrix” we mean a matrix obtained as an intersection of two rows (i.e. straight
horizontal lines, no decline) and two columns (i.e. straight vertical lines, no decline).

Remark 2. These relations were written by Yu. Manin [76] (see Chapter 6.1, Formula 1, page 37).
Implicitly they are contained in Yu. Manin [75] - the last sentence on page 198 contains a definition
of the algebra end(A) for an arbitrary quadratic Koszul algebra A. One can show (see the remarks on
the page 199 top) that end(C[x, ..., X;]) is the algebra generated by M;;.

Remark 3. Actually, a matrix M such that its transposed M! is a Manin matrix satisfies the same
properties like Manin matrices do with some obvious modifications.

We will explicitly consider this class of M.

3.1.1. Poisson version of Manin matrices

Definition 3. An algebra KC over C is called a Poisson algebra, if it is a commutative algebra, endowed
with a bilinear antisymmetric operation, denoted as {*, *} : R® R — R and called a Poisson bracket,
such that the operation satisfies the Leibniz and the Jacobi identities (i.e. Vf,g,h e R: {fg,h} =

fle.hy+{f.hjg {f.{g. h}} +{g.th. f1} + {h.{f. g} =0)

Definition 4. We call “Poisson-Manin” a matrix M with elements in the Poisson algebra /C, such that
{Mij, My} = {Myj, My}.

We briefly discuss Poisson-Manin matrices in Section 8.3.
3.2. Characterization via coaction. Manin’s construction

Here we recall Manin’s original definition. It provides a conceptual approach to Manin matrices.
Let us mention that the construction below is a specialization of Manin’s general considerations. (See
Yu. Manin [75-77].)
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Proposition 1. Coaction. Consider a rectangular n x m-matrix M, the polynomial algebra Cl[xy, ..., Xn]
and the Grassmann algebra C[yrq, ..., Y] (ie. wiz =0, Yy = —v;v;); let x; and ; commute with Mpq:
Vi, p, q: [Xi, Mpgl =0, [, Mpq] = 0. Consider new variables X;, 1/},':

)~(1 M1 ... Minp X1 N B M1 ... Min
= . W Um) =@ Y) o
Xn M,ﬂ Mnm Xm Mn] Mnm

(3.2)
Then the following three conditions are equivalent:

e M is a Manin matrix,
e the variables X; commute among themselves: [X;, X;] =0,
o the variables ; anticommute among themselves: ¥ i+ 0 j ¥ =0.

Remark 4. The conditions 1},2 =0 are equivalent to column commutativity, and vﬁilﬁj = —151151'. i<j,
to the cross term relations.

3.3. g-analogs and RTT = TTR quantum group matrices

One can define g-analogs of Manin matrices and characterize their relation to quantum group
theory. Actually g-Manin matrices are defined by half of the relations of the corresponding quantum
group Funq(GLn)2 [98]. The remaining half consists of relations insuring that also M! is a q-Manin
matrix.

Definition 5. Let us call an n x n’ matrix M by g-Manin matrix, if the following conditions hold true.
For any 2 x 2 submatrix (Mjj i), consisting of rows i and k, and columns j and | (where 1 <i <k <n,
and 1< j<I<n):

M ... My ... ... a ... b
Mg ... Mg ... ... ¢ ... d
the following commutation relations hold:
ca=qac (g-commutation of the entries in a column), (3.4)
db =qbd (g-commutation of the entries in a column), (3.5)
ad —da = +q~'cb — gbc (cross commutation relation). (3.6)
In terms of M;;j this reads (i <k, j <1):
MyjM;j = qM;jMy;, M;ijMyy — MuMij = ¢~ My;My — QM M. (3.7)

For g =1 this definition reduces to the Definition 2 of Manin matrices.

2 More precisely we should write Fung(Maty), since we do not localize the g-determinant.
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Definition 6. An n x n matrix T belongs to the quantum group Fung(GLy) if the following conditions
hold true. For any 2 x 2 submatrix (Tjj ), consisting of rows i and k, and columns j and I (where
1<i<k<nand1<j<I<n):

Ty oo To | [ @ b
Tyj oo T ... .o¢c ... d
the following commutation relations hold:
ca=qac (q-commutation of the entries in a column), (3.9)
db =qbd (gq-commutation of the entries in a column), (3.10)
ba =qab (g-commutation of the entries in a row), (311)
dc =qcd (g-commutation of the entries in a row), (3.12)
ad —da= +q_1cb —gbc (cross commutation relation 1), (313)
bc =cb (cross commutation relation 2). (3.14)

As quantum groups are usually defined within the so-called matrix (Leningrad) formalism, let us
briefly recall it. (We will further discuss this issue in Section 8).

Lemma 1. The commutation relations for quantum group matrices can be described in matrix (Leningrad)
notations as follows:

RT®1ART)=NQT)(T®1R, (3.15)

where R-matrix can be given, for example, by the formula:

R=q' ) Ei®Ei+ Y 6  Ei®Ej+(@'—q) Y. Ej®E; (316)
i=1,...n i, j=1,.m ] i j=1,.n50> ]

where E;; are standard matrix units — zeroes everywhere except 1 in the intersection of the ith row with the
jth column.

For example in 2 x 2 case the R-matrix is:

q! 0 0 0
0 1 0 0

R=1] g 1 0 (3.17)
0 0 0 gq!

Remark 5. This R-matrix differs by the change g — q~! from the one in [98], formula 1.5, page 185.

The relation between g-Manin matrices and quantum groups consists in the following simple
proposition:
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Proposition 2. A matrix T is a matrix in the quantum group Fung(GLy) if and only if T and simultaneously
the transpose matrix T* are g-Manin matrices.

So one sees that Manin matrices can be seen as characterized by a “half” of the conditions that
characterize the corresponding quantum matrix group.

g-Manin matrices can be characterized by the coaction on a g-polynomial and a g-Grassmann
algebra in the same way as in g =1 case. Here is the analogue of Proposition 1.

Proposition 3. Consider a rectangular n x m-matrix M, the q-polynomial algebra C[xq, ..., Xn], where
Vi < ji xixj = q7'xjx;, ie. Vi, j: xixj = q¢¥"~Dx;x; and the q-Grassmann algebra C[yr, ..., ym] (ie.
Y2 =0,yivj = —qy;¥i for i < j;ie Vi, j: Yy = —q "Dy y); suppose x; and y; commute with
the matrix elements Mpq. Consider the variables X;, V; defined by:

X1 Mi1 ... Mim X1 M1 ... Min

= o WY =@,y ]
Xn Mn1 Mnm Xm Mm Mnm

(3.18)

that is the new variables are obtained via left action (in the polynomial case) and right action (in the Grassmann
case) of M on the old ones. Then the following three conditions are equivalent:

e The matrix M is a g-Manin matrix.
o The variables X; q-commute among themselves: Vi < j: XiXj = q~ X%, i.e. ¥i, j: %X = = qi-Dz.% iXi.
e The variables ; g-anticommute among themselves: 1//2 =0,V 1/7 = —q1/IJI//1, for i < j;ie Vi, j:

wle =—q —sgn(i— Dl[fﬂlfz'

The conditions /2 = 0 are equivalent to the relations (3.4), (3.5), and the conditions ;yj =
—q¥j¥i, i < j, are equivalent to the relations (3.6).

We plan to discuss q-Manin matrices and some of their applications in the theory of integrability
in a subsequent publications (see [20]).

3.4. The determinant

Here we recall a definition of the determinant following Manin’s ideas. It is well known that, for
generic matrices over a noncommutative ring (possibly, algebra), one cannot develop a full theory of
determinants with values in the same ring. However, for some specific matrices there may exist a
“good” notion of determinant. In particular for Manin matrices one can define the determinant just
taking the column expansion as a definition. Despite its simplicity such a definition is actually a good
one. It satisfies almost all the properties of the determinants in the commutative case and is con-
sistent with the other concepts of noncommutative determinants (quasideterminants of I. Gelfand, V.
Retakh [43] (see Section 4.1.1) and Dieudonné [22] determinant). Lemma 2 provides a more concep-
tual approach to the notion of determinant. It states that the determinant equals to a coefficient of
the action on the top form, exactly in the same as in the commutative case.

Definition 7. Let M be a Manin matrix. Define the determinant of M by column expansion:

%
detM =det®'M= > " (-1)" [] Moa. (3.19)

o€Sy i=1,...,n
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where S, is the group of permutations of n letters, and the symbol ~ means that in the product
[Ti=1....n Mo),i one writes at first the elements from the first column, then from the second column
and so on and so forth.

Example 1. For the case n = 2, we have

det® (Z Z) def 0d — b ™3 g — pe. (3.20)

The second equality is a restatement of the second condition of Definition 2.

Let us now recall the setting of Section 3.2. Consider a Grassmann algebra C[vy,..., ¥;]
(ie. wiz =0, yiy¥j = —v¥;jyi); let ¥; commute with Mpg: Vi, p, q: [¥i, Mpq] = 0. Consider the new
variables V;:

B B Mi1 ... My,
W, ¥ =W, ¥ |- . (3.21)
Mp ... Mpm
By Proposition 1 we have that
Vit = —Vvi. (3.22)

Lemma 2. For an arbitrary matrix M (not necessarily a Manin matrix) it holds:

detCOI(M)wl /\,‘./\1//,.[:&-1 /\/\'(Z'n (323)

If M is a Manin matrix, it is true that:

VpeSn det®™ M)y A AP = (—DF Py A AT (3.24)
The proof is straightforward.

Lemma 3. The exchange of any two columns in a Manin matrix changes only the sign of the determinant.
More generally: an arbitrary permutation p of columns changes the determinant only by multiplication by
(—1)%8"P), that is, the determinant is a fully antisymmetric function of columns of a Manin matrix.

This property is specific for Manin matrices. For generic matrices the column determinant can be
defined, but it does not satisfy this basic property.

Proof of Lemma 3. Let us denote a Manin matrix by M and by MP the matrix obtained by the
permutation of columns with respect to the permutation p € Sy. It is quite easy to see that for an
arbitrary matrix M, (not necessarily a Manin matrix) it is true that:

Up) A= A Pp = det® (MP) g A= A Y. (3.25)

For Manin matrices due to anticommutativity of ¥; (which is guaranteed by Proposition 1) &p(l) A
AU = (=18 Py A - A g, which equals to (—1)Pdet® M)y A --- A ¢, by Lemma 2. So we
conclude that det® (MP) = (—1)%"P) det® (M), for an arbitrary permutation p € Sp. O
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Another proof of this fact goes as follows. Since any permutation can be presented as a product
of transpositions of neighbours (i,i+ 1) it is enough to prove the proposition for such transpositions.
But for them it follows from the equality of the commutators of cross elements (formula (1.1)).

Lemma 4. The exchange of two rows in an arbitrary matrix (not necessarily a Manin matrix) changes only
the sign of det'. Also if two rows in a matrix M coincide, then det (M) = 0. Also, one can add any row
to another row and this does not change the determinant. More generally one can add a row multiplied by a
scalar (or more generally multiplied by an element which commutes with M;;) and the same is true.

The proof of these statements is immediate. Let us stress that no conditions of commutativity is
necessary.
The lemmas above imply the following:

Corollary 1.

1. Assume that two columns or two rows in a Manin matrix M coincide, then det“’l(M) =0.

2. One can add any column of a Manin matrix to another column and this does not change the determinant.
More generally one can add a column multiplied by a scalar (or more generally multiplied by an element
which commutes with M;;) and the same is true.

3. One can easily see that any submatrix of a Manin matrix is a Manin matrix. So one has natural definition
of minors and again one can choose an arbitrary order of columns (rows) to define minors.

4, The determinant of a Manin matrix does not depend on the order of columns in the column expansion, i.e.

(%
VpeSy det®M=Y" (-1 [] Moy pi- (3.26)

oeS, i=1,...,n

Proposition 4. Multiplicativity. Let A be a Manin matrix and A’ a generic matrix with elements in the same
ring IC. Suppose that all elements of A" commute with all elements of A, ie. Vi, j, k,I: [Ajj, Aj;] = 0. Then

det'(AA") = det (A)det®! (A"). If A’ is also a Manin matrix, then AA’ is a Manin matrix.

Remark 6. If A, B are the matrices such that Vi, j, k,I[A;j, Bi] = 0, (for example B is a C-valued
matrix), it nevertheless does not follow that det® (AB) = det(A)det®(B), even in 2 x 2 case.

Proof. The proposition is a direct consequence of the coaction characterization of Manin matrices
(Proposition 1) The details are as follows.

Consider the Grassmann algebra A[y, ..., V] and introduce ¥, ..., ¥y, 1;1, e 1/:/n as

. . A1 ... Amn
(¢1,---7Wn)=(1ﬁ1,---,¢n) s

Aml ... Am

. . ) (A AL
W1, ¥ =W, | - . (3.27)

I I
Anl Anm
It is easy to see that (see Lemma 2):

U1 A AT = det® (A) gy A A Y (3.28)

This equality does not require anything except anticommutativity of v; and [A;j, ¥;] = 0. (In particular
we do not need A to be a Manin matrix). However, when A is a Manin matrix, by Proposition 1, ¥;
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also anticommute; since we require that Vi, j, k,I: [Aj;, A,’d] =0 and [y, Al’d] =0, we can use the
same lemma again:

G1 A A = det® (A) g A - A . (3.29)

Using 3.28:

U1 Ao AT = det® (A))det (A)yy A - A Y. (3.30)

On the other hand one can apply Lemma 2 directly to the product (A’A):

1A A =det (A A)gy A A Y (3.31)

Combining the equalities one gets det (A’A) = det (A’)det®! (A), which is equal to det® (A)det®! (A")
since Vi, j, k, I: [Ajj, Aj;1=0. So the first part of the proposition is proved.

Whenever A’ is a Manin matrix as well, one sees that v/; are again Grassmann variables (Proposi-
tion 1). On the other hand ¥; = > 1 ¥i1(AA")};. So by the same proposition AA’ is a Manin matrix. O

We can also argue det® (AA’) = det® (A)det (A’) in more direct way. One should observe that all
elements of det(A)det® (A’) are contained in det® (AA’), but generally written in different order -
the property that det'(A) does not depend on the order of column expansion provides that one can
reorder in an appropriate way. The property of the column commutativity of elements of A provides
that unwanted terms in det® (AA’) cancel each other.

We have already seen (Observation 4) that in 2 x 2 case det® (AA") = det® (A)det®! (A’) for any
A’ implies that A is a Manin matrix. The straightforward generalization is not true in n x n case.
Indeed, consider a matrix A such that all elements in some row are equal to zero. Then, clearly
det® (A) = 0 = det® (AA’) for any matrix A’. In 2 x 2 case any matrix with row of zeroes is a Manin
matrix, however this is clearly not true for 3 x 3 matrices, etc. However for generic enough matrices
A, such that det®(A) = det(AA’) for any C-valued A/, it is true that A is a Manin matrix. This
can be seen considering A’ to be transposition matrices and matrices 1 + Eji;1, where as usually
E;; matrix unit with zeroes everywhere except 1 at position (ij). However we do not know how to
formulate this “generality condition” in a compact form.

Remark 7. Since det® M’ = det™"M, where det™M =Y, s (~1)° [T;_1.._, Mis (). the statements
above can be easily reformulated for the case M! is a Manin matrix.

3.5. The permanent

The permanent of a matrix is a polylinear function of its columns and rows, similar to the de-
terminant, without sign factors (—1)%8"() in its definition. We will make use of it in Section 7.2.2
below.

3

Definition 8. Let M be a Manin matrix. We define its permanent by row expansion’ as

N
permM = perm™“M = Z H Mio iy, (332)

3 Remark the difference with the definition of the determinant, where one uses column expansion.
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Lemma 5. The permanent of a Manin matrix does not depend on the order of rows in the row expansion:
N
Vp (S Sn, permm""M = Z l_[ Mp(i)g'(p(i)), (3.33)

or, in the other words, the permanent of a Manin matrix does not change after arbitrary permutation of rows
in a matrix M:

Vp €Sy, perm™“M =perm™"“MP, (3.34)
where MP is a matrix obtained by the p-permutation of rows in matrix M.

Proof. Since any permutation can be presented as a product of transpositions of neighbours (i,i + 1)
it is enough to prove the proposition for such transpositions. But for them it follows from the equality
of the commutators of cross elements (formula 1.1). O

Example 2.

perm™% (g Z) & 0d + be=da + ch, (3.35)
where the last equation follows both form the lemma above and from the very definition of Manin
matrix.

Remark 8. It is easy to see that the row-permanent of an arbitrary matrix M (even without conditions
of commutativity) does not change under any permutation of columns.

3.6. Elementary properties

Let us herewith collect some properties described above, that are simple consequences of the
definition of Manin matrix.

. Any matrix with commuting elements is a Manin matrix.

. Any submatrix of a Manin matrix is again a Manin matrix.

If A, B are Manin matrices and Vi, j, k,I: [Ajj, By] =0, then A+ B is again a Manin matrix.

. If A is a Manin matrix, c is a scalar, then cA is a Manin matrix.

. If A is a Manin matrix, C is scalar matrix, then CA and AC are Manin matrices and det®(CA) =

det!(AC) = det®!(C)det*! (A).
. If A,B are Manin matrices and Vi, j,kI: [Ajj, Byl =0, then AB is a Manin matrix and
det® (AB) = det®!(A)det!(B). (Proposition 4).

7. If A is a Manin matrix, then one can exchange the ith and the jth columns (rows); one can
put ith column (row) on jth place (erasing jth column (row)); one can add new column (row)
to matrix A which is equal to one of the columns (rows) of the matrix A; one can add the
ith column (row) multiplied by any constant to the jth column (row); in all cases the resulting
matrix will be again a Manin matrix.

8. If A and simultaneously A’ are Manin matrices, then all elements A;; commute with each other.

(A g-analog of this lemma says that if A and simultaneously A’ are g-Manin, then A is quantum
12 2

1
matrix: “RAA = A AR” (see Yu. Manin [75,76]).)

9. The exchange of two columns in a Manin matrix changes the sign of the determinant. If two
columns or two rows in a Manin matrix M coincide, then detc"l(M) =0.

)]

This has been already discussed in Corollary 1.
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3.6.1. Some No-Go facts for Manin matrices
Let M be a Manin matrix with elements in the associative ring /C.

/(M) is not a central element of /.

Fact. In general de
Remark 9. This should be compared with the quantum matrix group Fung(GLy), where dety is central.
The reason why this property does not hold for Manin matrices is that their defining relations are half
of those of quantum matrix groups.

Fact. In general [Tr Mk, Tr M™] 0, [Tr M, det® (M)] 5 0.
Remark 10. Taking traces of powers of Lax matrices is the standard procedure for obtaining commut-
ing integrals of motion for integrable systems. Indeed, Manin’s conditions (or their g-analogs) do not

imply commutativity of traces. Although the concept of Manin matrix is related with (quantum) in-

tegrable systems, for this commutativity property one needs stronger conditions like the Yang-Baxter
12 21
relation RTT =T T R.

Fact. In general MK, k=2,..., is not a Manin matrix. We will prove however that M1 is again a
Manin matrix.

12
Yang-Baxter equation it is true that TX satisfies RgTT =
tion 4.2.9, pages 132-133).

Fact. Let M be a Manin matrix; then in general det (eM) = 7™ log(det®! (M))  Tr(log(M)) (see
Section 12).

3.7. Examples

Definition 9. A matrix A with the elements in K is called a Cartier-Foata (see [13,35]) matrix if
elements from different rows commute with each other.

Proposition 5. Any Cartier-Foata matrix is a Manin matrix.

Proof. Clear from the definitions. O

Consider arbitrary elements rq, ..., r; in a unital ring K. The matrix
r ry ... TIp 1
r ry ... T 1
= @1 r2 ... ) (3.36)
rn T ... TIp 1

is obviously a Manin matrix. '
Let also M be an arbitrary Manin matrix, and consider elements c’jk such that they commute with

each other and with all elements M (for example cg.k are scalars). Then

c'Mc? + 3, (3.37)

where (Ci)jk = c;k, as well as its submatrices are Manin matrices.



A. Chervov et al. / Advances in Applied Mathematics 43 (2009) 239-315 257

Observation 8. Let M be a Manin matrix over K, and consider an arbitrary invertible element x € R.
Then the matrix (M);j :xMij)F1 is also obviously a Manin matrix.

Examples related to Lie algebras and integrable systems. Let us give some remarkable examples of
Manin matrices. They are related to integrable systems and Lie algebras (see [16], Section 3 for further
information).

Let x;j, yij be commutative variables. Let X,Y be n x k matrices with matrix elements (X);; = x;j,
(Y)ij = yij. Let us denote by dx, dy the n x k matrices with matrix elements % and % Let z be a

variable commuting with y;;.

(i) The following 2n x 2k, (n 4+ k) x (n + k) matrices are Manin matrices (the second one is related
to the Capelli identities (see [16], Section 4.2.2)):

X oy Zlgwk (A"
(5 0). (e o). )

(ii) Let K1, K% be n x n, respectively k x k matrices with elements in C, one can see that the following
matrix is actually a Manin matrix:

-1
O lnxn + K' = Y (21 + K2) ™ (0" (3.39)
For the sake of concreteness, we notice that, in the case n =2, k =1 the formula above yields
the matrix:
1 1 y1dy;  y1dy
a2 0 i Ki Kip . 7k P (3.40)
0 9 Kl Kl y2dy;  yady, | '
2 22 z—k z—k

(iii) Consider the standard matrix units ej; (i.e. n x n matrices defined as (e;j)u = 8,-k8j14). Con-
sider a variable z and the operator d,. These elements commute with e;; and satisfy [9,,2] =1,
e % f(z) = f(z— 1)e~%. Then

1 €11 ... €1n ; 1 €11 ... €1
lenxn—g N f(Z) e 1n><n+g
eénlt ... ©€mn én1 ... ©em

(3.41)

are Manin matrices, where f(z) is an arbitrary function.

To check that the matrices in (3.38) are indeed Manin matrices, one only needs to use the standard
commutation relations [%,xk,] = 8ikdjt, [Xij, X = [% %’] =0 (the same for y;; and z, while it is

understood that operators referring to different “letters” commute), e.g. [a)‘j—u 837] = 0. Similarly, for

the matrix (3.40).
The matrices in (3.41) read, in the 2 x 2 and f(z) =1 case:

1 1 — 1 —a,1

<3z —ze1  —ze12 ) <6’ %14 Leqr) e 9 lepy > (3.42)

1 1 ’ -9, 1 .y 1 . .
—Z€21 07— zexn e~ ey e~%(1+ lexn)

4 In other words, ejj has 1 in the position i, j and 0 everywhere else.
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Let us check the Manin relations for the leftmost of these matrices: Column 1 commutativity reads®:

1 1 1 1 1 1
|:8z — —eqy, ——621} = —[3z, —}621 + —len, eal=—exn + = (—e2)=0.  (343)
z z z z z z

The cross-term relation [M11, M22] = [M21, M13] is:
1 1 1 1 1 1
[M11, Ma2] = |0, — —e11,0; — —exn | =—|0z, — |ex2 —e11| =, 0z | = e — —en, (344)
z z z z z z

1 1 1
[M21, M12] = [——621, ——612} = (e —e). (3.45)
z z z

Notice that the matrices above are matrices with elements in Diff(z) ® Mat,, i.e. they belong to
Mat, [Diff (z) ® Mat,], where Diff(z) is an algebra of differential operators in z. Actually one only
needs that elements e;; satisfy the commutation relations [e;;, ex] = ej;dkj — ex;jdy. For example, if one
regards the e;; as elements of the universal enveloping algebra of gl, (or their images in an arbitrary
representation), then the matrices (3.41) will still be Manin matrices. We should stress that in the
examples above we consider n x n matrices with elements in Mat, ® Diff(z), and not n?> x n®> matrices
with elements in Diff(z). Indeed, in the second case, they do not satisfy the Manin properties.

Remark 12. The examples above are intimately related to the Gaudin and XXX-Heisenberg integrable
systems (see [16] and also [19]). According to a specialization of the remarkable result of D. Talalaev
by Eq. (3.39)) commute among themselves (i.e. Vi, j: [Hi(2), Hj(w)] ;”O). The operators H;(z) provide
a full set of quantum commuting integrals of motion for the Gaudin integrable system. The gl, Gaudin
system was introduced in [40], but the full set of quantum integrals of motion (the so-called “higher
Gaudin Hamiltonians”), whose existence was proved in [32] and whose commutativity proved in [26]
was not explicitly constructed before [110]. This construction has far-reaching applications to Bethe
ansatz and separation of variables (see [16,18]). Similar constructions also play an important role in
the Langlands correspondence and Kac-Moody algebra theory (explicit description of the center of
U (gl,) [16-18]). Further considerations concerning g- and elliptic analogs will appear in [20,102].

3.8. Hopf structure

Let us consider the algebra over C generated by M;; 1 <i,j <n with relations: [M;j, My] =
[Mygj, Mjj]. One can see that it is a bialgebra with the coproduct A(M;j) = > Mix ® My;. This is
usually denoted as follows:

AM)=M® M. (3.46)

Remark 13. It is easy to see that this coproduct is coassociative (i.e. (A1) ®A=(1® A)® A) and
also (from Proposition 4), that it holds A (det (M)) = det®® (M) ® det® (M).

The natural antipode for this bialgebra should be S(M)= M~!. So it exists only in some “field of
fractions” for the algebra generated by M;;.

Remark 14. Let us frame the above property within the notions of noncommutative geometry (see,
e.g. [76] for an introduction).

5 Column 2 commutativity is completely analogous.
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Consider a group G, and denote by Fun(G) the algebras of functions on G. The multiplication map:

m:G x G — Fun(G), (3.47)

clearly induces the dual map:

A : Fun(G) — Fun(G) x Fun(G), (3.48)

by the rule A(f)[g1,g2] = f(g182). Associativity of the multiplication clearly induces coassociativity
of the comultiplication: (A® 1) R A=(1R A)® A.

So, according to the noncommutative geometry point of view, one should think of bialgebras as
some kind of “functions” on “noncommutative spaces” which are not just spaces, but groups (more
precisely semi-groups, since we have not discussed inversion operation, which corresponds to the
antipode). So the algebra generated by matrix elements M;; of a Manin matrix can be thought as
the algebra of functions on some noncommutative (semi)group-space. Moreover this analogy can be
continued. Consider a group G acting on some set V, and denote by Fun(G), Fun(V) the algebras of
functions on F and, respectively, V. The action of the group G on V defines a dual morphism of
commutative algebras:

¢ : Fun(V) — Fun(G) ® Fun(V), d(f)(g,v)=f(gv). (3.49)

The condition g1(g2v) = (g1g2)v, implies:

(AR D (P) =1 ¢)(¢). (3.50)

Which is now reformulated only in terms of ¢, A, so makes sense for an arbitrary bialgebra.
The “coaction”-Proposition 1 implies that there exists morphisms of algebras:

¢1:Clx1, ..., xm] = C(Mjj) ® C[x1, ..., Xm], ¢1(Xi)=ZMikxkv (3.51)
k

¢2:ClY1. ... ¥nl > CMij) ®ClYrt. ... Yml.  $1(¥i) =Y Myivy. (3.52)
k

One can check that both of the maps satisfy the condition: (A ® 1)(¢i) = (1 ® ¢i)(¢y), i=1,2.
So one can consider the maps ¢; as “coactions” of Manin matrices on a the space C" and its super
version.

Remark 15. Let us also mention that there exists another coproduct. To motivate it let us give another
look on the algebra generated by M;;. The defining relations for M;; are written entirely in terms of
commutators, so the associative algebra generated by M;; is the universal enveloping algebra to the Lie
algebra defined by the relations [M;j, My] = [My;, My]. For an arbitrary universal enveloping algebra
the coproduct can be defined by the formula A(M;j)) = M;; ® 1+ 1 ® M;j. It is easy to see directly
(or conclude from the general properties of Lie algebras) that this coproduct is compatible with the
defining relations, coassociative and there exist an antipode S(M;j) = —M;; and counit €(M;;) =0,
€(1) = 1. However this coproduct is not natural in Manin’s framework (it is not compatible with the
coaction on CJ[xq, ..., X,] described above).
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4. Inverse of a Manin matrix

In this section we discuss several facts about the inverse of a Manin matrix. The first one is
Cramer’s rule which states that an inverse matrix can be calculated by the same formula with minors
as in the commutative case; the second one is that inverse matrix is actually again a Manin matrix
under natural conditions - this fact is related to a formula which goes back to Lagrange, Desnanot,
Jacobi and Lewis Carroll in the commutative case. These should be considered among the main results
of the paper.®

4.1. Cramer’s formula and quasideterminants

Proposition 6. (See [76].) Let M be a Manin matrix and denote by M the adjoint matrix defined in the
standard way, (i.e. M,f,d’ = (=D det® (My)) where My is the (n — 1) x (n — 1) submatrix of M obtained
removing the Ith row and the kth column. Then the same formula as in the commutative case holds true, that is

MM = det® (M) 1xn. 4.1)

Here 1pxn is the identity matrix of size n. If M* is a Manin matrix, then MY is defined by row-determinants
and MM = det® (M%) 1,xn = det™ (M) 1,xn.

Proof. One can see that the equality (M®M);; = det® (M) Vi follows from the fact that det(M)
does not depend on the order of the column expansion in the determinant. This independence was
proved above (Corollary 1). Let us introduce a matrix M as follows. Take the matrix M and set the ith
column equal to the jth column; denote the resulting matrix by M. Note that detCOI(M) =0 precisely
gives (M”de)ij =0 for i # j. To prove that det“’l(l\71) =0 we argue as follows. Clearly M is a Manin
matrix. Lemma 3 allows to calculate the determinant taking the elements first from ith column, then
jth, then other elements from the other columns. This yields that det (M) = 0, since it is the sum of
the elements of the form (xy — yx)(z) =0, where x, y are the elements from the ith and jth of M, so
from jth column of M. By column commutativity of a Manin matrix, xy — yx = 0, so detC°1(1\~/l) =0. O

Remark 16. The only difference with the commutative case is that, in the equality (4.1) the order of
the products of MY and M has to be kept in mind.

Remark 17. In the works by Manin (see, e.g. [76]) one can find wider classes of matrices with non-
commutative entries with properly defined determinants and versions of the Cramer rule.

The question how far and whether the property MM = det® (M)1pxn characterizes Manin ma-
trices is open. Observation 2 shows that it is indeed the case for 2 x 2 matrices. Since in higher rank
case the relations coming from the Cramer rule are of order n, while Manin’s relations are always
quadratic, it is not obvious at all how to settle the matter.

4.1.1. Relation with quasideterminants

We will herewith recall a few constructions from the theory of quasideterminants and discuss
their counterparts in the case of Manin matrices. It is fair to say that the general theoretical set-up
of quasideterminants I. Gelfand, S. Gelfand, V. Retakh, R. Wilson [41,43,45], can be briefly presented
as follows: many facts of linear algebra can be reformulated with the only use of an inverse matrix. Thus it
can be extended to the noncommutative setup and can be applied, for example, to some questions
considered here. We must stress the difference between our set-up and that of [45]: we consider a
special class of matrices with noncommutative entries (the Manin matrices), and for this class we can

6 These results, together with sketchy proofs, were announced in [16].
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extend many facts of linear algebra basically in the same form as in the commutative case, (in partic-
ular, as we have seen, there exists a well-defined notion of determinant). On the other hand, in [45]
generic matrices are considered; thus there is no natural notion of the determinant, and facts of linear
algebra are not exactly given in the same form as in the commutative case.

Let us recall [45, Definition 1.2.2, page 9], that the (p, q)th quasideterminant |A|,q of an invertible
matrix A is defined as |A|yq = (A&,l)*l. i.e. the inverse to the (g, p)-element of the matrix inverse
to A. It is also denoted by

A11 A12 Aln
A= |0 o ] 42
Sl (42)
From the Cramer rule we have
Lemma 6.
IM|pg = (—1)P*9det (Mpq) " det (M), (4.3)

Mpq is the (n — 1) x (n — 1) submatrix of M obtained by removing the pth row and the qth column.
Also, from Lemma 12 below, one can deduce the

Lemma 7.

|Alpg = Apg — Ape(Apg) ' Aug, (4.4)

where ﬁpq is the (n — 1) x (n — 1) submatrix of A obtained removing the pth row and the qth column, Ap, is
pth row of A without the element Apq and A.q is qth column of A without the element Apq. This is contained
[45, Proposition 1.2.6, page 10].

Example 3. For n =2 there are four quasi-determinants:

aiz —1 an -1

=ay1 — 41205, a21 =dai2 — 1105, a22, (4.5)
a  axp 2740 a1 axp 21
ann  an -1 apr a2 -1

=ap1 — a0}, 411, =ap — 107 A12- (4.6)
ax 12 a1 [ax 1

The following lemma is often useful in applications of quasideterminants to determinants [45]. It
holds thanks to the Cramer rule for Manin matrices.

Lemma 8.

Mi1 M1z ... My

Mz Mz ... Moy
det| . . ) (4.7)

Mn1 Mp2 ... Mp



262 A. Chervov et al. / Advances in Applied Mathematics 43 (2009) 239-315

M M M‘]l M‘]2 cee M‘ln
22| .- | v M M
= M ) ) . (4.8)
Mnn-1 Mnn M ’ M : : . :
n2 m Mnl MnZ Mnn
M M ... M
My, Min_ 1 M“ M12 M1n
-M Mi1q M1y . . 21 22 2 (4 9)
=M1 Mo, .- M: . - : : : : ’
n—11 ... Mm Mpa ... [Mm
Example 4. For 2 x 2 Manin matrices:
oy _agcol|@ b ja b|_ i@ b__
ad — cb = det c d‘_a c @‘_d‘c d =da — bc. (4.10)

4.2. Lagrange-Desnanot-Jacobi-Lewis Carroll formula

Below we present two identities for Manin matrices. The first of the identities is trivial in the
commutative case, while the second has a long story: according to D. Bressoud [9], page 111 (re-
marks after Theorem 3.12) Lagrange found this identity for n = 3, Desnanot proved it for n < 6, Jacobi
proved the general theorem (see Theorem 3 here), C.L. Dodgson - better known as Lewis Carroll -
used it to derive an algorithm for calculating determinants that required only 2 x 2 determinants
(“Dodgson’s condensation” method [23]). It is quite surprising how widely such a simple identity
appears in various fields of mathematics [117].

The proof of the both identities consists in a small extension and rephrasing of the arguments in
the proof of Lemma 1, page 5 of O. Babelon, M. Talon [3].

Proposition 7. Let M be a Manin matrix and assume that a two sided inverse matrix M~ exists (i.e. M~ 1M =
MM~ =1). Then:

1. Column commutativity for M~ holds:

-1 -1 -1 -1
(M )ij(M )kj - (M )kj(M )ij =0. (411)
2. The Lagrange—Desnanot-Jacobi-Lewis Carroll formula holds for Manin matrices, that is
(M)

(M) (M71)kj(M71)il

= (=) (det (M) T et (M), j#L i £k, (412)

ij Kl

where we use the notation

Mjl,ik = Mwithout jth and Ith rows; ith and kth columns
and, in the case n = 2 we set by definition det® (M3.12) = 1.

Remark 18. The standard formulation of the Lagrange-Desnanot-Jacobi-Lewis Carroll formula:

det® (M7")det® (M) — det® (M7*)det™ (M") = (det (M))det*® (M), (413)
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can be retrieved (assuming that det® (M) commutes with principal minors) multiplying the iden-
tity 4.12 by det® (M)? and with the help of the Cramer rule. We recall that we denote by MY the
submatrix without theith row and jth column, and with Mtk the (n —2) x (n — 2) submatrix ob-
tained removing the jth and Ith rows and the ith and kth columns of M.

Proof. Let us denote by A = det® (M), and Ajj= (—1)*+idet® (M) the cofactor of M;j in det' (M).
Consider the Grassmann algebra C[vq,...,¥n] (ie. 1//1.2 = O~, Yivj = —vj;); let v commute with
Mpg, ie. Vi, p,q: [¥i, Mpq] = 0. Consider the new variables ;:

~ ~ M1i1 ... My,
W1, ¥ =W, Y |- . (4.14)
Mp1 ... Mpy
By Proposition 1,it holds i yj = — /.
We have the equalities
AP A AYn et M)y A A 22200 A A T, (4.15)

APt A= A = (=17 g A /\---/\1er A---AVm (here ¥/ is omitted),  (4.16)

- jth place -
=yY1A-A Ui A AU (417)

It is easy to see that the equalities (4.11, 4.12) can be reformulated as follows:

AjiM 1 A A

_1 ~ _ ith place kth place ~
=AMy YT A Ay YT AYIA A Y A A Y A AYe (418)

Here we obviously assume i # k, since for i =k (7) is tautological: Aj,-M = AﬂM . Let us prove
that the relation (4.18) holds true.

The definition of v is (Y1, ..., ¥m) = (¥1, ..., ¥a)M. Multiplying this relation by M~! on the
right we get

s UM = (1, . Y), thatlsZ¢v =

) ) . ~ ith place kth place ~ . . ~
Multiplying Y Ay A---A  ¥j  A---A empty A--- Ay and using the Grassmann relations 1/;,% =

0,i=1,...,n we get

- _1 - 1 - - ith place kth place ~
(l[/iMil +WkMkl —W)l/ﬁ/\wz/\-'-A wj A---Aempty Ao Aygn =0.

By 4.16 it gives 4.18 and hence Proposition 7 is proved. O
4.3. The inverse of a Manin matrix is again a Manin matrix

Theorem 1. Let M be a Manin matrix, assume that two sided inverse matrix M~ exists (i.e. IM~1: M~1M =
MM~ =1). Then M~ is again a Manin matrix.
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Remark 19. We will discuss in Section 4.4, that for a reasonable class of rings (which includes main
examples) left invertibility of a matrix (not necessarily Manin) implies right invertibility, and hence
for Manin matrices invertibility is implied by the invertibility of the determinant. Let us also remark
that an analogue of the theorem above holds true for Poisson-Manin matrices (see Section 8.3).

Proof. This statement follows from Proposition 7.7 Column commutativity for M~ is just formula
(411) - so it is already established.
For the cross-term relation we notice that

(M) M) ] = [ )0 (1), (419)
can be rewritten as:
(M) (M) = (M) (M) = (M) (M71);; = (M) (M), (420)
according to (4.12) both sides of (4.20) are equal to
(dEtCOl(M))_l (—1)i+j+k+ldetml(Mwithout jth and Ith rows; ith and kth columns)- (4-21)

The Theorem 1 is proved. O
Remark 20. We will derive the formula det® (M)~! = (det M)~ for the n x n case in the next section.

Remark 21. As it is was remarked in [16, Section 4.2.1, page 17] this theorem implies a result by
B. Enriquez, V. Rubtsov [27, Theorem 1.1, page 2] and O. Babelon, M. Talon [3, Theorem 2, page 4].
See also [104] for a particular case - about the “commutativity” of quantum Hamiltonians satisfying
separation relations, which has important applications in the theory of quantum integrable systems.

4.4. On left and right inverses of a matrix

The main theorems on the inverse of a Manin matrix (Theorem 1) and on the Schur complement
(Theorem 2) are formulated under the condition that left and right inverse matrices exist. The lemma
below shows that for a reasonable class of rings (which includes main examples) left invertibility of
a matrix (not necessarily Manin) implies right invertibility, and hence for Manin matrices invertibility
is implied by the invertibility of the determinant.

Lemma 9. Assume that the ring K is a noncommutative field (ie.1 £0e K :3r~ ' :r~lr =rr~' = 1). Then

for any matrix X € Mat, (KC) (for any n), if the left (right) inverse exists, then the right (respectively left) inverse
exists also and they coincide.

If both left and right inverses exist then for any ring associativity guarantees that they coincide:
a,‘l =a,‘l(aa;]) = (al‘la)a;1 =al.

Proof. Let us prove by induction by the size n of matrix X. For n =1 the lemma is obviously true.
Consider general n. At least one element in first column of X is non-zero, otherwise X is not left
invertible. Assume it is the element Xi;, otherwise multiplying by the permutation matrix we put
non-zero element to the position (11).

7 We herewith provide a slightly different proof with respect to that of [16].
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Denote the corresponding blocks of the matrix X as B, C, D as follows:

xz( X B ) (4.22)

Ch-1x1  Dn-1xn-1

Clearly using the only condition of invertibility of X1, one can write:

1 0 X11 B
X (-cx;ll 1) - ( 0 D-CXy B) : (4.23)

Matrix X is invertible from the left by the assumption of the lemma, the other matrix at the left-hand
side of the formula above is obviously two-sided invertible, so left-hand side in the formula above is
left invertible. So the right-hand side is left invertible and it clearly implies that n — 1 x n — 1 matrix
D-C Xl’llB is left invertible. So by the induction it is right invertible also. Clearly:

(x” B )1: X5 —X;'B(D —CX;'B)~! (4.24)
0 D-CX;'B 0 (D-cxi'pt )’ '

moreover it is two-sided inverse, since element Xi; is two-sided invertible as any element in X and
(D-C XfllB) is two-sided invertible by induction. Hence we can present matrix X itself as a product
of two-sided invertible matrices:

(1 0\ (Xn B
X‘(cx;ll 1)(0 D—CX;fB)’ (4.25)

hence X is two-sided invertible. O

5. Schur’s complement and Jacobi’s ratio theorem

The main result of this section is a formula for the determinant of a Manin matrix in terms of the
determinant of a submatrix and the determinant of the so-called “Schur complement”. This theorem
is equivalent to the Jacobi’s ratio theorem, which expresses a minor of an inverse matrix in term of a
complementary minor of matrix itself. The formulations of the both results are exactly the same as in
the commutative case. We start with some result on multiplicativity property of the determinant for
Manin matrices, which is actually a key point in the proofs of the main theorems. We also show that
the so-called Weinstein-Aronszajn and Sylvester formulas hold true for Manin matrices and actually
follow from the main theorems.

5.1. Multiplicativity of the determinant for special matrices of block form

The proposition (and lemmas) below is instrumental in the proof of the Schur formula for the
determinant of a block matrix to be discussed in the next subsection. It can be proven in a more
general form than that strictly needed for the Schur formula, and, in our opinion, is of some interest
on its own.

Proposition 8. Let M be an n x n Manin matrix, with elements in an associative ring KC. Let X be ak x (n — k)
matrix (k < n), with arbitrary matrix elements in KC. Then

detcol <M< 1I<><I< kanfk )) — detmlM. (5.1)

0n—l<><k 1n—l<><n—l<
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Pay attention that elements of X do not need to commute with elements of M - they are abso-
lutely arbitrary and so the matrix at the left-hand side is not a Manin matrix in general.

Proof. Let us first state the following simple lemmas.

Lemma 10. Consider elements a; such that [a;, aj] = 0. Consider a matrix with the only condition that ele-
ments in some columns i and i + 1 have a form below. Then

... a1 bi+ax ... ... a1 by
detco! | -+ a by+ax ... — det | - a by ... (5.2)
ap bnp+apx ... ... an by

Using the property that one can exchange columns of any Manin matrix, changing only the sign of
the column-determinant, column commutativity of the elements of Manin matrices and applying the
lemma above, one arrives to the following lemma:

Lemma 11. Assume M is n x k, k < n Manin matrix, n x (n — k — 1) matrix C is absolutely arbitrary, as well
asn x 1 columnb and k x 1 column x. Then

det®™ (M b+Mx C)=det®™ (M b C). (5.3)

Where we have used the notation:

My ... My b1+ iMijxj Ciu ... Cig—k-1)
(M btMx €)= M1 ... My by+3 iMajxj Ca1 ... Com—k—1) (5.4)
Mp ... My bp+ Z]- Manj Cn1 ... Cn(nfkfl)

The proofs of the lemmas are trivial.
Let us also remind that without any conditions on the blocks X, Y it is true that:

0 M) )= ) =6 ") (53)

Let us decompose the matrix X as a sum of its columns:

0 ... 0 Xin-k X1 0 ... O
X — 0 ... 0 Xonk I X1 0 ... O . (5.6)
0 ... 0 Xin—k X1 0 ... 0

Let us denote this decomposition as:

X=Xn-ty+--+Xq. (5.7)
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According to formula (5.5) let us write the corresponding multiplicative decomposition®:

1 X\ _ (1 Xop 1 Xa
(0 1>_<0 1 X x| 1) (5.8)

After these preliminaries the proof of the proposition follows immediately. Observe that we can
write

My ... Mig—y * ... %
1 Xauo 1 Xn—k—
M(O (qk)>><--~><<0 <"’;’+”>= PR R ¢ X))
Mpr ... Mpp-y * ... *

with this meaning that first n — I columns have not been changed, so they satisfy Manin’s properties.
Now we can apply Lemma 11:

geor (M M (b %)
Mpr ... Mpn % ... % 0 1
et [ (M Mt ) (510)
Mp1t ... Mpn % ... %

Applying this equality for [ =1, ..., k, one finishes the proof:

col L Xa-o) o (1 Xo)) 2.
det <M<O 1 X X 0 1 =

— det®! (M (é X<"1—’<>> o x (g) X<”—’;—l+”>> — .. = det® M. (511)

The proposition is proven. 0O
In the same manner on can prove the following
Proposition 9.

e For M! a Manin matrix, and an arbitrary block X:

det™W Tk KXiscn—k M) = det™" M. (5.12)
On—kxk  Tn—kxn—k

e Defining detcol reverse orderC — ZO’ESH (_])0’ ni:n,n—l,n—Z 1 Cg(i),iy eg. detcol reverse order(a b) —da—

,,,,, cd
bc, and analogously for det™W reverse order iy g
1 Ok xcn—
detcol reverse order ((thxk ) kxn—k ) M> — detCOIM, (5_13)
n—kxk n—kxn—k

for M Manin, and

8 In our inductive argument, the chosen order is crucial.
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detrow reverse order M }kxk Opesn—k M | =det™"M, (5.14)
Xn—kxk 1n—k><n—l<

for M* Manin.
5.2. Block matrices, Schur’s formula and Jacobi’s ratio theorem

Here we prove a formula for the determinant of a block Manin matrix in terms of the determinant
of a submatrix and the determinant of the Schur complement. It is one the principal results of the
paper. This fact can be equivalently reformulated as Jacobi’s ratio theorem which expresses minors
of an inverse matrix in terms of minors of the original matrix. The formulations of the theorems are
exactly the same as in the commutative case.

In our argument, we prefer to formulate the theorems, their corollaries, and discuss their equiv-
alence first. However, we will provide proofs of each of the two theorems, since these are quite
different in flavour.

Theorem 2. Consider an n x n Manin matrix M. Let us denote by A, B, C, D its submatrices defined by

Agxk Bixn—k )
M= , 515
(Cnkak Dn—kxn—k ( )

where k < n. Assume that M, A, D are invertible on both sides, i.e. IM~1, A-1, 3D~ 1:
M'M=MM~'=1, A 'A=AA"'=1, D 'D=DD'=1.
Then:

1. It holds:

col _ col A B
det™ (M) = det <C D)

= det®!(A)det® (D — CA™'B) = det®®(D)det®® (A — BD'C).  (5.16)
2. The matrices (A — BD~1C) and (D — CA~!B) are Manin matrices.

Remark 22. The matrices (D — CA~'B), (A — BD~1() are called “Schur’s complements” respectively
of A and D. Also, notice that Schur’s formula is exactly that of the usual commutative case.

Proposition 10. The following more detailed statements hold, as it can be deduced from the proof of Theorem 2.

det® (M) = det®!(A)det™ (D — CA7'B), if3IA~1: AA™ =1, (517)
= det®(D)det™ (A - BD™'C), if3D~": DD ' =1, (5.18)
= det! reverseorder(y _ cA=1B)det!(A), ifIAT:ATIA=1, (5.19)
= detcolreverse order(4 _ gp=1¢)det (D), if3ID":D'D=1. (5.20)

ural order: [[;_1 5,
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Corollary 2. Assume M is a Manin matrix. Then:

detCOl(M)detCOl(M_l) =1, faM MM =1, (5.21)
detco! reverse orderdetcol(M) =1, ifHM_lI MM =1. (5.22)

And so if M is two-sided invertible, then detc"l(M ) is two-sided invertible and
det®'(M)~! = det (M71). (5.23)

Proof of the Corollary. Assume that IM~1: MM~! =1, consider the 2n x 2n matrix below and apply
formula (5.17):

M Tuxn

1”)(11 OHXH

(1" = det™ ( ) P E19 gereol (M) det® (—M ). (5.24)

From this one concludes the first statement. Similar arguments prove the second. O

Theorem 2 can be reformulated in the form called “Jacobi’s ratio theorem™®

Theorem 3. Consider a Manin matrix M that admits a left and right inverse M~1. Let detCOI(ME}) be the
minor of M~ indexed by I = (i1, ..., i), ] = (j1,..., jk). Then
detCOI(MI_,}) = (— X+ (detml(M))fldetwl(M(l ..... NS, (1 O\ 5 (5.25)

where detc"l(M(l ,,,,, m\J,(,...m\1) is the minor of the matrix M indexed by the complementary set of indices.

In other words: any minor of M~ equals, up to a sign, to the product of(detcolM)*1 and the corresponding
complementary minor of the transpose of M.1°

Equivalence of Schur’s and Jacobi ratio theorems. The two theorems are actually equivalent. To see
this we need to recall the following standard lemma, that holds without any assumptions on commu-
tativity of the matrix elements and matrix blocks involved.

Lemma 12. Assume that the matrix (? DB) is invertible from both sides, as well as its submatrices A and D.
Then the matrices (A — BD~1C), (D — CA~1B) are also invertible from both sides, and

-1 — — — —1py—
(A B) :< (A—BD10)! —A"1B(D—-CA"1B) 1)' (5.26)

C D —D-1c(A-BD10)! (D—=CA~1B)"1

Sketch of the proof. The Lemma follows from the factorization formulas below:

A B 1 0 A B
(C D) - (CA” 1) (o D - CA—1B> (5.27)

A—-BD7'C B 1 0
:< 0 D)(D—lc 1)’ (5.28)

9 The main formula (5.25) has been also proved for Manin matrices of the form 1 — tM, t is a formal parameter, in the
remarkable paper by M. Konvalinka [66] (see Theorem 5.2, page 13). His proof is based on combinatorics.

10 One should pay attention to the “transposition” of indexes: the minor of M~ is indexed by the pair of multi-indices (I, J),
while the minor of M is indexed by ((1,..., m\ J,(1,..., n\I).
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remarking that

-1 -1 —1y 7—1
XY X -X"'YZ
(0= . (529)

The lemma is proved. O

The equivalence of the two theorems can be given as follows. Consider the set of indexes I, J
in Jacobi’s ratio theorem to be I =(1,2,..,k), ] = (1,2, .., k). Denote the corresponding submatrices
M ;= A, M(l,2,.A,n)\l,(1,2,..,n)\] =D, and so on and so forth, i.e. write

Akxk Bixn—k
M= . 5.30
(Cn—kxk Dn_kxn—k ( )

Assume Jacobi’s ratio theorem holds true. This in particular means that M~! is a Manin matrix if M
is Manin. According to formula (5.26), MI‘} =(A—BD10)~1, so we conclude that (A — BD~1¢)~!
is a Manin matrix, since it is a submatrix of the Manin matrix M~!. Hence (A — BD~'C) is a Manin
matrix as well, by the first claim of Jacobi ratio theorem. Similarly, (D — CA~!B) is a Manin matrix.
So the second conclusion of Theorem 2 is derived from Jacobi’s ratio theorem.

In order to derive formulas (5.16) in Theorem 2 from Jacobi’s ratio theorem we only observe the
following. For the case I =(1,2,...,k), ] = (1,2, dots, k) it is true that M,‘} =(A—-BD10)"1 by
(5.26). So Jacobi’s ratio formula (5.25) reads, in this case

det (A — BD™'0)7") = (det® (M)) " det<®! (D).

Since (A — BD~'C) is a Manin matrix, det((A — BD~'C)~1) = (det®(A — BD~1C))~! we arrive at the
first claim in Theorem 2.

Thus we have derived Schur’s complement Theorem 2 from Jacobi’s ratio theorem.

Let us do the converse. Assume that the Schur’s complement Theorem 2 is true for a Manin ma-
trix M, with a (right and left) inverse M~!. Construct the 2n x 2n block Manin matrix:

M 1
Mm:<1nxn "()Xf'), (5.31)

its Schur's complement D — CA~'B is precisely —M~!. So from Theorem 2 we conclude that M~!
is a Manin matrix. Also, we can see that det®(M~—1) = (det® (M))~!. Indeed by (5.25), (- =
det (Me*)=det®® (M)det® (—M~1), and, quite obviously, (—1)”2 = (—1)". So the first part of Jacobi’s
ratio theorem holds. To derive the second claim for the case I = (1,2,...,k), J=(,2,...,k) one
uses the same arguments as in the discussion after formula (5.30). The statement for arbitrary sets
of indexes follows from this special case by changing the order of rows and columns, and taking into
account that changing the order of rows in M implies change of order of columns in M~!, and vice
versa. The equivalence of Schur’s and Jacobi ratio theorems is thus established.

5.2.1. Proof of the Schur’s complement theorem

Proof 1. Let us prove Theorem 2. To this end, we first prove formulas (5.17) and (5.18) which are
more refined statements of the first claim (formula 5.16) in Theorem 2. The proof uses the same idea
as in the commutative case and Proposition 8.
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Let us consider the standard decomposition!!

A B\(1 —-A"'B A 0
<C D) (0 1 )Z(C D—CA”B)' (5.32)

By Proposition 8 one gets the first equality: det® M = det® (A)det® (D — CA~!B). This is desired
formula (5.17).
To prove the equality (5.18), i.e. det® (M) = det® (D)det® (A — BD~1C), one observes that since

M is Manin
A B\ _ nk B A
det (C D) =(—1)"det <D C) (5.33)

by column transposition.
Now we can change the order of rows, (which is possible for the column-determinant of any
matrix) to get

B A\ nk D C
det (D C) = (—1)"det (B A) . (5.34)
So we one gets:
A B _ D C _ col col -1
det (c D) =det (B A) = det® (D)det (A — BD™'C). (5.35)

The last equality holds to a factorization analogous to the one of Eq. (5.32).
To prove the remaining formulas (5.19), (5.20) one uses the same arguments as above for the

decomposition:
1 0\(A B A B
(—CA—1 1) (C D) - (o D— CA—13> ’ (5:36)

where now A~! is left inverse to A.
We are left with proving that the Schur’s complements (A — BD~1C), (D — CA~'B) are Manin
matrices. To do this we recall Lemma 12 page 269:

(5.37)

A B\"' [ (A-BD10)! —A~1B(D — CA~1B)"!
c D) ~\-Dlc(A-BD" 1) (D—-CA B! :

From Theorem 1 we know that M~! is a Manin matrix if M is a Manin matrix and M is two sided
invertible. Trivially any submatrix of a Manin matrix is again a Manin matrix. So we conclude that
(A—BD~1C)"1 and (D —CA~1B)~! are Manin matrices. Applying Theorem 1 again we conclude that
(A—BD71C) and (D — CA~1B) are Manin matrices. O

1 Observe that there is no need in any commutativity constrains, but only existence of the (right) inverse of the upper left
block A.
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5.2.2. Proof 2. (Proof of the Jacobi ratio theorem via quasideterminants)

Let us now give a proof of Jacobi’s ratio Theorem 3. Our proof is quite simple and non-
computational, the arguments being borrowed from: [69, Theorem 3.2, page 17], and the theory of
quasideterminants [45]. Roughly speaking it goes as follows: one represents the determinants appear-
ing in Jacobi’'s formula (3) as a product of quasiminors by Lemma 8 (essentially by Cramer’s rule).
Using Lemma 13 (which we prove below), the result then follows from Cramer’s rule. Of course, we
consider (and make use of) the fact that M~! is also a Manin matrix as already established (Theo-
rem 1).

Proof. First, let us recall the following lemma, which is called noncommutative Jacobi’s ratio theorem
([41], [43, Theorem 1.3.3, page 8], [69, Theorem 2.4, page 8]) or inversion law for quasiminors [45,
Theorem 1.5.4, page 19]:

Lemma 13. For an arbitrary invertible matrix A (not necessarily a Manin matrix), it is true that the (ji)th

quasiminor of A1 is the inverse of the “almost” complementary (ij)th quasiminor of M. Here by almost com-
plementary we mean the complementary united with the ith row and jth column

—1 -1
|AP,Q ’,-j = |Ag..nj—pui,(1..n)—Qujl i - (5.38)

where A; ; is a submatrix indexed by index sets I, J.
In particular forP=Q =1,...,kandi=j=k:

-1 1 -1
Ay - Ay coo Agn

T =t O (5.39)
-1 —1
Akl .. " Apk ... Am Kk
The proof of this Lemma quite readily follows from Lemma 12.
Coming back to the Jacobi ratio theorem, we need to prove:
det! (M 1) = (~ 1) 211+ 21 (det<! (M) ™' det (M. J.(1...m-1)- (5.40)
Possibly changing the order of rows and columns (which is possible for M and M~! since both are
Manin matrices (Theorem 1) we reduce this identity to the case I = J ={1,...,k}:
det (M7 1) = (det (M)) " et (M), (5.41)

where M, 1 is the submatrix of M~! made of the first k rows and columns, and M, is the submatrix
of M made of the last (n — k) rows and columns. One should pay attention to the fact that changing
the order of rows implies changing the order of columns of the inverse matrix; this implies a possible
sign factor and explains the signs and transposition of index sets in formula (5.40).

By Theorem 1 M~! is also a Manin matrix, so we can use Cramer's rule 6 for it, as well as for M
itself.

det® (M) (5.42)

= My} (M7 det (M5 1)) (det<® (M ") ' det<® (M5 1)) ... (det® (ML)~ det® (M; 1))

k

(5.43)

= det (M) " et (M; 1) (5.44)

by Cramer’s rule:  |M, e =
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=My My M3 |55 MY by Lemma13
= M|} IM\1155 IMy2l33 - .. IMk—1l! by Cramer’s rule for M
= (det®' (M)~ det™ (M\1)) (det™ (M\1) "' det (My2)) . ... (det® (M\x_1) "' det® (Myy))
(5.45)
by chain cancellation:

= det® (M)~ 'det® (M) (5.46)
Formula (5.41) is proved, hence the theorem is proved. O

5.3. The Weinstein—Aronszajn formula

Proposition 11. Let A,B be n x k and k x n Manin matrices with pairwise commuting elements:
Vi, j, k,I: [Ajj, Byl = 0. Then

det (1,40 — AB) = det (13x — BA). (5.47)

Proof. Consider the following matrix:

1I<><I< B
. 5.48
( A 1) (548)

It is clearly a Manin matrix. Applying formula (5.16) one obtains the result. O

Remark 23. The name Weinstein—-Aronszajn formula comes from [62, Chapter 4, Section 6], in the
analysis of finite rank perturbation of operators in (infinite-dimensional) Hilbert spaces. The formula
is used in the theory of integrable systems (see, e.g. H. Flaschka, J. Millson [34, Section 6.1, page 23],
K. Takasaki [109, page 10]), as follows. One considers the matrix

k
My :=1pxn — Zxa ® Ya, Xa.Ya €C".

a=1

It can be considered as a perturbation of the identity operator by means of the k rank 1 operators
Xo ® Yo, =1, ..., k. The Weinstein-Aronszajn formula reads

det (M) = det (1 — S).
where Sy is the k x k matrix whose element Sy g is the “scalar” product (x4, yg).

To get this form from our result, one simply sets B to be the matrix whose ath row is x,, and A
is the matrix whose Bth column if yg in the expression (5.48).
Thus Proposition 11 holds for this case of Manin matrices as well.
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5.4. Sylvester’s determinantal identity

Sylvester’s identity is a classical determinantal identity (see, e.g. [45, Theorem 1.5.3, page 18]).
Using combinatorial methods it has been generalized for Manin matrices of the form 1+ M and
their's g-analogs by M. Konvalinka [67]. Here (following the classical paper by E.H. Bareiss [5]) we
show that the identity easily follows from the Schur formula above (Theorem 2).

Let us first recall the commutative case:

Theorem 4 (Commutative Sylvester’s identity). Let A be a matrix (a;j)mxm; take n < i, j < m; denote:

a1 a2 - Qi ayj
azr az - ax azj

Ao=| . . . s aw=(an a2 -+ am), ayj=| . |. (549)
an1 OGn2 -+ Opn (pj

Define the (m — n) x (m — n) matrix B as follows:

Ao 0y
Bjj =det ( 0 *J) , B = (Bij)n+1<i,j<m- (5.50)
Qix  djj
Then
detB = detA - (detAg)™ " 1. (5.51)

Theorem 5 (Sylvester’s identity for Manin matrices). Let M be m x m a Manin matrix with right and left
inverse; take n < i, j < m and denote:

My Mz -+ Myp M
Mz1 My -+ Mpyy M3
Mo=1 . _— N E Mix=(Mi1 Mz -+ M), M,j=
Mnl Mn2 t Mrm Mn]
(5.52)
Define the (m — n) x (m — n) matrix B as follows:
-1 Mo M,;
Bjj = (det®'(Mp)) ™ -det( 0 T* ), B=(Bipnti<ij<m- (5.53)
Ml* Mu
Then the matrix B is a Manin matrix and
detB = (detMp) ! - detM. (5.54)

Remark 24. Formula (5.54) reduces to (5.51) in the commutative case. In the noncommutative case,
the Sylvester identity holds in the form (5.54).

Proof. Once chosen My, we consider the resulting block decomposition of M,

_ (Mo My
M_<M2 M3). (5.55)
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The key observation is the following:
Lemma 14. The matrix B defined by (5.53) equals to the Schur complement matrix: Mg — M(M3) ™1 Mj.

To see this, we need to use Schur complement Theorem (Theorem 2) again:

Byj = (det® (Mg)) ™" - det ( My M*f>

Mi.  Mij
= (det®(M)) " - ((det®® (Mo)) (Myj — MMy ' M,)) (5.56)
= (Mjj — MixMy "M,j) = (Mo — Ma(M3)™"My),;. (5.57)

In particular, we used the Schur formula det (M) = det!(A)det®(D — CA=!B) for blocks Mg = A,
Myj =B, Mj;, =C, M;; =D, the last being a 1 x 1 matrix. So the lemma is proved.

The theorem follows from the lemma immediately; indeed, B = (Mg — M2(M3)~'M;) is a Manin
matrix, since a Schur complement is a Manin matrix by Theorem 2. detB = (detMg)~! - detM follows
from the formula for determinant of the Schur complements. O

Remark 25 (Bibliographical notes). Sylvester’s identity for quasi-determinants has been found in [41]
(see also 1. Gelfand, S. Gelfand, V. Retakh, R. Wilson [45, Theorem 1.5.2, page 18]). The generalization
to quantum matrices in D. Krob, B. Leclerc [69, Theorem 3.5, page 18]. Using combinatorial methods
it has been generalized for Manin matrices of the form 1+ M and their’s g-analogs in M. Konvalinka
[67]. The identity for Yangians and q-affine algebras can be found in Section 2.12, page 18, A.l. Molev
[79], Section 1.12 [81] and Section 3, page 8, M.]. Hopkins, A.l. Molev [55], respectively; for twisted
Yangians in Section 3, page 15, A.l. Molev [80], Section 2.14 [81]. These facts are used in the so-called
centralizer construction for the corresponding algebras and have some other applications. Commuta-
tive version of the identity is discussed in various texts (e.g. [85]), we followed E.H. Bareiss [5].

5.5. Application to numeric matrices

Let us discuss a corollary on a calculation of the usual determinants of specific numeric matrices,
which in principle might provide faster algorithm for calculating the determinant of such matrices.

Proposition 12. Consider nm x nm matrix M with elements in a commutative ring K. Divide it intom x m
square blocks. Denote by M an n x n matrix over Matm (K), which matrix elements are corresponding blocks
of M. Assume M is an n x n Manin matrix over Maty, (K). Then the determinant of M can be calculated in two
steps: first one calculates n x n-column-determinant of a corresponding n x n-matrix M over Mat, (K), this
determinant is itself an m x m matrix B over K, second one calculates the determinant of B in the usual sense:

X

detnmxnm (M) = detym (dets, (M), (5.58)
we denoted by det, ., determinants of r x r-matrices.
Clearly such a formula is not true in general without assuming that M is a Manin matrix.
Example 5. Let n = 2, so we consider 2m x 2m matrix over K which is divided into 4 blocks of size

m x m, and it is a 2 x 2 Manin matrix over Mat,(K) (i.e. [a,c] =[b,d] =0, [a,d] = [c, b]). Then:

Cmxm  Amxm

a b
detamx2m ( o mxm) = detysxm (@mxmdmxm — Cmxmbmxm)- (5.59)
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Proof. Let us fix m and prove by induction in n. For n =1 the statement is a tautology.

Consider general n. Let us assume that detymxnm(M) # 0 and so it is two-sided invertible, other-
wise it is quite easy to see that the proposition is true.

Let us denote by B, C, D blocks of the matrix M:

M1 ... My,

_ _(M11 B

M= ... ... .. —<c D), (5.60)
Mp ... Mpn

here M;; are themselves m x m matrices over K. We may assume that M1y is invertible, otherwise
one should make a permutation of rows or columns. The Schur complement formula (5.16) can be
applied for matrices over commutative rings:

detnmxnm(M) = detmxm(Mll)det(n—l)mx(n—l)m (D - CM1_1lB)a (5.61)

on the other hand M is a Manin matrix over Maty, (K), so we can use the Schur complement formula
in the following way:

detg%, (M) = Myydetls! ) o, (D — CM{]'B). (5.62)

Ne¢J

detym (dets), (M) = detyn (M11)(detle ;4 (D — CM{'B)) = (5.63)

= detmwm(M11) (detmxm(det$ ;) 1, (D —CM'B)))  (5.64)

by Theorem 2 on Schur complements for Manin matrices one knows that (D — CMl’llB) is a Manin
matrix, so by the induction hypothesis:

= detmxm (M11) (detq—1ymx n—1ym(D — CM7; B)). (5.65)
This coincides with (5.61), so the proposition is proved. O

Remark 26. Taking R = Mat,; (K) and considering examples 3.37 one obtains examples of matrices of
the form considered in the proposition. It is however still unclear to us whether such block-Manin
matrices may appear in practical numerical applications.

6. Cauchy-Binet formulae and Capelli-type identities

We have already discussed (Proposition 4) that det® (MY) = det (M)det(Y) if [Mij, Yl =0
and M is a Manin matrix, and actually one can prove in the same way, the Cauchy-Binet formulae:
detc"l((MY)U) =y, detc"l(M,L)detCOl(YU). In a recent remarkable paper S. Caracciolo, A. Sportiello,
A. Sokal [12] found an unexpected noncommutative analogue of the Cauchy-Binet formulae for Manin
matrices, for the case [M;j, Yiq] # 0 - but subjected to obey certain conditions. Remark that the left-
hand side of their formulae contains a correction: det“’l((MY)U + H). As a particular case of their
identity one obtains the classical Capelli and related identities. This section is based on our inter-
pretation of [12]; we shall give a generalization of their results and provide different and possibly
(in our opinion) more transparent proofs. Also, we obtain similar formulas for permanents. Our main
tool is use of the Grassmann algebra for calculations with the determinants and respectively polyno-
mial algebra for the case of the permanents. The condition found in [12] has a natural reformulation
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in terms of these algebras and implies that certain expressions (anti)commute, as if it would be a
commutative case (see Lemmas 19, 20 and Lemma 23).
Here and below we use the following quite standard notations.

Notation 1. Let A be an n x m matrix. Consider multi-indexes I = (i1, ...,i), J = (1, ..., jr,). We
denote by Aj; the following rq x rp matrix:

Ajj,, o <n, jp<m,

(A”)ab={0 ig>norj,>m. (61)

Note that I, J are not assumed to be ordered and any number o may occur several times in the
sequences I, J.

Example 6. Even if A is 1 x 1 matrix, we can construct 2 x 2, ... matrices from it:

An An A1 An
/‘\(11)(11)=<A]1 A ) Aapan=| g Tk (6.2)

Notation 2. Given the elements v, ..., ¥, and an n x m matrix A, for brevity we denote by wiA the
element ) ,_; ,¥kAy ie. just the application of the matrix A to the row-vector (Y1, ..., ¥n):

(Wi ) =W, YA, (6.3)

Viceversa, if we have some elements 1, ..., ¥, and w{‘,...,tpnﬁ we denote by A a matrix (if it
exists) such that (Y, ..., ¥ = (Y1, ..., yn)A.

6.1. Grassmann algebra condition for Cauchy-Binet formulae

Here we prove the Cauchy-Binet formulae under certain conditions on our matrices; some of the
results of [12] will be obtained as particular cases thereof.

Let M be an n x m matrix and Y an m x s matrix with elements in the ring K. Consider the

Grassmann algebra A[v, ..., ¥y] (ie. 1//i2 =0, v¥i¥j =—v;¥;), and denote by 1//iM =Y VikMri e K®
Ay, ..., Yl

We will be interested in the situation where the matrices M, Y satisfy the following two condi-
tions.

Condition 1.

Vp,jEIl//]Q €K®A[Y1.....¥n] suchthat > w,M[Y,j,w{,W]=¢I§/’z//]Q. (6.4)

Notice that we require that 1//jQ be independent of the index p.
Here we denote by Q the n x s matrix associated with the elements 1//iQ as follows:

Wl .vd) =Wr.....ynQ. (6.5)

Condition 2. yM and 1/ij anticommute:

vij, My =—ylylM (6.6)
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Theorem 6. Assume that M is an n x m Manin matrix, and let Y be an arbitrary m x s matrix (i.e. not
necessarily a Manin matrix). Suppose that the matrices M and Y satisfy Conditions 1 and 2 ((6.4), (6.6))
above. Ifn =m =s, then:

det® (MY + Q diag(n — 1,n — 2, ..., 1,0)) = det (M)det!(Y), (6.7)

where Q is a matrix corresponding to the elements wiQ according to formula (6.5) and the elements l/f,-Q arise
in the condition 1 above; by diag(aq, ay, . ..) we denote the matrix with a; on the diagonal and Q’s elsewhere.

More generally the following Cauchy-Binet formulae hold. Let I = (i1 <iy < --- <iy), ] = (j1, ..., jn'?;
be two multi-indexes with io <n, jo <s,r <n,s. Then

det (MY);; + Qj diag(r — 1,71 —2,...,1,0)) = > det® (M )det! (v )),
L=(li<b<lz3<--<l;<m)
(6.8)
here Q;; is the matrix such that (Qj)q» = Qj, j,, according to the Notation 1.
Before giving the proof of this formula, let us present some of its corollaries.
Corollary 3. Consider the casem < n, s,
M1 .o Mim
Y11 A AT
M= ... ... ...1, Y=|... ... .. ... ., (6.9)
e e e Ym] Yms
Mpr ... Mpm
then for any r > m:
det® ((MY);; + Qy diag(r — 1,71 —2,...,1,0)) = 0. (6.10)

Indeed, for r > m there is no such L that (I; <l < I3 < --- <, <m), and so there is no terms in the sum at
the right-hand side. It is the same as in the commutative case, where rank of MY does not exceed m and so all
minors of size r > m are zeros.

Corollary 4. Assume that the matrix Y is also a Manin matrix, and consider the matrix (MY )? obtained as an
arbitrary permutation o of columns of MY. Then

det ((MY){; + Q[ diag(r — 1,71 —2,...,1,0))
= (1)@ det! (MY);; + Q) diag(r — 1,1 —2,...,1,0)). (6.11)

Indeed, it is easy to see that matrices M and Y? satisfy Conditions 1 and 2 with the matrix
Q9 and (MY)? = M(Y)?, so using formulae (6.8) in the main theorem we obtain from the left-
hand side of (6.11) sum of terms detCOI(MIL)detC"l(YL“]), and from the right-hand side we obtain

detCOI(MIL)detCOI(YL]), since Y is a Manin matrix, we see that they are equal up to (—1)%"(©),

12 Conditions j, < jb, ja # jp are not required.
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To prove the theorem, we will make use of the following two Lemmas. The first one extends
formulae that are well known and obvious in the commutative case. However we prefer to explicitly
notice how they extend to the noncommutative case in a straightforward way.

Lemma 15. Consider Grassmann variables v; and an n x m matrix A; let | = (j1, j2, ..., jr) be an arbitrary
multi-index (i.e. it is not assumed that jq # jp, nor jq < jp), and assume that y; commute with Ay,. Then

Yyt gl = > Y1, Y, - . Y, det® (A ). (6.12)

L=(l1 <12 <l3 <<l Sn)
Dropping the assumption [v;, Ay ] = 0 we can write nonetheless the equality:

> Viy Viy -+ Vi Aiy jy Ao - - Aivy

I1=(iy,..., ir: 1<ig<m)

= > Yy, - W et (Ap ). (6.13)

L=(l1<ly<l3<---<I-<n)

The expansion of the column determinant with respect to the first column implies the following:

Z 1//11 Z lplz .o WIrAh Jj1 detCOI(AL_]_)

l1=1,...,n L—=(h<lz<--<l;<n)

= > Y1, Y, - . Y, det (A ), (6.14)

L=(l1<bh<lz3<--<l <n)
where |~ = (j2, j3, ..., jr)-
The second lemma is somehow less obvious.

Lemma 16. Conditions 1, Eq. (6.4), and 2, Eq. (6.6) guarantee that

oMY v M+ - 1)1/;13 yl .y =o0. (6.15)

Iy

Proof. Let us transform the first term by the Leibniz rule, to get

Yo Yugw 1= > v Y v (6.16)
I I

p=2,....,1

using Manin’s property (Proposition 1) we know that 1//1.M anticommute among themselves so we
can move 1//,’:” in front of [Y},,, 1//11:1] (getting the sign factor (—1)P~2). Using condition (6.4), that is,

S MY v = wl’,"’wg, we get that the right-hand side of Eq. (6.16) equals

LY w,’;”...w,’;”wﬁ ot (6.17)
p=

2,...,T

Now, using anticommutativity of ¥ and ¥ < (condition (6.6)), we put wls in front of the expression
and get the sign factor (—1) = (—1)P~2(—1)P~1. Thus we see that



280 A. Chervov et al. / Advances in Applied Mathematics 43 (2009) 239-315

Ip

DR TS 7 7 B G D S /MR /KR /A (6.18)
hy

In the sum ) ,_, . we see all the terms are identically the same, so we have that the right-hand
side of the above equation reduces to:

:(—1)(r—1)¢]%¢,’2”...1//,’”, (6.19)

T

which is exactly the right-hand side in the lemma. The lemma is proved. O
Let us finally turn to the proof of Theorem 6.

Proof. '3 The equality (6.8) in the theorem can be reformulated (with the help of (6.12)) in terms of
the Grassmann algebra as follows:

U7 + = 1)Ul + -2 ) () (620
= > > Vi, ... i, det (M) det! (Y ). (6.21)

L=(11 <12<l3<-~-<lr) 1:(i1 <i2<i3 <<--<l‘r)

By (6.12) the right-hand side of equality (6.20) can be also rewritten as:

> yt M det (v ). (6.22)

L=(lh<lp<lz<--<lp)

Transform the left-hand side of (6.20) using induction and (6.22):
MY Q MY Q MY Q
Wi+ e=0v )W +vg) () (6.23)

=+ - 1)%%)( > yil w,’rwdet“’l(YL-]—)>, (6.24)

L_:(lz <l3 <--~<lr)

Y =30 MYy, j,, commuting Yy, j, and M.y, we get:

=) > vt Y, g det (v o) (6.25)

Iy L—=(y<l3<--<ly)

+ > (Zw,’f’[yhh,wl’;’...w{y]+(r—1)wﬁ¢,’zv’...w,’rv’>detc°‘(yfr).

L7=(lz<[3<~~<lr) l]

(6.26)

Continuing the chain of equalities we have, thanks to Lemma 16 that the second summands van-
ishes, and so

= > WY, g det (Y- o), (6.27)

Iy L—=(p<l3<--<ly)

13 Proposition 14 is a toy model of the theorem above; in its simplicity, it is actually a good illustration for the proof of the
theorem.
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By formula (6.14) (i.e. column expansion of the determinant) we have that this equals
= > ytul et (v ), (6.28)
L=(lh<ly<lz<---<ly)
and, by (6.12), we arrive at
= > > Vi, ... i, det (M) det® (Y ). (6.29)
L=(l1 <l <l3<--<ly) I=(i1 <ip <iz<---<iy)

So we transformed the left-hand side (6.20) to the right-hand side of (6.20). Equality (6.20) is
equivalent to desired formula (6.8) in the theorem. Hence the theorem is proved. O

Question 1. Consider two Manin matrices M, Y, such that they satisfy Conditions 1, 2 above. Can one
develop some linear algebra (Cramer rule, Cayley-Hamilton theorem, etc.) for MY (or MY + Q )? We
will see below that if Q is zero then MY is a Manin matrix, so the answer is affirmative. Also note
that for the Capelli case (i.e. Mjj = x;j, Yij = 9j;) it is also true.

6.2. No correction case and new Manin matrices

The Conditions 1 and 2 given above are easy to check for concrete pairs M, Y; however it is not
so clear how to parameterize all the solutions in a simple way. Let briefly discuss the simplest case.
Theorem 6 has the following corollary:

Corollary 5. Let M be a Manin matrix, and Y such that the following holds:

vo.ii o Y W [Yevp']=o0. (630)
I=1,...m
then:
detCOI(MY) _ detml(M)detml(Y), (6.31)
det®((MY)) = > det® (M )det vy ). (6.32)

L=l <l <3< <l I <m)
Moreover if in addition Y is also a Manin matrix, then MY is a Manin matrix.

Proof. The requirement (6.30) is the simply Condition 1 with W,-Q =0. In this instance, the anticom-
mutativity Condition 2, (6.6) holds true in a trivial way. We can apply our Theorem with the matrix
Q equal to zero and obtain (6.31) and (6.32).

To prove that MY is a Manin matrix, it is enough to prove that 1//1’."’ Y anticommute. Indeed this is
guaranteed by Manin’s property (Proposition 1). By (6.12) we have

YR =3 i ¥ et (MY) 1)1 ) (6.33)
i1,i2
by (6.32) = Z Z Vi, Vi, detwl((M)(i1iz)(hlz))dEtCOl((Y)(lllz)(hjz))' (6.34)

i1,i2 1.l
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Y is a Manin matrix, so the determinant changes the sign after interchange of columns, and so 6.33
equals

- Z Z Vi, Wizdetml((M)(hiz)(lﬂz))dﬂwl((Y)(lllz)(jzh))' (6.35)

i1,ix Iy,

Making the transformations in the reverse order we come to:

_ MY MY
— MYy (6.36)
So Iﬂ][-\;'y anticommute and thus MY is a Manin matrix. O

Let us now reformulate condition (6.30) in different ways.
It is easy to see that (6.30) is equivalent to:

> MalYyj, Myp] — My[Yyj, Mgp] =0. (6.37)

Lemma 17. Assume that we can find such matrices Aﬁi, that:
vi.p.j [V v ZWA‘V’{, (638)

then it is straightforward to see that condition (6.30) is equivalent to:

vp, ji AP = AP, (6.39)
i.e. ¥p, j matrix APL is symmetric.
This is a quite transparent condition, provided one is able to identify the matrices AP/,
The simplest case is the following:
Lemma 18. Assume that we can find elements f,;, such that
Vi p, g [Yi v = s, (6.40)

then condition (6.30) is obviously satisfied.
This case corresponds to the previous with AP/ being diagonal matrices.

Example 7. Consider C[x;;], the matrix M: M;; = x;;, and the operators Ry, = Y} Xxdkp. One can easily
see that [Ryj, ¥'] = 8p;y;!. Consider the matrices M, Y:

Mij = xi5, Yjj = Zfsz(xij)Rlp, (6.41)
p

then one can see that they satisfy the condition (6.40) above. So det®® (MY) = det® (M)det°'(Y) and
the more general Cauchy-Binet formulae hold true.
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6.3. The “Capelli-Caracciolo-Sportiello-Sokal” case

We shall herewith first recall the Capelli identity [11], then its remarkable generalization S. Carac-
ciolo, A. Sportiello, A. Sokal [12] and explain how it can be naturally derived within our formalism.
Consider the polynomial algebra C[x;;], and the matrices:

9 3
X11 ... Xim X1 0Xs1
M=1]... ... ...}, Y= ... ... ...]. (6.42)
Xn1 ... Xmm axdlm .. 3)?sm
Theorem 7. (See A. Capelli [11].) Ifn =m =S, then
det® (MY + diag(n — 1,n —2,...,1,0)) = det® (M)det® (V). (6.43)
And more generally (n, m, s are arbitrary) the following Cauchy-Binet formulae hold true.
Let | = (i1 <iy <---<1ip), ] =(j1,..., jr), be two multi-indexes i, <n, j, <s,r<n,s. Then
det®((MY);; +diag(r —1,r —2,...,1,0)) = > det®(My)det(yy ). (6.44)

L=(l] <12 <"'<lr)

Recently the following unexpected and general result which includes the Capelli identity as a
particular case has been obtained. It concerns matrices satisfying certain commutation condition:

Definition 10. Let us say that two matrices M, Y of size n x m and m x s respectively satisfy the
Caracciolo-Sportiello-Sokal condition (CSS-condition for brevity), if the following is true:

[Mij, Yl = =8k Qi (6.45)
for some elements Q;;.

In words: elements in jth column of M commute with elements in kth row of Y unless j =k, and
in this case commutator of the elements M;; and Y}, depends only on i, [, but does not depend on k.
(See [12] formula (1.14), noticing that our matrix Y is the transpose to their matrix B).

Theorem 8. (See [12, Proposition 1.2/, page 4].) Let M be an n x m Manin matrix, and Y be an arbitrary (not
necessarily Manin) m x s matrix that satisfy the CSS-condition (10). Thenn =m =5,

det® (MY + Q diag(n — 1,n — 2, ..., 1,0)) = det (M)det!(Y), (6.46)

where matrix Q matrix with elements Q.
More generally for arbitrary n,m, s the following Cauchy-Binet formulae holds true. Let I = (i1 < iy <
- <ip), ] =1, ..., jr), be two multi-indexes i, <n, jo <, r <n,s. Then:

det®((MY);; + Qq diag(r —1,r = 2,...,1,0)) = > det®(My)det(y)). (647)

L=(li<bh<---<l})

Proof. Let us show that CSS-theorem naturally arises from our Theorem 6. To do this we need to
check that Conditions 1 and 2 are verified. To this end, let us recall the notations: v; are Grassmann
variables (i.e. ¥? =0, y;¥j = —y;jy;); ¥ commute with Mj; and Yj. By M we denote Y, v My
(see Notation 2).
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Condition 1, page 277 reads:

Vo, i WP eK@ A, vl Y vV v ] =vv i (6.48)

Now we can observe that simplest and most natural way to obtain that ), l/flM Aj (for some A; € K)

be proportional to 1[/3/’ is clearly to require that A; = §j, B;. So let us require that there exists 1/ij such
that:

[V, vp'] =8y (6.49)
Lemma 19. Condition (6.49) is exactly equivalent to the CSS-condition (6.45).

Thus the CSS-condition implies that Condition 1, (6.4) is satisfied for the matrices M, Y.
Now, an unexpected fact holds true:

Lemma 20. The CSS-condition automatically implies that Condition 2 (6.6) is also satisfied, that is 1//{‘” and
yij anticommute.

Proof. If n =1, then 0 = xpiM ij = —ij ¥M so anticommutativity holds by trivial reasons. Assume
n> 1, take: [ #1i and use use (6.49): 1//19 =Yy, 1//,M]:

Yyl M =y MY M+ Yy M e (6.50)
=My — MMy + vt M — Myl
=use (6.49): [yM, Yjj] =0wheni#I (6.51)
=Yy — MMy + Y =yl (652)

By Proposition 1 the %M anticommute, so the term Yj;y;MyM + Yj;yMyM cancel each other, and
so we can rewrite (6.50) as

Myl M = —y My My — My M. (6.53)

By Manin’s property (Proposition 1) the wiM ’s anticommute, so we can transform the last relation
into

vy — vy = M uM v =o, (6.54)
once again thanks to (6.49) with i # . The lemma is proved. O

Thus the CSS-condition implies both conditions in our Theorem 6, and hence the CSS theorem can
be deduced from Theorem 6 above. 0O

Example 8. It is easy to see that for arbitrary functions fjj(x11,...,X;m) the matrices below satisfy
the CSS-condition:
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X11 ... Xim %‘f‘fll(xij) 3,i’7+fn1(xij)
o], v= . (655)
Xn1 ... Xam o+ fin (i) g+ fam (i)

=<
Il

and so we can apply the theorem for them.

Remark 27. It is obvious that the Capelli identity is a particular case of the CSS-theorem. The first one
has been widely studied and generalized (see R. Howe and T. Umeda [56] for classical reference on the
subject, and [12] for quite a complete list of references), however, all the generalizations have been
related with the Lie algebras, super algebras, quantum groups. It seems it was widely believed that
such an identity is intimately related to these in a sense exceptional structures. CSS-theorem shows
that it is not true, it is actually a particular case of the more general statement about noncommutative
matrices, which actually has nothing to do with Lie algebras or whatever. Let us also remark that [16],
Section 4.3.1, contains a very simple proof of the Capelli identity and actually of its generalization
E. Mukhin, V. Tarasov, A. Varchenko [87] based on the Schur complement theorem for Manin matrices.

Remark 28. The CSS conditions can also be reformulated with the help of matrix notations:

M®1,19Y]=—(Q®1HP=-P(1®Q), (6.56)

where P is the permutation operator: P(a ® b) = b ® a. However, here we will not explicitly use this
property. The Matrix (or Leningrad) notations are discussed in Section 8.

6.4. Turnbull-Caracciolo-Sportiello-Sokal case

In 1948 Turnbull [111] proved a Capelli-type identity for symmetric matrices, D. Foata and D. Zeil-
berger [37] gave a combinatorial proof of this identity. S. Caracciolo, A. Sportiello, A. Sokal [12],
Proposition 1.4, proposed a generalization of this result as well. Here we will deduce it from our
Theorem 6.

Consider the polynomial algebra C[x;;], and the symmetric matrices:

3 3 3 3

X111 X12 X133 ... Xn 3%11 3)512 0X13 a)ém

X12 X220 X3 ... Xop X1z B B B%an
M=1]Xx13 X3 X33 ... X3n], Y=|55 59 345 - 9xp (6.57)

Xin X2n X3n ... Xmn 3 3 3 d

IX1n dXon X3 t IXnn

Theorem 9. (See HW. Turnbull [111].)

det® (MY + diag(n — 1,n — 2,...,1,0)) = det® (M)det (V). (6.58)

Definition 11. Let us say that matrices M and Y satisfy the Turnbull-Caracciolo-Sportiello-Sokal con-
dition (TCSS-condition for brevity), if the following is true:

[Mij, Yial = —h(S 8 + dikd 1), (6.59)
for some element h.

This means that the elements M;; commute with all elements of Y except for elements Y;, and Y;,
and this non-zero commutator is equal to —h, for some element h. (See [12], formula (1.25); our M
is their A and our Y is their B).
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Lemma 21. Assume n > 1. Assume that M is a symmetric n x n matrix with commuting entries (i.e.
Vi, j, k, I: [Mjj, Miq] = 0), M and Y satisfy the TCSS-condition above. Then:

Vi, j: [M;j, h]=0. (6.60)

Indeed, let us consider M;jj, and pick Mg, such that (ij) # (ab) and (ij) # (ba) (this is possible
since n > 1). Then h = [Ygp, Mgp], by TCSS-condition [M;j, Yqy] =0 and by assumption [M;j, Mg] =0,
so [Mij, h] = [Mij, [Yap, Mgp]] = 0.

Theorem 10. (See [12, Proposition 1.4].) Assume M is an n x n symmetric matrix with commuting entries, 4
Y isn x p matrix (not necessarily Manin), and matrices M and Y satisfy TCSS-condition. Then:
Ifn=p,

det® (MY + hdiag(n — 1,n — 2, ..., 1,0)) = det® (M)det®!(Y). (6.61)

For arbitrary n, o, more generally the following Cauchy-Binet formulae holds true. Let I = (i1 < iz <
<o <ip), J =01, ..., jr), be two multi-indexes i, <n, j, <n,r <n, p. Then:

et ((MY);; + hdiag(r —1,r —2,...,1,0)) = > det (M )det® (Y1 ). (6.62)

L=(li<lp<--<ly)

Proof. We will deduce the theorem above from our Theorem 6. To do this we need to check Con-
ditions 1 and 2. Let us recall the notations: ; are Grassmann variables (i.e. 1//1.2 =0, ¥ivj = —vj¥)
and v; commute with M;; and Y. By wiM we denote ), ¥xMj; (see Notation 2).

From the TCSS-condition above we see that:

[Yyj. v ] = 8phsrj + 8jphyn. (6.63)
Let us look at Condition 1, (6.4):
S vy 1= ) v Gphyry+ siphyn) (6.64)
I=1,...,n I=1,...,n

> vyl =o. (6.65)

.....

In our case v; and W]M anticommute so the sum Y ,_; . ¥M3;,hyy is zero. Then (6.64) becomes
= > uMephy; =y hy;. (6.66)
Hence Condition 1, (6.4) is satisfied for wjg =hy;.

14 We could require M to be a Manin matrix, but for the field of characteristic not equal to 2, a symmetric Manin matrix is
matrix with commuting entries.
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Condition 2, (6.6) requires that 1//113"’, hiyj. Assume that n > 1, then by Lemma 21 above we know
that h, commute with M;;, by definition Wﬁ/’ =), YkMyp, where y; commute with My,. These implies
Condition 2, for n > 1.

Hence our Conditions 1, 2 are satisfied. Applying Theorem 6 we obtain the theorem above for
n > 1. Since for n =1 the theorem above is the tautology M11Y11 = M11Y11, the theorem is fully
proved. O

6.5. Generalization to permanents

We have seen that the identity above has a natural formulation and proof in terms of the Grass-
mann algebra, so we can also look for similar result for the algebra of polynomials, since both algebras
play an equal role in the definition of Manin matrices. Here we will briefly discuss some analogs for
permanents of the theorems above. Since proofs are absolutely similar we will give only the formu-
lations and some key comments. One can actually consider the case of super-Manin matrices and
then both cases of determinants and permanents are the particular cases of it, but we do not want to
overload the text going into the super-theory.

6.5.1. Preliminaries

Definition 12. Let us recall that the column permanent of a square n x n matrix A is:

perA = Z As 1A )2 - Ao, (6.67)

oeS,

i.e. in the product As1)1As2)2 ... Acmn We first take elements from the first column, than the sec-
ond, and so on and so forth. Here S, is the permutation group of n letters.

Remark that the definition of permanent is absolutely similar to that of the determinant, without
the sign factors given by the parity of the permutation.

Let A be an n x m matrix. Consider multi-indexes I = (i1, ...,i,), J = (j1,..., jr,). Let us recall
(Notation 1) that we denote by A;; the following r x r matrix:

(A1Dab = Aigjp- (6.68)
In formulas below it will be necessary to use the following normalized version of the permanents.

Definition 13. Let A be an n x m matrix over some (not necessarily commutative ring); let I = (i; <
- <ip), J=(1,.--,Jr), VYa: jo <m be multi-indexes (we do not require ordering nor j,; # jp). Let
us call normalized column permanent the quantity: permﬁ%‘rm(/\ 1) the following:

perm;%lrm(A, = perm®!(A; 1, (6.69)

1
@2nHm3Hms ..

where n, is defined as follows: n, = v, means that some numbers a, ...a, enter the sequence I with
multiplicity exactly p.

For example for I = (i1, i1, iz, i2, i3, i3, i3) the factor will be (2!)%(3!). Note that multiplicities in J
do not enter the normalization of the permanent.
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Example 9.
perm® (A )= lpermm‘ A An 1(A A1 + A11A11) = (A11)?, (6.70)
norm V2 (11)(11)) = 2 A An) T2 11411 11A411) = (A11)7, .
more generally: permﬁ%‘rm(A(aama)(bb___b)) =(Ap)". (6.71)
Notation 3. Consider some elements xq,...,X; and an n x o matrix A, for brevity we denote by xlf"
the element ) ,_;  X¢Ay, i.e. just the application of the matrix A to row-vector (X1, ..., X,):
(xf, .. X)) = (1, ... xn) A (6.72)

The lemma below is quite obvious. It is an analogue of Lemma 15 for Grassmann variables and
determinants.

Lemma 22. Consider commuting variables x;, i = 1,...,n and an n x m matrix A; multi-index | =
(j1, j2, ..., jr) is arbitrary (i.e. it is not assumed that jq # jp, nor jq < jp). Assume that x; commute with
Ay. Then:
A A A 1
X5 X5 o X = Z X, X, ... X, permee - (AL)). (6.73)

L=(h<h<B < <L)

Dropping the assumption [x;, Ag] = 0 we can write the equality in the following way:

X A Ais R col
Z Xiy Xiy - - Xi, Ay j Aiyjy - - - Ay = Z X1, X1y ... x.permpo. (Apy).
I=(i1,....ir: 1<ig <) L=(h <h<B<-<hr <)

(6.74)

It implies the formula for the expansion of the column permanent with respect to the first column:

col
Z X), Z Xl - - X, Ay j permpgn, (Ap- -)
h=1,..n  L~=DL<hB<-<h<n)

1
= Z Xp, Xy, .. X, permpo - (Arp), (6.75)
L=(h < <B<-<r<n)

where |~ = (j2, j3,---, Jr)-
6.5.2. Cauchy-Binet type formulas for permanents

Proposition 13 (Cauchy-Binet formula for permanents: first case). Consider an m x n Manin matrix M and
an arbitrary m x o matrix Y, such that [Mjj, Yiy] = 0. Consider an arbitrary multi-index | = (j1, ..., jr) and
ordered multi-index I = (i1 <l <--- <ip), ig < n. Then:

permSh (MY), )= 30 perm (M), )perminy (V)r)).  (6.76)
L=(l; < <<l Ja<m
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Proof. It is quite obvious, but let us nevertheless write it in details, to get a grasp on what is going
on.

Consider the polynomial algebra C[xq,...,X;], whose generators satisfy [x;, My] = 0 and
[xi, Yi]1 = 0. By (6.74):

Mty Mty Mty _ v . col t
Xjxp k= Z XiyXiy - .. Xi,permpory (M'Y) ), (6.77)
I=(i1 iz <3< <ir )

on the other hand, x?”ty =Y x,’:"[ Yy, and x?”f commute by Manin’s property (Proposition 1), so again
by (6.74):

t t t t t t
XMV MY MY — Z PRI i perm ((Y)1)) = (6.78)

v T2 %
L=(h < <<l <m

and again by (6.74):

_ v X col t col
= Z Z Xiy Xip - - 'xlrpermnorm((M )]L)permnorm ((Y)L])-
L=(h<h<B <<k <m - I=(i1 <2 <3< <)

(6.79)

Comparing (6.77) and (6.79) we come to the desired proposition. O

Now, let us weaken the condition of commutativity of the matrix elements My, and Yjj, and as-
sume the following analogs of Conditions 1 and 2 ((6.4), (6.6)) of Section 6.1 considering:

Condition 1’.

vp, j EIx?eIC@(C[x],...,xn]: Z xl'V’[Ylj,xpM]=xpr?, (6.80)

note that x]Q does not depend on p.

As usual, denote by Q an n x s matrix corresponding to the elements xiQ:

(x2, ... x8) = (x1,..., %) Q. (6.81)
Condition 2. x¥ and x? commute:
Vi, j: lex;2 :x?x,M. (6.82)

Theorem 11. Assume M is m x n Manin matrix, Y is m x s matrix (not necessarily Manin), and matrices M*
and Y satisfy conditions (6.80), (6.82) above. Then the following Cauchy-Binet formulae holds.
Let I = (i1 <ix <---<ip), ] = (j1,..., jr),1° be two multi-indexes iy <n, jq < s, <n,s. Then:

15 Conditions j, < jp, jo # jp are not required.
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perm< ((M'Y),, — Qi diagr = 1,1 =2,...,1,0))

norm

= > perm{, (M), )perm&or (Y1 )). (6.83)
L=(h <l <<l Ik <m

Here Ay is the matrix such that (Ajj)ap = Aj,j,. (see the Notation 1); Q is the matrix corresponding to the

elements xl.Q by formula (6.81) and elements x,.Q arise in Condition 1’ above; by diag(ay, az, ...) we denote
the diagonal matrix with a; on the diagonal.

Let us recall Definition 10 that two matrices M, Y of sizes n x m and m x p respectively satisfy the
CSS-condition if the following is true:

[Mij, Yial = =3k Qi (6.84)

for some elements Qj.

Or “in words”: elements in jth column of M commute with elements in kth row of Y unless j =k,
and in this case commutator of the elements Mj, and Yy depends only on i, I, but does not depend
on k. (See [12] formula (1.14), our Y is transpose to their B).

Theorem 12. Assume n > 1. Assume M is an m x n Manin matrix, Y is m x s matrix (not necessarily Manin),
the and matrices M* and Y satisfy the CSS-condition (6.84) above. Then the following Cauchy-Binet formulae
hold true.

Let | = (i1 iy <---<ip), ] =1, ..., jr), be two multi-indexes iy <n, jq <s,r<n,s. Then:

permﬁ%‘rm((MtY)” — Qqydiag(r—1,r—2,...,1,0))

= > perm$or ((M*),, ) perm&y . (Y1), (6.85)
L=(h <L <<l <m

where Q is the matrix with elements Qj;.
Let us also give an analogue of Lemma 23:

Lemma 23. For n > 1 the CSS-condition automatically implies xﬁ"’ and XJQ commute (and hence that Condi-
tion 2’ is satisfied).

Remark 29. The theorem above holds true for n = 1 under the additional requirement
[M11, [M11, Y1i]1 =0.

Let us modify the TCSS-condition (6.59) for an antisymmetric matrix M. We impose the following
condition:

[Mij, Yial = —h(@Sjidit — Sikdjt). (6.86)
for some element h.

Or “in words”: the elements M;; commute with all elements of Y except with the elements Y
and Yj;, and these non-zero commutators are equal to +h respectively, for some element h.
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Theorem 13. Take n > 2, and assume M be an n x n antisymmetric matrix with commuting entries (i.e.
Vi, j, k, I: [Mjj, M| = 0),'8 Y is n x s matrix (not necessarily Manin), and that the matrices M and Y satisfy
TCSS-condition for antisymmetric matrices. Then the following Cauchy-Binet formulae hold true.

Let | = (i1 <iy <---<ip), ] =(j1, ..., jr), be two multi-indexes iy <n, jo <n,r<n,s. Then:

permf]‘(’,lrm((MY),] —hdiag(r—1,r—2,...,1,0))

col

= Z pPerMpsrm (MIL)perm;%lrm(YLJ ). (6.87)
L=(hi <l <<lr)

An analogue of Lemma 21 is the following:

Lemma 24. Take n > 2, and assume that M be an antisymmetric n x n matrix with commuting entries (i.e.
Vi, j, k, I: [Mjj, My] = 0), and that M and Y satisfy the TCSS-condition above. Then:

Vi, j: [Mjj;, h]=0. (6.88)
Remark 30. The theorem above holds true for n = 2 also under the additional requirement
[M12,h]=0.

An analogue of the relation (6.65) is the following:

Lemma 25. For any antisymmetric matrix M (not necessarily Manin matrix):

> xx'=o. (6.89)

6.5.3. A Toy model

Let us provide a toy model for the identities above, which is actually a particular case of Theo-
rem 12 (in the case n = 1). The proof is extremely simple and it is actually a good illustration of the
proof of the main Theorem 6.

Proposition 14. Assume that some elements M and Y of the ring KC satisfy the following condition:
[M,[M, Y]] =0, and denote by Q = [M, Y]. Then for any r:

(MY —(r—=1DQ)(MY —(r—=2)Q)...(MY — Q)(MY) = (M)"(Y)". (6.90)
Proof. For r =1 it is a tautology. Consider the left-hand side of the equality and by induction:
(MY —(r —=1)Q)(MY — (r —2)Q)...(MY — Q)(MY) = (MY — (r — DQ)(M"'Y""1) (6.91)
(the formula above is analogous to (6.23) in the proof of the main theorem)
=MM" YY" 4 MY, MY — = (M YY) (6.92)

(the formula above is analogous to (6.25) in the proof of the main theorem).

16 We can require M to be a Manin matrix, but for the field of characteristic not equal to 2, antisymmetric Manin matrix is
matrix with commuting entries.
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Since [M, Q]=0:

[y. M 1=r-1QM! (6.93)

(the formula above is analogous to Lemma 16 in the proof of the main theorem).
Continuing the chain of equalities (6.92) we have:

=MM YY" M@ - DM TY T - =D (MY = MMTY YT (6.94)
It is right-hand side of the desired equality. The proposition is proved. O

Example 10.

(0.2 — (r = 1)) (0.2 — (r = 2)) ... (32— 1)(3;2) = 0} 7. (6.95)

Remark 31. Capelli identities related to permanents can be also found in S. Caracciolo, A. Sportiello,
A. Sokal [12], Proposition 1.5 (due to Turnbull), M. Nazarov [88], and A. Okounkov [93].!7 Our result
is clearly different from the first mentioned result while the relations with the others are not clear to
us at the moment.

7. Further properties

In this section we discuss other properties of commutative matrices which can be extended to the
case of Manin matrices. Some of them are new like the multiplicativity property of the determinant,
the relation of the determinant and the Gauss decomposition, conjugation to the second normal (also
called Frobenius, e.g. Wilkinson [65,116]) form. Other properties can be already found, somewhat
scattered, in the literature. We include them in order to provide a complete list of properties estab-
lished at the moment so far Manin matrices and to add some details, comments or different proofs
of these results.

7.1. Cayley-Hamilton theorem and the second normal (Frobenius) form
The Cayley-Hamilton theorem can be considered one of the basic results in linear algebra. It was
generalized in [16, Theorem 3] to the case of Manin matrices. Let us recall it and present some

corollary about conjugation to the second normal (Frobenius) form. Some bibliographic notes are in
Section 7.5.

Theorem 14. Let M be an n x n Manin matrix. Denote by o, i =0, ..., n the coefficients of its characteristic

Y =DM =0, e det®l(t — M)[[Ey T =0, (7.1)

If Mt is a Manin matrix, then one can obtain a similar result, using left substitution and the row determi-
nant: det™" (¢ — M)|left substitute _ ¢

17" A. Okounkov considers immanants, i.e. Y ses, X(©@)Ac1)1A52)2 - - - Agmn, Where x is some character of the symmetric
group. Permanent and determinant are particular cases of the immanant for x =1 and x = (—1)%¢"®), respectively.
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Remark 32. In the commutative case o; is the ith elementary symmetric function of the eigenvalues
(0i = Y 1<jy<zjicn Mir Ay -+ - Xji ) In general: o1 =Tr(M), on = det®® (M), oy = Tr A*M.

det'(t —M)y= > (=D)ioyt""
i=0,...,n

=t"+ " (Do + "2+ Do+ -+ (D" o + (= Doy, (7.2)

Proof. Proposition 6 shows that t — M admits a classical (left) adjoint matrix (M — t 1,xs)™, such
that

(M =t Tnsen) W (M — £ 1) = det® (M — ¢ Tnsen) Tnxen, (7.3)

where, as usual, we denote by 1,4, the identity matrix of size n. The standard idea of proof is
very simple: we want to substitute M where t stands; the left-hand side of this equality vanishes
manifestly, hence we obtain the desired equality detc"l(M —t 1pxn)lt=m = 0. The only issue we need
to clarify is how to substitute M into the equation and why the substitution preserves the equality.

equality above is an equality of polynomials in the variable t:

(Z Adjk(M)tk) (M = t1pn) = Y Adj(M)MEE =~ Adji (M)e“H!
k

k k

=det™' (M —t Tnxn) = (=1)" Y (=Dioit"".  (74)

i=0,...,n

This means that the coefficients of t' of both sides of the relation coincide. Hence we can substitute
t =M in the equality, substituting “from the right”:

> AdjMM* =Y " Adj MM = (—1)" Y (=Dt . (7.5)
g -

k k 0,...,n

Let us present a corollary on the conjugation of a Manin matrix to the so-called Frobenius normal
form.

Corollary 6. Let M be a n x n Manin matrix with elements in an associative ring /C, and let i, i=0,...,nbe
the coefficients of its characteristic polynomial, that is, det®(t — M) = Z,-:O’”_!n(—l)’ait”*‘.
Let v = (vq,...,Vvy) be a vector with elements in IC such that V k, I, vy commutes with oy, (this happens,

for instance, if v, € C). Let, finally,

% Vi Vn
vM ZiViMi] ZiViMin
D=| vM? |=|X;;viMiiMji ... X ;viMiiMj |. (7.6)

VM”71
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Then it holds

DM = MgopD, where

0 1 0 0 0
0 0 1 0 0
Mprop = ] (7.7)
0 0 0 0 1
(-D"loy  (=D"0p—1 (D" lop_z ... —02 o3

Remark 33. In words, this corollary says that, under the commutativity conditions [vy, 0] =0, a
Manin matrix M can be conjugated to its normal Frobenius form. Before giving the proof of the
corollary let us remark the following. It is easy to see that an arbitrary matrix over a noncommutative
ring /C which is which can be embed in a noncommutative field can be conjugated in the form above.
(Indeed, this is equivalent to the fact that n + 1 vectors in a n-dimensional vector space are linearly
dependent over an arbitrary field (no need of commutativity) and applying this fact to the vectors
v,Mv,M?,...,M"v one gets the claim. The coefficients of linear dependence precisely appear in
the last row of the matrix Mg,,.) However, in general the coefficients of the linear dependence will
depend on the vector v and they are rational (not polynomial) functions of the matrix entries (that
is, they belong to the field of fractions of /C, but not to the original ring.) We notice that for Manin
matrices, the theorem holds in the same form as in the case of ordinary matrices.

Proof. By definition, the ith (i=1,...,n) row DM equals vM'. The same is true for the first n — 1
rows ofMpo,D equals to vMi. One only needs to check the equality of the nth row. It equals
to vM" for DM and the Cayley-Hamilton theorem, together with the condition [v,o0;] =0 pre-
cisely provide that the same expression appears in Mg,,D. Indeed the nth row of Mg,,D equals
ZI:O,._.,n—l(_I)H_H—]GH*IVMI; thanks to the commutativity condition [vg, 0;] =0 we can rewrite it
as V(leo....,n—1(—1)n_l+10n—lM[)- By the Cayley-Hamilton theorem this equals to (vM™). The corol-
lary is proved. O

Example 11. Consider the 2 x 2 case, with v = (0, 1). Denote M = (* b).

cd
b= <(c) (11) ’ Merop = <—(ad0— ch) a qlL d) ’ (7.8)
DM = <(c) cli) (?: Z) = (caj—dc cbid2>’ (7.9)
Meron D = (—(ado— ch) a 41- d) <(c) (li> - (ac —T— dc —(ad — cb;i—i— ad + d2) (7.10)
- (ac jCL dc c¢b —‘ij— d2> = (use: ac =ca) = (ca —T— dc c¢b —Cil— dz)' (711)

7.2. Newton and MacMahon-Wronski identities

The aim of this section is to generalize the Newton and MacMahon-Wronski identities to the case
of Manin matrices. As we shall see, they hold true exactly in the same form as in the commutative
case, which we herewith recall.

There are three basic families of symmetric functions in n variables:

1. oy = 2 1<y <ip<<ip<n L p=1,...nAip- 1 =1,...,n; they are called the elementary symmetric func-
tions.
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2. Sy = Zogil_,.,in: i1+ tin=k Hp:l,...,n )»;f, k > 0 - the so-called complete.

3.Tk=>p1,..n A’l‘,, k >0 - the so-called power sums.

They can be rewritten in the matrix language as follows:

o = Tr A*M ( > (—tfop =det(1 - tM)>, (712)
k=0,...,n
Sk = Tr SkM, (713)
Ty = Tr(M¥). (7.14)
Here M is a matrix with entries in C with eigenvalues A1, ..., As. SKM is the symmetric tensor power

of M while AKM is the antisymmetric power.

Theorem. oy, Sy, Ty are related by the following set of identities for all k > 0:

MacMahon-Wronski: 0= Z (—1)’510k_1= Z (—1)lo*k_151, (7.15)
1=0,....k 1=0,....k
Newton: —(=Dfkor= Y (=D'oiTi, (7.16)
i=0,....k—1
Second Newton: kSp= Y Ti_iSi. (717)
i=0,....k—1

Our main goal is to explain the following:
Claim. The formulas above hold true when M is a Manin matrix.

Remark 34. In the case of Manin matrices the order in products in the formulas above is important.
The MacMahon-Wronski identity has been first obtained in S. Garoufalidis, T. Le, D. Zeilberger [39],
the Newton one in [16]. Here we will collect these results.

The identities above can be easily reformulated in terms of generating functions:

Corollary. Let M be a Manin matrix. Denote by o (t), S(t), T (t) the following generating functions:

o)=Y (ko =det® 1 —tM), (7.18)
k=0,....,n

so= Y ts= > t1rskm, (719)
k=0,...,00 k=0,...,00

M

— k _ k k+1y _

TO= Y tTwa= Y CTMH)=Tr—. (7.20)
k=0,...,00 k=0,...,00

Then the relations between oy, S, T; can be written as follows:

MacMahon-Wronski: 1=o0(t)S(t) = S(t)o (t), (7.21)
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Newton: —do(t) =0 ®T(), (7.22)

Second Newton: 0;S(t) = T(t)S(t). (7.23)

Remark 35. In the commutative case the Newton identities can be reformulated in the other forms.
This might not be the case for Manin matrices, since, as we shall see in the sequel, for generic Manin
matrices we have:

detcol(eM) #eTT(M) al‘ld (detcol(l +M)) #eTT(ll’l(l-}—M))'

7.2.1. Newton identities
Let us recall the result of [16] and give a detailed proof. Bibliographic notes are in Section 7.5.

Theorem 15. Let M be n x n Manin matrix. Denote by oj, i =0, ..., n coefficients of its characteristic poly-

,,,,,

—0det® (1 — tM) = (det' (1 —tM)) Y~ *Tr(M*HT) (7.24)
k=0,...,00
& Vk=20:—(=Dfkoy= Y (=D'oyTr(M*). (7.25)
i=0,....k—1

If M* is a Manin matrix, then 3;det™" (1 — tM) = (1/t Yo oo tX Tr(M*+1)) (det™" (1 — tM)).

Remark 36. Using the generating functions o (t) = detc"l(l —tM), T(t) =Tr % one rewrites 7.24 as
—00(t) =0 ()T (t). (7.26)

,,,,,

Remark 37. In the commutative case o; is ith elementary symmetric function of the eigenvalues
(X, < <ji [TAj,)- In general: oy = Tr(M), oy = det®(M), o = Tr AKM.

det'1—tM)= )" (~t)o;. (7.27)
i=0,...,n

The formulae are identical in the Manin case, provided one pays attention to the order of terms:
o; Tr MP if M is a Manin matrix, while Tr MPo; if M! is a Manin matrix.

Proof of Theorem 15. The proof of the theorem is somewhat a standard one. First we need the fol-
lowing simple lemma:

Lemma 26. Consider an arbitrary matrix M (i.e., not necessarily a Manin matrix), and define its adjoint matrix

M in the standard way as follows: M;’fj = (=)kHdet® (My,) where My, is the (n — 1) x (n — 1) submatrix
of M obtained removing the Ith row and the kth column. Then:

Tr(t + M) = 5,det (¢t + M).
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Proof. The proof is straightforward, but let us nevertheless write it up.

ddett+My= > - > det®(K), (7.28)

i=0,....,n—1 principal ixi submatrices KCM

where a principal submatrix is the one formed by the elements obtained on the intersection of the
rows and columns labelled by the same set of indices jq,..., ji,

Tre+ M@= " det¢+ My

I=1,...,n
= > > o > det(K). (7.29)
I=1,...,ni=0,....,n—1 principal ixi submatrices K of My

Clearly, any principal submatrix of 1VIH is a principal submatrix of M, so one has the same terms
in both sums. Moreover submatrices of size i appear as coefficients of t"~1~! in both sums.

So we only need to observe that det® (K) for an i x i submatrix K enters with the same multi-
plicity in both sums. In the first sum the multiplicity is manifestly n —i. Let us look at the second

sum. The principal submatrix of size i clearly is a submatrix of (n —i) principal submatrices (t/—f—\M),,,

for example submatrix of size 1, say M1, is a submatrix of (t + M),y, (t + M)33, ..., (t + M),,. So we
get that the desired coefficient is n —i and the lemma is proved. O

Remark 38. The same arguments can be applied when dealing with the row-determinant, as well,
symmetrized determinant, and so on and so forth.

Let us finalize the proof of the theorem. We have the following chain of relations:

= via Cramer’s formula

1
VY Tr((—M/t)"):TrH_M

= Tr((det™! (¢ + M)+ M) ) = (det<® (¢ + M)~ Tr(t + M)
= By Lemma 26 = (det® (¢ + M)) ™' 3det<®' (¢ + M). (7.30)

This identity gives the identities (7.25), i.e.

Vk>0: —(—Dfkor= Y (=DioiTr(M*), (7.31)

—0det® (1 — tM) = (det' (1 —tM)) Y~ *Tr(M**T). (7.32)

Theorem 15 on the Newton identities is thus proved. O

8 In the commutative case one can pass from (7.30) to (7.32) as follows. Substitute M = N~' in (7.30) and use that
det®!(t + N=1) = det™ (Nt + 1)det™ (N~"), one gets: Tr yitr = (det™ (Nt + 1))~"det™ (N)det™ (N~1)a,det™ (Nt + 1) =
(det® (Nt + 1))~19,det® (Nt + 1) changing N to —N one gets (7.32). The open question is whether det®(t + N=1) =
det® (Nt + 1)det (N~ for Manin matrices as well.
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Remark 39. The case in which M is a Manin matrix can be treated in a similar way.

Example 12. It is instructive to explicitly perform the computation in the 2 x 2 case. Let

a b
v=( o)

where M is a generic matrix (i.e. not necessarily a Manin matrix). We have:

Tr(M?) — o1 Tr(M) + 20> (7.33)
a’?+bc ab+bd 5
_Tr<ca+dc cb+d2) —(a+d)* 4+ 2(ad — cb) (7.34)
= (a® + bc + cb +d*) — (a® +ad + da + d*) + 2(ad — cb) (7.35)
= (bc) — (da) + (ad — cb) = [a,d] + [b, c], (7.36)

and, similarly,

Tr(M?) — 01 Tr(M?) 4+ 02 Tr(M) = ([a, d] + [b, c1)a + [c, alb + [b, d]c.

Notice that —303 does not appear in the last formula since o, =0, for k > 2 for 2 x 2 matrices. We
see that Manin’s relations imply that the expressions above are zeroes.

A No-go fact. In the commutative case there is the well-known identity det® (eN) = e N, which can
be readily seen by diagonalization of N. Substituting N =log(1 — tM) one obtains: (detcol(l —tM)) =
eTrIn(1—tM)) 'Here we show that these identities do not hold in the case of Manin matrices; actually,
they do not hold even in more restrictive case of Cartier-Foata matrices.

Let us remark that in the commutative case the Newton identity

—0,det® (1 — tM) = (det' (1 —tM)) >~ Tr(c~"(M))

easily follows from the identities above. Indeed, deriving the identity (det® (1 — tM)) = eTr(n(1—tM))
with respect to t, one obtains:

3 (det®' (1 — tM)) = Tr(In'(1 — ¢M))e™IMA=M) — Tr(1n'(1 — tM)) (det! (1 — eM)).  (7.37)
Using Tr(In’(1 — tM)) = — Tr(M(1 — tM)~1), one arrives to
3 (det (1 — tM)) = — Tr(M(t — M)~ 1) (det (1 — tM)),

which is the Newton identity from Theorem 15 above.

One may try to argue in the opposite direction, but the crucial point is the commutativity which
is absent for Manin matrices, and was used in the first equality of (7.37). So it is not guaranteed that
the exponential relations hold true in the general case of a Manin matrix, as indeed it is proven by
the next two counterexamples.



A. Chervov et al. / Advances in Applied Mathematics 43 (2009) 239-315 299

Counterexample 1. Consider a 2 x 2 matrix M,

M= (‘Cl Z), (7.38)

and assume it is a Cartier-Foata matrix, that is, elements from different rows commute. Introduce a
formal scalar variable €; clearly enough, 1,42 + €M is again a Cartier-Foata matrix.

Fact.
det®! (exp(1 + € M)) # exp(Tr(In(1 + eM))). (7.39)
Actually, the equality holds up to order 2, but not at order 3.

Proof. The coefficient of €3 in the left-hand side is equal to:
1
5 (¢ + bea + abe + bdc + cab + dcb + cbd + d* (7.40)
+ 3acb + 3ad? + 3a*d + 3bcd — 3cab — 3cbd — 3cab — 3dcb), (7.41)

while that on the right-hand side is %(a+d)3. In the Cartier-Foata case [a,d] =0, so the difference is
given by:

1
E(bca + abc + bdc + cab + dcb + cbd (7.42)
+ 3acb + 3bcd — 3cab — 3cbd — 3cab — 3dcb) (7.43)
1 1
=5 (bac + bcd — abc — bdc) = 5 ([b,alc + blc.d]). (7.44)

Since pairs of elements a,b and c,d may be taken to generate free associative algebras and ar-
ranged to give a Cartier-Foata matrix, we see that this does not vanish. O

Counterexample 2. Consider M, € as above; then

det® (1 + eM) = eTIn(+eM)) (7.45)
The equality holds up to order 2.

The proof of this fact goes exactly as that of Counterexample 1.

7.2.2. MacMahon-Wronski relations

For the sake of completeness let us briefly discuss the so-called MacMahon-Wronski formula for
Manin matrices. It was first obtained in [39]. In the language of symmetric functions this identity
relates the elementary and the complete symmetric functions. We will provide some more detailed
bibliographic notes in Section 7.5.

For an n x n-matrix M over a commutative ring the MacMahon-Wronski identity reads

1/det®(1-M)= > Trskm, (7.46)
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where SKM is kth symmetric power of M. It can be easily verified by diagonalizing the matrix M. As

it was mentioned before, Tr SM is the complete symmetric function of the eigenvalues A; of M, i.e.
ip
Sk = 20<iy....in: ittink [ Lp=1...n*p -

Theorem. (See [39].) The MacMahon-Wronski identity holds true for Manin matrices'® provided one defines

M’l I Mh L .- I\/I]1 I
r = /K erm '
Tr Skm 1/k! Z p row | My, My, ... My, (7.47)
he i1 <<
1l n My, My, ... My,

We remark that the range of summation in this formula allows repeated indexes: I, =1Ij; =---.
The permanent of a Manin matrix was defined by formula 3.32 as follows:

permM = perm™"M = Z H Mis (iy- (7.48)

oeSpi=1,...,n

Due to the property that the permanent of a Manin matrix does not change under any permutation
of columns, one can rewrite the formula above with the summation without repeated indexes:

Ml]l] MI]IZ Mlllk
M M M
TrS*M=1/ki Y mnp!...mlperm™” [ TR Tkb Lok (7.49)
e
! ‘ My, My, My,
where n; is the set of multiplicities of the set (l1,...,l), i.e. n; is multiplicity of the number i in the

set (I1,...,1).

One sees that the definition of traces of symmetric powers is the same as in the commutative
case, with the proviso in mind to use row permanents.

As an immediate consequence of formula 7.46 we get

Corollary 7. For all p > 0 it holds

0= > (=D'Siop= Y (Dopsi, (7.50)
1=0,...,p I=

..... 0,....p

where Sy = TrS¥M and o}, are the coefficients of the characteristic polynomial det®'(1 — tM) =
ZI:O,...,H(_l)Itlal'

Example 13. Let us explicitly write the relation: Sy — S101 + 02 =0, for a 2 x 2 matrix M = (2’ 3)
We have:

Si1=a+d, o1=a+d, o0y =ad — cb, (7.51)

while

19 One can find in [39] more general case of g-Manin matrices.
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1 a a a b d ¢ d d
So= 3 (perm(a a) + perm(c d) + perm(b a) + perm(d d)) (7.52)
1
= 5(2a2 +ad + bc + da + cb + 2d?) (7.53)

using only one Manin’s relation: [a, d] = [c, b]:

= (a* +ad + bc +d?). (7.54)
Thus:
Sy — S101 + 02 = (¢® +ad + bc +d*) — (a +d)* +ad — cb (7.55)

= (a* +ad +bc +d*) — (a* + ad + da + d*) + ad — cb
= (bc) — (da) +ad — cb = [a,d] + [b, c] = 0. (7.56)

7.2.3. Second Newton identities

,,,,,

ASMO=TMOSEt) <« Vk>0: kSe= > Tr(M)s;
If Mt is a Manin matrix, similar formulas hold with the reverse 3 S(t) = S(t)T(t), and the use of column-
permanents in formula (7.47).

Proof. The proof follows from the Newton and MacMahon-Wronski identities above. Indeed, with the
definition o (t) = det® (1 — tM), the MacMahon-Wronski identities read

o) =S,

while the Newton identities read —d:0(t) = o(t)T(t). Substituting —do(t) = —8:S{t)"! =
+SO~ 13 St)SH)~1, we get

SO aXSO)SO T =SO T,
and hence o;S(t) =T()S(t). O
7.3. Pliicker relations
Here we recall the simplest version of the Pliicker identities for Manin matrices (see [76]). They
actually follow immediately from the coaction characterization of Manin matrices (Proposition 1,

page 249). We will provide some bibliographic notes on various noncommutative Pliicker coordinates
in Section 7.5.

Proposition 15. Consider a 2 x 4 matrix A, assume A’ is a Manin matrix, and let 7tjj be the minors made

from the ith and jth columns (minors are calculated as row-determinants, since A is a Manin matrix, rather
than A). Then:

(7127734 + 7347012) — (7137024 + T247013) + (147723 + T23714) = 0. (7.57)
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Proof. The proof is the same as in the commutative case. Consider the Grassmann algebra
C[¥1,...., ¥4], and the variables 1, ¥, defined as:

B Y1
(gD:A Zi . (7.58)
Yy

It is clear that 1 A %2 = Y;_;7iji A j By Proposition 1 41, v, are again Grassmann variables, so
(Y1 A 2)? = 0. Writing this equation explicitly one arrives at the Pliicker relations (7.57). O

7.4. Gauss decomposition and the determinant

Here we show that the determinant of a Manin matrix can be expressed via the diagonal part of
the Gauss decomposition exactly in the same way as in the commutative case.

Proposition 16. Let M be a Manin matrix, assume it can be factorized into Gauss form:

1 Xap Vi 0 1 0
M= . (7.59)
0 1 0 Yn ZBa 1
Then
det®' (M) = yp... y1. (7.60)
Analogously for
1 0\ /v 0 1 Zgy
M= , (7.61)
Xap 1/ \o v,) \o 1
itis true:
det® (M) = Vi Y (7.62)
Example 14.

a b 1 bd~"\(a—bd"lc 0\( 1 0
MZ(c d)Z(O 1)( 0 d><d—1c 1)’ (7.63)

det® (M) =ad — cb =d(a — bd~'c), (7.64)

a b 1 0)\/[a 0 1 a'p
MZ(C d):(ca*1 l)(O d—ca*1b>(0 1 ) (765)

det® (M) =ad — cb =a(d — ca™'b). (7.66)



A. Chervov et al. / Advances in Applied Mathematics 43 (2009) 239-315 303

Proof. According to I. Gelfand, V. Retakh [43, Theorem 2.2.5, page 14| for any noncommutative M
it is true that yx = |Mqlkk, Where M) is the submatrix of M with k,k+1,k+2,...,n rows and
columns, and |N|y, is quasideterminant, which is by definition inverse to a corresponding element
of N~'. By Cramer’s formula (see Proposition 6) |Mlix = (det® (M)~ 'det® (M, 1))~", hence
straightforward multiplication and cancellation gives the desired result.

The same arguments for the second equality (see 1. Gelfand, S. Gelfand, V. Retakh, R. Wilson [45,
Theorem 4.9.7]). O

Remark 40. We are not discussing applications to integrability in this paper. However, let us mention
that the result applied to the Yangian generating matrix e~%T(z) (which is a Manin matrix) gives the
useful fact relating the qdetm'(T(z)) and the diagonal of the Gauss decomposition.

7.5. Bibliographic notes

The Cayley-Hamilton theorem. The Cayley-Hamilton-like theorems for noncommutative matrices are
an object of numerous papers. Enough to say that “Cayley-Hamilton” occurs 179 times during the
MathSciNet search. There are also some similar theorems in non-matrix settings. A.J. Bracken and
H.S. Green [8,52] found the first examples of related identities for classical semisimple Lie alge-
bras. The subject was further developed in subsequent papers by Australian group (see, e.g. [48,
90]). This type of identities plays an important role in applications (e.g. [60,73]). M. Gould, R. Zhang,
A. Bracken [51] (see formula 29, page 2300) extended results to Ug(g) for semisimple g, see also [50].
H. Ewen, O. Ogievetsky, and ]. Wess [29, Section 4, Lemma 4.1], contains CH identity for Fun(GLp ¢(2)).
M. Nazarov and V. Tarasov [89] (see also [79, Section 4.3, page 37], [81]) found new approach to
Bracken-Green type identities via the Yangian and relation with the Capelli determinant was under-
stood. A. Kirillov [65] (see also [101]) generalized the CH identities related to U(gl(n)). T. Umeda
[112, Section 3, page 3174], and M. Itoh [59] gave another more direct approach to CH theorem
for semisimple Lie algebras and generalizations. I. Kantor, I. Trishin [61] (see also [114]) considered
the case of super-matrices. A comprehensive study of Cayley-Hamilton and related identities was at-
tempted in D. Gurevich, A. Isaev, O. Ogievetsky, P. Pyatov, P. Saponov papers [53,97]. A non-trivial
character of these identities (in general) is that instead of the matrix power M¥ one considers the
so-called quantum matrix powers introduced first by ]J.-M. Maillet [74]. This quantum powers are
important from the point of view of quantum integrable systems since their traces provide the com-
muting elements (integrals of motion), while the traces of usual powers do not commute in general.
In all these papers the CH theorem states the linear dependence of power (or quantum powers) of
matrices where coefficients of linear dependence are elements from the basic ring. Another version of
CH theorem was proposed by J.J. Zhang [118] for the case of quantum group Fung(GLy). In this paper
the coefficients of linear dependence are diagonal matrices, with different (in general) elements on
the diagonal, but they are not elements of the ground ring like in theorems above.

A quasideterminant version of the CH theorem and the Capelli formula has appeared in [42] (for
matrices with coefficients in an arbitrary ring). gl,-case was detailed in [44, Section 8.6, page 96]. The
paper by O. Ogievetsky, A. Vahlas [91] compares the two formulations of the CH theorem (for quan-
tum and for usual powers). The first formulation is more useful from the point of view of integrable
systems.

There are also works of more ring theoretic spirit. C. Procesi [96] proves that an appropriate ver-
sion of CH identity in ring /C with a trace is necessary and sufficient condition for existence of embed-
ding of K into matrices Mat(C), where C is commutative ring. The paper ]. Szigeti [107] discusses an-
other generalization of CH theorem for rings /C such that 3n: Vxq,...,xn: [X1[x2...[Xn—1,%]...]1]1=0,
his result states that there exists a polynomials x, such that x,(A) =0 for any matrix A over K. (See
also M. Domokos [24] for developments and concrete examples.) In [108] the generalization to the
case of matrices with values in [R, R] is discussed.

The Newton identities. The identities for Manin matrices seems to appear first in [16]. For some
other classes of matrices with noncommutative entries they can be found in .M. Gelfand, D. Krob,
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A. Lascoux, B. Leclerc, V.S. Retakh, and ].-Y. Thibon [44], D. Gurevich, A. Isaev, O. Ogievetsky, P. Pyatov,
P. Saponov papers [53,97], T. Umeda [112], M. Ito [58], see also A. Molev [79], Section 4.1, page 36,
and bibliographic notes on page 43, [81], Section 7.1, for quantum matrices see M. Domokos, T.H.
Lenagan [25]. The Perelomov-Popov formulas [95] can also seen as a form of the Newton identities.
Applying the Newton identities above to the example defined by the first formula of (3.41), page 257,
one can probably derive these results.

The MacMahon-Wronski identity. As we have mention the identity for g-Manin matrices has been
discovered in S. Garoufalidis, T. Le, D. Zeilberger [39], (see also [28,36,68]). The most natural and sim-
ple proof based on Koszul duality has been obtained in Phung Hai, M. Lorenz [54]. For [98] quantum
group matrices RTT = TTR and some more general algebras the identity has been already known
in some form A. Isaev, O. Ogievetsky, P. Pyatov [57, page 9] (see also [53,97]). For some other non-
commutative matrices the identity is discussed in T. Umeda [113], where similar ideas on the Koszul
duality are used.

The Pliicker coordinates. For generic noncommutative matrices quasi-Pliicker coordinates were stud-
ied by I. Gelfand, V. Retakh [43, Section 2.1, page 9] (I. Gelfand, S. Gelfand, V. Retakh, R. Wilson [45,
Section 4, page 33]). Note that in the commutative case they are not the standard Pliicker coordi-
nates, but their ratios. Quasi-Pliicker coordinates were further studied in. A. Lauve [70]. It would be
interesting to clarify relations between Pliicker coordinates above and quasi-Pliicker ones.

Due to relations A. Berenstein, A. Zelevinsky [6] for the dual canonical (crystal) basis, the quantum
minors and relations between them for [98] quantum group matrices RTT = TTR are widely stud-
ied: [10,33,47,64,72,83,103,106]. But these important results are specific to RTT = TTR matrices, one
cannot expect that they hold true for more general class of Manin matrices. It might be natural to ask
whether any of the properties of q-Pliicker coordinates survives in a “twicely” wider class of g-Manin
matrices? (Surely not all of them do.)

8. Matrix (Leningrad) form of the defining relations for Manin matrices

In this section we present the defining relations for Manin matrices in the matrix (Leningrad)
notations as well as some applications. Such notations are an almost universally used tool in the
theory of quantum groups and of quantum integrable system. We shall herewith frame the definition
and the main properties of Manin matrices within this formalism. The main benefit is that some
formulas (e.g. the commutation relations between the generators) will be most compactly written.
Also, we will show how some of our statements can be conveniently translated and used in this
formalism.

At first we shall collect some notions coming from the “Leningrad school™s approach to these
issues. Then we shall consider the case of Manin matrices and finally give a few applications.

8.1. A brief account of matrix (Leningrad) notations

The notations are briefly discussed in various texts, let us only mention L. Faddeev, L. Takhta-
jan [30], V. Chari, A. Pressley [14, Section 7.1C, page 222]. Here we provide definitions and examples.

Let K be an associative algebra over C. An n x n matrix A € Mat,[K] with entries A;j in a non-
commutative algebra K can be considered as an element:

A=) A;j®Ejj € K® Maty, (8.1)
ij

where Ej; are standard “matrix units”, i.e. those matrices whose (i, j)th element is 1, and all the
others are zero. Mat, is an associative algebra of n x n matrices over C.
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One considers the tensor product?® }C ® Mat, ® Mat, and introduces the following notations:
1
A=A®1=) Ajj®Eij® lnxn € K®Maty ® Maty, (8.2)
ij
2
B=1®B=) Bij® lnxn® Ejj € K ® Mat, ® Maty, (83)

ij

where 1,«n is identity matrix of size n x n. For further use, we notice that the permutation matrix
P € Mat, ® Mat,, defined by

P(ei®ej):ej®e,-, (8.4)

can be written as P = Zij Eij ® Ej;, and satisfies the properties:
P? =1, (8.5)
A1DP=P(1®A), (1®AP=PA®1). (8.6)

A crucial observation is that, in general (A ® 1)(1® B) # (1 ® B)(A® 1), and all n* commutators
between the elements Aj;; and By are encoded in the expression [A ® 1,1 ® B]. Indeed,

[A®1,1®Bl=) [Ayj. Byl ® Eij ® Ey € K ® Mat, ® Maty, (8.7)
ijkl

(A®1)(1®B)=Y_ AijBy ® Eij ® Eyy € K ® Mat, ® Maty, (8.8)
ijkl

(1®B)A®1) =) ByAjj® Ejj ® Ey € K ® Mat, ® Mat,. (8.9)

ijki

8.1.1. Matrix (Leningrad) notations in 2 x 2 case

It is useful to exemplify the matrix (Leningrad) notations by 2 x 2 examples. Although these no-
tions are standard, it might be convenient for the reader to reproduce them here.

Mat, ® Mat, can be identified with Mat,2, provided an order of basis elements e; ®e; € C" ® C" is
chosen. As it is customary, we order the basis in the tensor product C2PRC%2ase;Qe1,e1Qe2,67®
e1,e2 ® ey. Thus

An 0 A O Bi1 Bz O 0

_ 0 A1l 0 A1 __ | Ba1 B 0 0
AR1= Aoy 0 Aoy o | 1®B= 0 0 By By | (8.10)

0 An 0 Axp 0 0 By1 Bp

A11B11 A11B1z A12B11 AeBin

An1B  A2B A11B21 A11Ba2 A12Ba1 A12B2
AR1(1Q®B)= = s 8.11
Aehd®5) (A21B AxnB AnB11 A21Bi2 AnBi1 AnBi2 811

A21B21 A21Ba A22Ba1 A22Ba

20 All tensor products are taken over C.
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B11A11  B12A11 B11A1z Bi2An

BA11  BAp B21A11 B22A11 B21A12 BpAnp
1®B)(A®R1) = = 8.12
debidsl <BA21 BAzz) B11A21  B12A21 BuiAn BiAn (812)
B21A21 B22A21 B21A2  BaaAx
The permutation matrix P = E11 ® E11 + E12 ® E21 + E21 ® E12 + E22 ® Ep reads
1 0 0 O
0 0 1 O
P={o0 1 o0 o (813)
0 0 0 1

8.2. Manin’s relations in the matrix form

Here we present a basic lemma which encodes the definition of Manin matrices in matrix nota-
tions. All the commutation relations between M;; are encoded in one equation, whose form does not
depend on the size n of matrices. The lemma has been suggested to us by P. Pyatov.

Let M be a n x n matrix with elements in an associative algebra /C over C.

Lemma 27. A matrix M is a Manin matrix iff any of the following equivalent formulas hold:

M®R1,1QM]|=PIM®1,1R® M], (8.14)
(1_P)<M®1)(1®M)( ;P) _ (1;P)(M®1)(1®M), (8.15)
(1+P)(1®M)(M®1)( +P)—(M®1)(1®M)(1+P) (8.16)

A-P)AMM®1)(1+ P)=0. (817)

It should perhaps be noticed that (1—P)/2 and (14 P)/2 are two orthogonal idempotents, namely
the antisymmetrizer and the symmetrizer.

Here we allowed ourselves some abuse of notations, denoting by 1 the identity matrix in Mat,
(e.g. 1® M) as well as the identity matrix in Mat, ® Mat, (e.g. 1 £ P).

Letting P € Mat, ® Mat, be the permutation matrix P(a ® b) = b ® a, the formulas above are
equalities in the associative algebra K ® Mat, ® Mat,. Namely M ® 1 is a shorthand notation for
Zi’j Mi;®E;j®1and 1Q M is Zi,j Mi; ® 1 ® Ejj where E;; are standard “matrix units”.

Proof. Let us prove (1) < (M is a Manin matrix).

(M®1,1®M]= ) [Mij, Mul ® Eij ® En, (8.18)
i,jkl
PIM®1,1®M]= (Z Eqp ® Eba) ( > Mij, Myl ® Eij ® Ek,) (8.19)
i,j.kl

= <Z Z [Mij, Ml ® EqpEij ® EbaEkl>

ab i,jk,1l
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= (Z > [Mij, Miy] ® Eqgjépi ® Eb13ak> (8.20)

ab i,jk,|l
= < > My, Myl ® Eij ® E,-,) = ( > My, Myl ® Eij ® Ek,). (821)
i,j,k1 i,j,kl

Thus [M®1,1@ M]=P[M®1,1Q® M] is equivalent to [M;j, Mi] = [My;j, Mj], which is the definition
of Manin matrices, and (1) < (M is a Manin matrix) is proved.

To derive that the properties 1,2,3,4 are equivalent to each other is trivial use of the properties:
MTP=PI1Q®M), 1QM)P=P(M®1). O

Corollary 8. Let M or M* be a Manin matrix. Then:

M®1,1® M]*>=0. (8.22)

Proof. Let us consider M to be Manin matrix, the other case being similar.
M®1,1QM]=PM®1,1® M], letussquare this equality: (8.23)
M®1,1MP?=PM®1,1® M]PIM®1,1Q M], (8.24)

PIM®1,1QM]P=[PM®1P,P1QMP]=[1®@M,M®1]=-[M®1,1®M],  (8.25)
s0: MR1L,1MP=-[M®1,1®M]*>. O (8.26)

We will show below (see Corollary 29) the following:

Proposition 17. Let M be a two-sided invertible Manin matrix. Then

1 2 1 2 1 2 1 2 1 2
0=PM "M '|IM,M]=PIM,MIM " 'M~'[M,M]. (8.27)

It is actually equivalent to the theorem that the inverse to a two-sided invertible Manin matrix is
again a Manin matrix.
The following generalization of Lemma 27 has been discovered by A.Silantiev:

Proposition 18. Let M be an n x n Manin matrix. Then Vm:

1 2 m 1 2 m
AnMM M =AnMM ---M Ap, (8.28)
1 2 m 1 2 m
MM M Spy=SuMM ---M S, (8.29)

k
where we consider the tensor product KK ® Mat™, M is 3 ;i M;j ® 1® --- ® E;j ® 1 ® --- ® 1, where Ej;
stands on kth position. S, (Am) is (anti)-symmetrizer in (C*)®™, i.e. permutation group Sy, naturally acts on
(CH®™ and Ap, is an image of > oes, (=10 and Sy is an image of } ;. o under this action.

The proof will be provided in [20].
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8.3. Matrix (Leningrad) notations in the Poisson case

Recall (see Section 3.1.1 page 248) that by a Poisson-Manin matrix we call a matrix with entries
in some Poisson algebra, such that the Manin relations {M;j, My} = {My;, My} are satisfied by the
Poisson brackets between the corresponding elements.

Let us give a Poisson version of Lemma 27:

Lemma 28. A Matrix M is a Poisson-Manin matrix iff:

1 2 1 2
{M®M}=P{MSM}, (8.30)

while the matrix M" is a Poisson-Manin matrix iff:

1 2 1 2
MPM}={M PM}P. (8.31)
2

1
Here we have used the matrix (Leningrad) notation {A € B} for the Poisson case, which is defined
as follows:

1 2
def
{A ®B} < {Ajj, Bu} ® Eij @ Eyy. (8.32)

We have proved before (Theorem 1) that the inverse to a Manin matrix is again a Manin matrix,
under the condition that M be two sided invertible. Let us give a Poisson version of this theorem Its
proof shows, incidentally, the efficiency of matrix notations in calculations.

Theorem 17. Assume that M is an invertible Poisson-Manin matrix; then M~ is again Poisson-Manin matrix.

Proof. Due to Lemma 28 above it is enough to prove that:

(M- 1eM Y =p{MTen). (8.33)

This can be achieved by the following straightforward calculation:

1 2 2 1 2 2 2 1 102 1 2
MTTeM Y =-M MM M= M MOEMM M ! (8.34)
12 12
using “Pyatov’s lemma” 28: {M ® M} =P{M ® M} we get: (8.35)

2 1 102 1 2
=M~ M~ 'pi(M oMM M ~! (8.36)
1 2 2 1
let us use that V matrices A: AP=PA, AP=PA sowe get: (8.37)
1.2 102 1 2
=PM MY M MM TM!
12 21
= for matrices with commutating elements AB =B A (8.38)
2 1 102 1 2 1 2
=PM MY MOMMT'MT=P{MT¥M ). O (8.39)

Let us finally mention a “curious” corollary, which arises if one uses the same arguments as above
in the noncommutative case (that is, not in the Poisson case) and also uses the established fact that
M~ is again a Manin matrix.
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Lemma 29. Let M be two-sided invertible Manin matrix. Then:

1 2 1 2 1 2 1 2 1 2
0=P[M~',M')[M,M]=P[M.MIM~'M ' [M,M]. (8.40)

9. Conclusion and open questions

Let us make concluding remarks and mention open problems.

In the present paper we considered a class of matrices with noncommutative entries and demon-
strated that most of the linear algebra properties can be transferred to this class. We refer to [12,16,
17,19,20,102] for applications and related issues.

The natural question is whether one can extend such theory to the other classes of noncommuta-
tive matrices. We already have proved results on g-analogs [20] and more general matrices appearing
in Manin’s framework, and we hope to publish this in some future. However what seems to be un-
clear - what can be applications of the “noncommutative endomorphisms” of general algebras, what
it can give for studies of Sklyanin algebras or Calabi-Yau algebras [46]?

Although Manin’s framework is quite general, it does not seem to cover all the examples of non-
commutative matrices which appear in applications and for which some sporadic interesting results
has been already obtained.

First class of examples comes from the theory of quantum integrability - almost all integrable
systems have Lax matrices, and so their quantum versions provides matrices with noncommutative
entries. We expect that linear algebra can be developed in all these cases and it will have important
applications [18]; however it is not so clear how to tackle this problem.

Moreover, related questions appear in quantum group and Lie algebra theory: gl(n)-related matri-
ces in the non-vector representations [65,101]; quantum groups for non-gl(n)-case; twisted current
algebras and twisted Yangians (e.g. [82]); reflection equation and more general quadratic algebras
L. Freidel and J.M. Maillet [38]. Let us mention quite an interesting matrix related to symmetric group
Sn appearing in M. Gould [49, page 1], and P. Biane [7] from completely different points of view, [49]
also contains generalizations to the more general finite groups.

The diversity of interesting noncommutative matrices suggest that it might natural not to work
case by case, but rather ask a general question: given a matrix with noncommutative entries is it
possible to understand whether its proper determinant does exist? If yes, how to develop linear alge-
bra?

So we see that there is a field for the further research which concerns generalization of Manin
matrices. Let us finally mention some more concrete questions related to Manin matrices themselves.

9.1. Tridiagonal matrices and duality in Toda system

Let us recall a matrix identity for tridiagonal matrices and rise a question on its extension to Manin
matrices. The identity is very well known in integrability theory, and implies that the classical Toda
system has two different Lax representations: one by n x n matrices and another by 2 x 2 matrices.
In the language of integrability theory our question is about quantization of this identity.

Let us consider commutative variables x; and p;; consider the following matrices:

-p1 1 .. 0 v~ 1eXn
eX1  —py, ... 0 0
Losn(V)=1] ... , Xjk = Xj — X, (9.1)
0 0 ... —DPn-1 1
v 0 ... efun —DPn

u+ —e"\ (Uu+ppq —efnt u+ —eX
Lasx2(u) = ( efxln)n 0 )( efxpnl ! 0 ) ( efxel 0 ) (9.2)
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The following identity is well known in integrability theory (e.g. E.K. Sklyanin [105, Section 2.50]),
and is also known in the other fields of mathematical physics [84], Theorem 1 (there its generalization
for block tridiagonal matrices has been found).

Lemma 30. The following holds true:
(—1)"'det(u — Lnxn(v)) = v det™ (1 — v Lo ). (9.3)

Now consider the quantum case, i.e. consider noncommuting variables p; and %;, such that they
satisfy the Heisenberg standard commutation relations: [p;, X;1 = 8ij, [Di, Pj1 = [Xi, X;]1 = 0. Consider
the matrices ann(u), fzxz(u) defined by the same formulas as above substituting %; for x; and
respectively p; for p;.

One can see directly (see also [16], Section 3.2), that

e’a“fzﬂ(u) is a Manin matrix. (9.4)
Question. Is it possible to find an appropriate definition for “det(u — Enxn(eé’“))" such that:
(—1)"'“det(u — Lnxn(e™))"=e**det (1 — e~ Ty (u))? (9.5)

The matrix u — Enxn(eBU) does not seem to be related to Manin matrices at least in any simple
way. So solution to this problem may lead to the development of linear algebra for noncommutative
matrices beyond Manin’s case, which is highly desired.

Remark 41. For readers who are not familiar with Lax matrices let us add the following brief remark
(see also [16], Section 3). Lax matrices L(z) should satisfy several properties, perhaps the most basic
of which being that their characteristic polynomial det® (A — L(z)) = > Hijz'»J should produce a
complete set of Liouville integrals of motion. This means that {H;j, Hy} =0 and any further integral
of motion is a function of H;;. Lax matrices have been found for the majority of integrable systems.
One integrable system may have several Lax matrices. Matrices Lax2(u), Lnxn(u) are such two ex-
amples of Lax matrices for the same system (the Toda classical integrable system). In the quantum
case it is quite natural to look for a kind of determinantal formula: “detwl(i — L(2))” to produce all
quantum integrals of motion: [ﬁij, ﬁ,d] =0, and, possibly, to satisfy other important properties (see

[18]). Formula detml(l — e‘au’L\ZXz(u)) is such a formula for quantum Toda system.

9.2. Fredholm type formulas

In the commutative case the following formulas can be found in [15]. Fredholm’s formulas for the
solution of an integral equation is a particular case of them [15, Section 4].

Let C[xq, X2, ..., Xn] be the algebra of polynomials. Let C(x1, x2,...) be the operator of multiplica-
tion by the polynomial C(x1,xz,...); Let A(dx,, dx,,...) be a polynomial in the operators oy, = %
f)
8)(2 - %, e

Conjecture 1. Consider n x n Manin matrix M, assume that [M;j, x,] = 0 and define its action on
C[x1, X2, ...,xp] in a standard way: x; — Zj Mijxj and M(x;, ...x;,) = M(x;;) ... M(x;,). Then:

Tr (MA(0y. Oxy, .. )C(X1, X2, ...))

1
=( Tr M)<A(axl,axZ,....).mcm,xz,...)>. (9.6)

Clx1,X2,....Xn]
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Here the pairing (...|...) is defined by the formula:
. . . . i Jos .
(@) @) )T ) ) = 81T

The trace of the operator M: Cl[x1,xz,...] = Clx1,X2,...] is the sum of diagonal elements in the
natural basis (x1)" (x2)"2 ... (x¢)'.
Analog formulas are conjectured to hold for the anticommuting variables &&; = —&;&;:

Conjecture 2.

Tr (MA@, s, .. )C(ErL &2, ..))

Alg1,62,...]
1
= Tr M)} AQs,0s,...)|——C(&1,&2,...) ). 9.7
(A[sl,éz,...] )< (0gy » O, )‘ oM (¢1.86 )> (9.7)
Corollary 9. Let v= )"} ViXx, W= Widy,, C(e") : C[x1, X2, ..., %] = C[x1, X2, ..., Xn] operator of mul-
tiplication on (eV) and A(e%W) : C[xq, X2, ..., Xq] — C[x1, X2, ..., Xp] exponential of differentiation operator.
Then

Treix xp,....xa (MAE™)C (")) _e(WILw

""" M

(9.8)

(see [15], Formula 3.4).

9.3. Tensor operations, immanants, Schur functions ...

In the commutative case one can consider tensor powers V# of V = C" and corresponding tensor
powers M* of any matrix M, indexed by a Young diagram p. Can one extend this to the case of
Manin matrices?

The obvious problem is the following: symmetric powers of a Manin matrix M can be defined by
the right action on x;, while antisymmetric powers by the left action on ;. So it is not clear whether
the natural way to mix left and right actions exists or not.

Schur functions S(Aq, ..., An) can be considered as traces Tr(M*), where A; are eigenvalues of M.
They satisfy plenty of relations. Can one generalize them to the case of Manin matrices? Tr(M*) are
written explicitly in terms of sum of principal u-immanants of M (3~ i, > scs, #(0) [T Mi, o),
where (o) is a character of irrep of Sy corresponding to Young diagram g ). The determinant and
permanent are particular cases of immanants. The problem above show up itself again: the permanent
was defined by the row-expansion, while the determinant via column expansion. One can try to
consider symmetrized immanants. (For Manin matrices symmetrized-determinant equals to column-
determinant and symmetrized-permanent equals to row-permanent, since determinant (permanent)
behaves well under permutations of columns (rows)).

Progress in this question may be applied to quantum immanants theory by A. Okounkov, G. Ol-
shansky [92-94] (see also [81]) and to the related so-called “fusion” procedure in quantum integrable
systems theory (e.g. V. Kazakov, A. Sorin, A. Zabrodin [63], D. Gurevich, P. Pyatov, P. Saponov [53]) via
applications to examples of Manin matrices considered in [16].

Noncommutative Schur functions were proposed in [44]. Is this recipe related to symmetrized
(or whatever) immanants of Manin matrices? Can one relate these Schur functions to quantum
immanants from [92] via specialization to a Manin matrix defined by the first formula of (3.41)
page 2577

These questions seems to us quite important, but we have not analyzed them yet. Let us finally
list some more problems that might be of interest:
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o Is there something interesting about the co-product of oy, S, Tr(M¥)? (Hopf algebra structures
are useful in symmetric function theory ([44] and references therein), but the natural co-product
for Manin matrices is different from that used therein.)

e Let us consider the algebra generated by Manin’s relations [M;j, My] = [My;, Mj], and consider
the moduli space of all its k-dimensional representations (i.e. just the set of k x k matrices A;;
satisfying the relations above, modulo conjugation). It is some manifold (or orbifold)? What can
be said about it? That question might be of some interest since in a particular case it includes
the “commuting variety”: A, B:[A, B] =0, which is a subject of intensive research.

o Concerning the algebra generated by M;; with the only relations [M;j, My] = [My;, Mj], it seems
also little to be known. Are their left or right zero divisors? If no - can one embed it into some
field of fractions? What is its Poincaré series with respect to the natural grading ?

o Recently some non-linear algebra of multi-index multi-matrices began to emerge [2], where
appropriate resultants play role of the determinant. It might be interesting to obtain some non-
commutative generalizations of their results in the spirit of the present paper.

e Can one successfully study properties of random Manin matrices?
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