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Abstract. Let M be a manifold carrying the action of a Lie group G, and let A be a Lie
algebroid on M equipped with a compatible infinitesimal G-action. Using these data, we construct
an equivariant cohomology of A and prove a related localization formula for the case of compact G.
By way of application, we prove an analog of the Bott formula.
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1. Introduction

The notion of Lie algebroid, which may be regarded as a natural generalization of the tangent
bundle to a manifold, allows one to treat several geometric structures, such as Poisson manifolds,
connections on principal bundles, and foliations, in a unified manner.

Since in many situations one can associate a Lie algebroid with a singular foliation, Lie alge-
broids seem to provide a way for generalizing several constructions (e.g., connections) to singular
settings. Recently, several field-theoretic models based on Lie algebroids have been proposed; e.g.,
see [23].

Every Lie algebroid intrinsically defines a cohomology theory. On the other hand, the theory
of G-differential complexes developed in [12] encompasses the case of equivariant Lie algebroid
cohomology, which can be defined if a Lie algebroid carries a (possibly infinitesimal) action of a Lie
group G compatible with an action of G on the base manifold M.

A natural question arises as to whether one can generalize the usual localization formula for
equivariant (de Rham) cohomology to this setting. This also seems to be of certain interest for
applications; for instance, recently the localization formula has been used to compute the partition
function of N = 2 super Yang–Mills theory ([19], [4]). In this case, the relevant cohomology is
the equivariant de Rham cohomology of the instanton moduli space—the moduli space of framed
self-dual connections on R

4 . (That is, the relevant Lie algebroid is the tangent bundle to the
instanton moduli space.) It seems plausible that super Yang–Mills theories with various numbers
of supersymmetry charges can be treated in a unified way for various choices of a Lie algebroid
structure on the instanton moduli space.

In this paper, we present a localization formula for the equivariant cohomology of a Lie alge-
broid for the case in which this Lie algebroid A on a (compact oriented) manifold M carries an
(infinitesimal) action of a Lie group. If one twists such cohomology by the orientation bundle nat-
urally associated with A, then equivariant cocycles can be integrated over M. If the group action
has only isolated fixed points, then the value of the integral can be calculated as a finite sum of
suitably defined residues at the fixed points.

This localization formula is of course reduced to the usual one for equivariant de Rham coho-
mology when the Lie algebroid A is the tangent bundle TM . In a similar way, it encompasses a
number of classical localization formulas, providing new proofs for them. For instance, it implies a
generalization to the Lie algebroid setting of the Bott theorem about zeros of vector fields (and also
related formulas due to Cenkl and Kubarski [9], [15]). Our formula generalizes the Bott formula
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in part by I.N.F.N. project PI14.
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exactly in the same sense as the notion of Lie algebroid generalizes that of tangent bundle. More-
over, if M is complex and A is the Atiyah algebroid of a holomorphic vector bundle E on M, our
localization formula can be specialized so as to produce localization formulas due to Baum–Bott
[1], Chern [10], Carrell–Lieberman [8], [7], and Liu [16]. These aspects will be developed in [5].
Another localization formula for the Atiyah algebroid, which can be obtained from our formula as
well, is given in [22]. Many further examples and applications can be given.

The paper is organized as follows. In Section 2, we present the basic definitions and some
constructions concerning Lie algebroid cohomology. Section 3 introduces equivariant Lie algebroid
cohomology, basically within the framework of the theory of G-differential complexes developed
in [12]. Moreover, we prove our localization formula. In Section 4, following [17], we consider one
possible approach to the definition of connections on Lie algebroids and use this to construct
equivariant characteristic classes for Lie algebroids. This will be used in Section 5 to prove an
analog of the Bott formula.

Acknowledgements. The authors thank the anonymous referees and member of the Editorial
Board Professor A. Rosly for numerous useful remarks and suggestions that helped us substantially
simplify, abridge, and improve the presentation. These suggestions permitted us to reconsider some
important points. We are grateful to A. Alekseev, P. Bressler, and Y. Kosmann-Schwarzbach for
their attention to this work.

2. Lie Algebroid Cohomology

Let M be a smooth manifold. We denote by X(M) the space of vector fields on M equipped
with the usual Lie bracket [ · , · ].

Definition 2.1. An algebroid A on M is a vector bundle on M together with a vector bundle
morphism a : A → TM (called the anchor) and a structure of Lie algebra on the space of global
sections Γ(A) such that

(i) a : Γ(A) → X(M) is a Lie algebra homomorphism.
(ii) The Leibniz rule

{α, fβ} = f{α, β} + a(α)(f)β
holds for any α, β ∈ Γ(A) and any function f . (Here { · , · } is the bracket in Γ(A).)

Morphisms between two Lie algebroids (A, a) and (A′, a′) on a same base manifold M are
defined in a natural way; i.e., they are vector bundle morphisms φ : A → A′ such that the map
φ : Γ(A) → Γ(A′) is a Lie algebra homomorphism and the obvious diagram involving the two
anchors commutes.

With any Lie algebroid A one can associate the cohomology complex (C•
A, δ) with C•

A =
Γ(Λ•A∗) and differential δ defined by

(δξ)(α1, . . . , αp+1) =
p+1∑

i=1

(−1)i−1a(αi)(ξ(α1, . . . , α̂i, . . . , αp+1))

+
∑

i<j

(−1)i+jξ({αi, αj}, . . . , α̂i, . . . , α̂j , . . . , αp+1),

where ξ ∈ Cp
A and αi ∈ Γ(A), 1 � i � p + 1. The resulting cohomology is denoted by H•(A) and

is called the cohomology of the Lie algebroid A.
Remark 2.2. We point out that if A is a vector bundle, δ is a derivation of degree +1 of the

graded algebra Γ(Λ•A∗), and δ2 = 0, then, using δ , one can construct an anchor a : A → TM and
a Lie bracket on Γ(A) making A a Lie algebroid. One simply defines

a(α)(f) = δf(α) for α ∈ Γ(A), f ∈ C∞(M),

ξ({α, β}) = a(α)(ξ(β)) − a(β)(ξ(α)) − δξ(α, β) for α, β ∈ Γ(A), ξ ∈ Γ(A∗). �
Recall some examples of Lie algebroids.
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Example 2.3. An involutive distribution on a tangent bundle (i.e., a foliation) is a Lie algebroid
with injective anchor.

Example 2.4 [24]. Let M = (M,F ) be a supermanifold; in particular, M is a differentiable
manifold and F is a sheaf of Z2-graded commutative R-algebras on M that can be realized as
the sheaf of sections of the exterior algebra bundle

V•E for a vector bundle E . Let D be an odd
supervector field on M with D2 = 0. Then E∗ with the anchor and the Lie algebra structure on
Γ(E∗) given, according to Remark 2.2, by D regarded as a differential for the complex Γ(

V•E) is
a Lie algebroid. Of course, starting from a Lie algebroid we can construct a supermanifold with an
odd supervector field on it squaring to zero, so that the two sets of data are equivalent.

Example 2.5. Let (M,Π) be a Poisson manifold, where Π is a Poisson tensor. In this case,
A = T ∗M with the Lie bracket

{α, β} = LΠ(α)β − LΠ(β)(α) − dΠ(α, β) (1)

of differential forms (where L is the Lie derivative), and the anchor is the Poisson tensor (more
precisely, the corresponding Hamiltonian map). The cohomology of A is the Lichnerowicz–Poisson
cohomology of (M, Π).

Example 2.6. Let P
p−→ M be a principal bundle with structure group G. One has the Atiyah

exact sequence
0 → ad(P ) → TP/G → TM → 0 (2)

of vector bundles on M . (A connection on P is a splitting of this sequence.) Sections of the vector
bundle TP/G are in a one-to-one correspondence with G-invariant vector fields on P . On the global
sections of TP/G, there is a natural Lie algebra structure, and taking the projection TP/G → TM
for the anchor map, we obtain a Lie algebroid, the Atiyah algebroid associated with the principal
bundle P .

With a vector bundle E on M, we can also associate an Atiyah algebroid. Indeed, in this case
one has the short exact sequence

0 → End(E) → Diff1
0(E) → TM → 0, (3)

where Diff1
0(E) is the bundle of first-order differential operators on E with scalar symbol [14], and

again Diff1
0(E), with the natural Lie algebra structure on its global sections and the natural map

Diff1
0(E) → TM as the anchor, is a Lie algebroid. The two notions of Atiyah algebroid coincide if

P is the bundle of linear frames of a vector bundle E . (Indeed, an element in TuP is given by an
endomorphism of the fiber Ep(u) and a vector in Tp(u)M .)

Lie algebroids whose anchor map is surjective, as in the case of Atiyah algebroids, are said to
be transitive.

Following [11], we now describe a twisted form of the Lie algebroid cohomology together with
a natural pairing between the two cohomologies. This will be another ingredient of the localization
formula. Let QA be the line bundle

VrA⊗Ωm
M , where r = rkA and m = dim M , and let Ωm

M be the
bundle of differential m-forms on M . (Later on, by Ωm(M) we denote the space of global sections
of this bundle.) For every s ∈ Γ(A), define a map Ls = {s, · } : Γ(

V•A∗) → Γ(
V•A∗) by setting

Ls(s1 ∧ · · · ∧ sk) =
k∑

i=1

s1 ∧ · · · ∧ {s, si} ∧ · · · ∧ sk.

Moreover, we can define the map

D : Γ(QA) → Γ(A∗ ⊗ QA) = Γ(A∗) ⊗C∞(M) Γ(QA), Dτ(s) = Ls(X) ⊗ µ + X ⊗ La(s)µ,

where τ = X ⊗ µ ∈ Γ(QA) and s ∈ Γ(A). Consider the twisted complex C̃•
A = Γ(

V•A∗ ⊗ QA) =
C•

A ⊗C∞(M) Γ(QA), C•
A =

⊕r
k=0 Γ(

VkA∗), with differential δ̃ defined by

δ̃(ξ ⊗ τ) = δξ ⊗ τ + (−1)deg(ξ)ξ ⊗ Dτ, ξ ∈ C•
A.
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We denote the resulting cohomology by H•(A, QA).
There is a naturally defined map∗ p : C̃•

A → Ω•−r+m(M),

p(ψ ⊗ X ⊗ µ) = (a(ψ�X))�µ.

Proposition 2.7. The morphism p is a chain map∗∗ in the sense that the diagram

C̃k
A

p−−−−→ Ωk−r+m(M)
⏐⏐�δ̃ d

⏐⏐�

C̃k+1
A

p−−−−→ Ωk−r+m+1(M)

(4)

commutes up to sign ; i.e., on Ck
A one has

p ◦ δ̃ = (−1)kd ◦ p. (5)

Proof. The Lie derivative on C̃•
A defined by Ls = is ◦ δ̃ + δ̃ ◦ is for s ∈ Γ(A) satisfies the

commutation relation
p ◦ Ls = La(s) ◦ p (6)

on C̃k
A . By using this identity, we can prove (5) by descending induction on k. For k = r, the

identity is reduced to 0 = 0. For smaller k, it suffices to prove the identity for those c′ ∈ C̃k
A which

can be represented as c′ = is c for some s ∈ Γ(A) and c ∈ C̃k+1
A . In this case, the result follows

from a simple computation which uses (6).
Let M be compact and oriented. Note that since C̃r

A � Ωm(M) (canonically), one can integrate
elements of C̃r

A over M. There is a nondegenerate pairing

Ck
A ⊗C∞(M) C̃r−k

A → R, ξ ⊗ (ψ ⊗ X ⊗ µ) �→
∫

M
(ξ ∧ ψ,X)µ.

A version of Stokes’ theorem holds for the complex C̃•
A [11]: if c ∈ C̃r−1

A , then
∫

M
δ̃c = 0.

This formula follows from identity (5) for k = r − 1. In turn, it implies that the pairing descends
to cohomology, yielding a bilinear map

H•(A) ⊗ Hr−•(A, QA) → R. (7)

This pairing in general may be degenerate.
One also has a natural morphism C•

A ⊗C∞(M) C̃•
A → C̃•

A compatible with the degrees. Again,
this descends to cohomology and provides a cup product

H i(A) ⊗ Hj(A, QA) → H i+j(A, QA). (8)

3. Equivariant Cohomology and Localization

In this section, we introduce equivariant cohomology for Lie algebroids, basically following the
pattern exploited in [12] to define equivariant cohomology for Poisson manifolds (and falling within
the general theory of equivariant cohomology for G-differential complexes developed there). More-
over, we write out a localization formula for the equivariant Lie algebroid cohomology (Theorem
3.2).

We assume that there is an action of a Lie algebra g on the Lie algebroid A, i.e., that there is
a Lie algebra map

b : g → Γ(A). (9)

∗We interchangeably use the notation ψ� and iψ for the inner product by an element ψ , according to what we
feel aesthetically admissible.

∗∗We are thankful to A. Rosly for pointing out this fact and for suggesting the following proof.



22

By composing this with the anchor map, we obtain a Lie algebra homomorphism ρ̃ = a ◦ b : g →
X(M), i.e., an action of g on M. Lie algebra maps like our b were introduced in [18] for the case of
Atiyah algebroids under the name of “derivation representations.”

Example 3.1 (cf. [25]). Let Π be a regular Poisson tensor on M (i.e., Π has constant rank),
and let S = Im(Π) be the associated symplectic foliation. The family of symplectic forms defined
on the leaves of S yields an isomorphism S � S ∗ . Consequently, S ∗ is a subbundle of TM ,
and Γ(ker Π) is an ideal in Ω1(M) with respect to the Lie algebroid structure in T ∗M given by
the bracket (1). Moreover, S ∗ is a Lie subalgebroid of TM ; its cohomology is called the tangential
Lichnerowicz–Poisson cohomology. Now assume that M carries the action ρ of a Lie group G; if g
is the Lie algebra of G, then for every ξ ∈ g by

ξ∗ =
d

dt
ρexp(−tξ)

∣∣∣
t=0

we denote the corresponding fundamental vector field. (Thus, we have the Lie algebra homomor-
phism ρ̃ : g → X(M), ρ̃(ξ) = ξ∗ .) If the G-action is tangent to S ∗ , we obtain an infinitesimal
action b : g → Γ(S ∗). (This is what is called a cotangential lift in [12].)

If, for some ξ ∈ g, a point x ∈ M is a zero of ξ∗ , then we have the usual endomorphism

Lξ,x : TpM → TpM, Lξ,x(v) = [ξ∗, v].

Consider the graded vector space

A• = Sym•(g∗) ⊗ Γ(
V•A∗)

with grading
deg(P ⊗ β) = 2 deg(P) + deg β,

where P ∈ Sym•(g∗) and β ∈ Γ(
V•A∗).

We treat P as a polynomial function on g and define an equivariant differential δg : A• → A•+1

by setting
(δg(P ⊗ β))(ξ) = P(ξ)(δ(β) − ib(ξ)β), (10)

where both sides have been evaluated on an element ξ ∈ g. If we set A•
G = ker δ2

g, then (A•
G, δg) is

a complex, whose cohomology will be denoted by H•
G(A) and called the equivariant cohomology of

the Lie algebroid A (to be more precise, of the pair (A, b)).
By considering the graded vector space

Q• = A• ⊗ Γ(QA) = Sym•(g∗) ⊗ Γ(
V•A∗ ⊗ QA)

with the differential δ̃g obtained by coupling δg with the differential D, and by setting Q•
G = ker δ̃2

g,
one can also define the twisted equivariant cohomology H•

G(QA), and there is a cup product

H i
G(A) ⊗ Hk

G(QA) → H i+k
G (QA).

Now let us write out a localization formula. In view of Proposition 2.7, its right-hand side can
be computed by means of the usual localization formula in equivariant de Rham cohomology; the
integral of an equivariantly closed Q•

G-cocycle γ(ξ) is actually the integral of the differential form
p(γ(ξ)), and p(γ) is a cocycle in the equivariant de Rham complex by Proposition 2.7. It is indeed
quite easy to prove the identity

p(δ̃g(γ)) = (−1)kdg(p(γ)), (11)

where γ ∈ Qk
G . Here dg is the differential in the usual equivariant de Rham cohomology. This

follows from Proposition 2.7 and the relations

iξ∗p(γ) = iξ∗ [a(ψ�X)�µ] = (ξ∗ ∧ a(ψ�X))�µ = a(b(ξ) ∧ (ψ�X))�µ

= (−1)k−1a((ib(ξ)ψ)�X)�µ = (−1)k−1p(ib(ξ)γ)

if we set γ = ψ ⊗ X ⊗ µ.
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Let M be a closed manifold that carries an action ρ of a compact Lie group G. We also assume
that M is oriented and that an element ξ ∈ g has been chosen such that ξ∗ = ρ̃(ξ) (this has been
defined in Example 3.1) has only isolated zeros. We denote the set of such zeros by Mξ . Note that,
owing to the compactness of G, we have det(Lξ,x) �= 0 at every isolated zero x, and the dimension
m of M is necessarily even (as we shall assume henceforth).

If the rank r of A is smaller than the dimension m of M, then for every equivariantly closed
γ ∈ Q• we have

∫
M γ(ξ) = 0 for dimensional reasons, since p(γ)0 = 0 in that case. (Here the

subscript 0 denotes the piece of degree 0 in the usual de Rham grading.) We can therefore assume
in what follows that r � m.

Theorem 3.2. Let M be a closed oriented m-dimensional manifold on which a compact Lie
group G acts. Let A be a rank r Lie algebroid on M, where r � m, and assume that there exists a
Lie algebra homomorphism b : g → Γ(A) such that the diagram

g b ��

ρ̃ ����
��

��
��

� Γ(A)

a

��
X(M)

(12)

commutes ; in other words, ρ̃, ρ̃(ξ) = ξ∗ , is a Lie algebra homomorphism. (Here g is the Lie algebra
of G.) Moreover, assume that ξ ∈ g and the associated fundamental vector field ξ∗ has only isolated
zeros. Finally, let γ ∈ Q• be equivariantly closed, δ̃gγ = 0.

Then the following localization formula holds :
∫

M
γ(ξ) = (−2π)m/2

∑

x∈Mξ

p(γ(ξ))0(x)
det1/2 Lξ,x

. (13)

Proof. Since on the left-hand side we actually integrate the conventional differential form
p(γ(ξ)), we see that the formula follows from identity (11) and the usual localization formula.

One can readily verify that in the case of the “trivial” algebroid given by the tangent bundle
with the identity map as anchor, this formula is reduced to the ordinary localization formula for
equivariant de Rham cohomology (e.g., see [2]).

Remark 3.3. If r � m and the rank of the linear morphism a at the point p is not maximal
(i.e., is less than m), then p(γ(ξ))0(x) = 0.

Remark 3.4. As a special case of Theorem 3.2, one can state a localization formula related
to the action of a vector field on M. Let M be a compact oriented m-dimensional manifold, and
let X ∈ Γ(TM) be a vector field with isolated zeros on M that generates a circle action. Let A

be a rank r Lie algebroid on M such that there exists an X̃ ∈ Γ(A) with a(X̃) = X (where a
is the anchor map). Then, for the integration of a form γ ∈ Γ(

V•A∗ ⊗ VrA ⊗ VmT ∗M) such that
δ̃Xγ := (δ̃ − i

eX
)γ = 0, the localization formula (3.2) holds.

One can replace the assumption that X generates a circle action by assuming that X is an
isometry of a Riemannian metric on M.

4. Connections and Characteristic Classes of Lie Algebroids

Several applications of the localization formula can be given by using the notion of characteristic
class of a Lie algebroid. We start by introducing the concept of A-connection, see [17].

Let A be a Lie algebroid with anchor a, and let P
p−→ M be a principal bundle with structure

group K . Note that the pullback p∗A = A ×M P carries a natural K -action, and A � p∗A/K .
The tangent bundle TP carries a natural K -action as well, and one has p∗(vk) = p∗(v) for v ∈ TP
and k ∈ K ; consequently, we have the induced map p∗ : TP/K → TM , which is the anchor of the
Atiyah algebroid associated with P , see (2).
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Definition 4.1. An A-connection on P is a bundle map η : p∗A → TP such that
(1) The diagram

p∗A η−−−−→ TP
⏐⏐�

⏐⏐�p∗

A
a−−−−→ TM

commutes.
(2) η is K -equivariant; i.e., η(uk, α) = Rk∗η(u, α) for all k ∈ K , u ∈ P , and α ∈ A. (Here Rk

is the structural right action of an element k ∈ K on P .)
If P is the bundle of linear frames of A, then η is called an A-linear connection.

Being equivariant, an A-connection η on a principal K -bundle P defines a bundle map ωη : A →
TP/K , called the 1-section of the connection η. One has p∗ ◦ ωη = a.

Remark 4.2. 1. The usual notion of connection is recovered by taking A = TM, and η is then
the corresponding horizontal lift η : p∗TM → TP .

2. An ordinary connection on P (regarded as the associated horizontal lift ζ : p∗TM → TP )
defines an A-connection η on P by the formula η = ζ ◦ p∗a.

If E
pE−−→ M is a vector bundle associated with P via a representation of K on a linear space,

then an A-connection on P defines a similar structure on E , that is, a bundle map ηE : p∗EA → TE
that makes the diagram

p∗EA
ηE−−−−→ TE

A

⏐⏐�
⏐⏐�pE∗

A
a−−−−→ TM

commute. The A-connection ηE defines a covariant derivative ∇ : Γ(A) ⊗R Γ(E) → Γ(E) in the
usual way: if φ : TP/K → Diff1

0(E) is the natural map,∗ one sets ∇α = (φ ◦ ωη)(α). This covariant
derivative satisfies the Leibniz rule

∇α(fs) = f∇α(s) + a(α)(f)s (14)

for all functions f on M.
Let us introduce the notion of G-equivariant A-connection. Assume that a Lie group G acts

on M and that this action ρ lifts to an action ρ̂ on A; this means that for every g ∈ G we have a
commutative diagram

A
ρ̂g−−−−→ A

a

⏐⏐�
⏐⏐�a

TM
ρg∗−−−−→ TM

Moreover, we assume that ρ also lifts to an action ρ̃ on the principal K -bundle P commuting with
the structural K -action.

Definition 4.3. A G-equivariant A-connection η on P is an A-connection η such that the
diagram

p∗A
ρ̂g−−−−→ p∗A

η

⏐⏐�
⏐⏐�η

TP
ρ̃g∗−−−−→ TP

commutes for every g ∈ G.

∗A section X of TP/K is a K -invariant vector field on P . Since there is an obvious map TP → Diff1
0(P × V ),

where V is the standard fibre of E , by equivariance X yields a differential operator on E with scalar symbol.
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Since the action of G on P commutes with the action of K , we have an induced action ρ̃∗
on TP/K , and the condition for η to be G-equivariant can be stated in terms of the connection
1-section ωη as the commutativity of the diagram

A
ρ̂g−−−−→ A

ωη

⏐⏐�
⏐⏐�ωη

TP/K
ρ̃g∗−−−−→ TP/K

The curvature Rη of an A-connection η on a principal K -bundle P can be defined in terms of
the map ωη as the element in Γ(Λ2A∗ ⊗ TP/K) given by

Rη(α, β) = [ωη(α), ωη(β)] − ωη({α, β}).
By construction, p∗ ◦ Rη = 0, so that Rη is an element in Γ(Λ2A∗⊗ad(P )). The curvature Rη sat-
isfies an analog of the structure equations and Bianchi identities. These identities are conveniently
stated in terms of the so-called exterior A-derivative

DA : Γ(
V•A∗ ⊗ TP/K) → Γ(

V•+1A∗ ⊗ TP/K),

(DAχ)(α1, . . . , αp+1) =
p+1∑

i=1

(−1)i−1[ωη(αi), χ(α1 . . . , α̂i, . . . , αp+1)]

+
∑

i<j

(−1)i+jχ({αi, αj}, . . . , α̂i, . . . , α̂j , . . . , αp+1),

in the form
Rη = DAωη − 1

2 [ωη, ωη], DARη = 0. (15)

Note that the equivariance of the connection can be expressed by the condition

[DA, Lξ̃∗ ] = 0

for all ξ ∈ g. Here Lξ̃∗ is the Lie derivative of sections of TP/K with respect to the section ξ̃∗ of
TP/K induced by the vector field on P that generates the action of G (i.e., Lξ̃∗(v) = [ξ̃∗, v]).

If the connection η is equivariant, we can consider the equivariant version of these relations, in
particular, by defining the equivariant exterior A-derivative Dg

A that acts on Sym•(g∗)⊗Γ(
V•A∗⊗

TP/K) as
(Dg

Aχ)(ξ) = DA(χ(ξ)) − (iξ̃∗ ⊗ id)(χ(ξ)).

Moreover, we define the equivariant curvature Rg
η of η as

(Rg
ηχ)(ξ) = Rη(χ(ξ)) + Lξ̃∗(χ(ξ)) − [DA, iξ̃∗ ⊗ id](χ(ξ)) = Rη(χ(ξ)) + µ(χ(ξ)),

where the last equality defines the “moment map” µ. Furthermore, the square brackets in this
equation stand for the anticommutator. An easy computation shows that the equivariant curvature
satisfies the equivariant Bianchi identity

Dg
ARg

η = 0. (16)

We can also write out identities (15) and (16) in local form involving the local connection
1-sections defined as follows. Let {Ui} be an open cover of M over which the bundle P trivializes.
Then one has local isomorphisms

ψj : (TP/K)|Uj → TUj × k,

where k is the Lie algebra of K . The local connection 1-sections are defined by the condition

ωj(α) = pr2 ◦ ψj ◦ ωη(α)
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(where pr2 is the projection onto the second factor in TUj × k), and one defines the local curvature
2-sections Rj in a similar way. Identities (15) acquire the form

Rj = δωj + 1
2 [ωj , ωj ], δRj + [ωj , Rj ] = 0. (17)

In the same way, the equivariant curvature can be represented by local 2-sections Rg
j which,

in view of Eq. (17), satisfy the identities

δgR
g
j + [ωj , R

g
j ] = 0. (18)

The Chern–Weil homomorphism is defined as follows. Let I•(k) = (Sym• k∗)K . We choose an
A-connection η for P and define an element λQ ∈ C2�

A ,

λQ(α1, . . . , α2�) =
∑

σ

(−1)σQ̃(Rη(ασ1 , ασ2), . . . ,Rη(ασ2�−1
, ασ2�

)),

for any polynomial Q ∈ I�(k) of degree �, where the summation runs over all permutations of
2� objects and Q̃ is the polarization of Q, i.e., the unique Ad-invariant symmetric function of �

variables in k such that Q̃(χ, . . . , χ) = Q(χ) for all χ ∈ k. One proves that this cochain is δ-closed
and that the resulting cohomology class [λQ] does not depend on the connection, thus defining a
graded ring homomorphism λ : I•(k) → H2•(A). If λ̃ : I•(k) → H2•

dR(M) is the usual Chern–Weil
homomorphism into the de Rham cohomology of M, then there is a commutative diagram

I•(k) λ̃ ��

λ �����������
H2•

dR(M)

a∗
��

H2•(A)

(19)

Using the Chern–Weil homomorphism, one can introduce various sorts of characteristic classes for
the Lie algebroid A. However, owing to diagram (19) (and somehow unpleasantly) these charac-
teristic classes are none other than the image under a∗ of the corresponding characteristic classes
of the bundle E . To show this, choose any (ordinary) connection on P to compute a characteris-
tic class in H•

dR(M) and the A-connection associated with it (see Remark 4.2 (2)) to compute a
characteristic class in H•(A). The two characteristic classes are then related by the morphism a∗
in diagram (19).

In the following, we use “Pontryagin type” characteristic classes: namely, we take k = gl(r, C),
so that P is the bundle of linear frames of a complex vector bundle E . We assume that E is the
complexification of a real vector bundle. Let Qi be the ith elementary Ad-invariant polynomial,
and let λi be the corresponding characteristic class. These characteristic classes vanish whenever i
is odd. (To verify this, take a connection on P compatible with a fibre metric on E and compute
the characteristic classes by means of the induced A-connection.)

If Q ∈ I•(gl(r, C)) is an Ad-invariant homogeneous symmetric polynomial of degree 2i on the
Lie algebra gl(r, C), then one has Q(Rg

η) ∈ A4i
G . The following statement is easy to prove.

Proposition 4.4. The element Q(Rg
η) is δg-closed. The corresponding cohomology class λg

Q(A)
∈ H4i

G (A) does not depend on the equivariant connection η .

Proof. First, one shows that the element Q(Rg
η) is δg-closed by using (18). To prove the second

assertion, note that if η and η′ are two equivariant A-connections on the principal bundle P , then
one can define the one-parameter family of connections

ηt = tη′ + (1 − t)η

with 0 � t � 1. Set

q(η, η′)(α1, . . . , α2i) = i
∑

σ

(−1)σ

∫ 1

0
Q̃

(
d

dt
ωηt(ασ1 , ασ2),R

g
ηt

(ασ3 , ασ4), . . . ,R
g
ηt

(ασ2i−1 , ασ2i)
)

dt,
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where Q̃ is the polarization of the polynomial Q. Now a straightforward computation using identity
(18) and the formula

d

dt
Rg

ηt
= Dg

A

d

dt
ωηt

shows that
Q(Rg

η′) − Q(Rg
η) = δgq(η, η′)

whence the assertion follows.
If Q is the standard ith elementary Ad-invariant polynomial ςi on gl(r, C), then we denote by

λg
i (A) (i = 1, . . . , r) the corresponding equivariant characteristic class (vanishing for odd i). As was

discussed previously, these are just the images under the morphism a∗ (the adjoint of the anchor
map) of the equivariant Chern classes of the (complexified) vector bundle E .

5. Bott Formula

By way of application of our localization theorem, we prove a result that generalizes the classical
Bott formula [3] as well as similar results due to Cenkl [9] and Kubarski [15]. The Bott formula
comes in different flavors according to the assumptions that one makes on the vector field occurring
in the formula. The case we consider here extends the usual Bott formula for a vector field that
generates a circle action and has isolated critical points.

Let Φ be a monomial in n = [r/4] variables. By WΦ we denote its total weight defined by
assigning weight 4i to the ith variable. We use the monomial Φ to assign a real number to the
algebroid A. Assume that WΦ � r, and let Ξg be an equivariant twisted cocycle of degree r−WΦ ;
i.e., Ξg ∈ Qr−WΦ

G . Let Ξ = Ξg(0) ∈ C̃r−WΦ
A be the zero degree term in the cocycle Ξg treated as a

function of ξ ∈ g; it satisfies δ̃Ξ = 0. We can define

ΦΞ(A) = (−2π)−m/2

∫

M
Φ(λ2(A), . . . , λ2n(A)) ∧ Ξ,

where the λi are the characteristic classes of the vector bundle A as defined in the previous section.
This number depends only on the Lie algebroid A and the cohomology class Ξ. We also define an
element in Sym•(g∗) by the formula

Φg
Ξ(A) = (−2π)−m/2

∫

M
Φ(λg

2(A), . . . , λg
2n(A)) ∧ Ξg

= (−2π)−m/2

∫

M
Φ(ς2(Rη + µ), . . . , ς2n(Rη + µ)) ∧ Ξg. (20)

Of course, ΦΞ(A) = Φg
Ξ(A)(0). One has the following result, in the spirit of the Bott formula, which

readily follows from Theorem 3.2.
Theorem 5.1. Let A be a rank r Lie algebroid on an m-dimensional compact oriented manifold

M, and let α ∈ Γ(A) be any section that generates a circle action on A and satisfies the condition
that a(α) has isolated zeros. Let Φ be a polynomial in n = [r/4] variables whose monomials have
total weight WΦ . If r � m � Wφ , then

ΦΞ(A) =
∑

x∈Ma(α)

Φ(c2(La(α),x), . . . , c2n(La(α),x)) p(Ξg)0
det1/2 La(α),x

, (21)

where the classes ci(La(α),x) are the equivariant Chern classes of the endomorphism La(α),x acting
on the tangent space TxM at a zero x of a(α) (see [3]).

Proof. The right-hand side of (21) can be obtained from the right-hand side of (13) if we
take into account two facts. First, we can evaluate the equivariant characteristic classes occurring
in Φg

Ξ(A) by choosing an equivariant A-connection induced in the principal bundle GL(A) by an
ordinary equivariant connection ζ on the vector bundle A. This way, we have

Φ(λg
2(A), . . . , λg

2n(A)) = a∗(Φ(νg
2(A), . . . , νg

2n(A))),
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where the classes νg
i are the equivariant Chern classes of the complexification of the vector bundle

A. Second, if Rg
ζ is the equivariant curvature of ζ , then

(ςi(R
g
ζ))0(x) = ci(La(α),x)

for every symmetric elementary function ςi and every zero x of a(α).
For A = TM , formula (21) is reduced to the ordinary Bott formula.

6. Concluding Remarks

As we shall show in the forthcoming paper [5], Theorem 5.1 generalizes several localization
formulas associated with the action of a holomorphic vector field on a complex manifold which can
be equivariantly lifted to an action on a holomorphic vector bundle ([1], [10], [8]) and, in particular,
reproduces Grothendieck’s residue theorem.

On the other hand, our formula can be generalized in several directions. One of these would be
a localization formula for equivariant cohomology associated with the action of a Lie group on a
Courant algebroid. This should encompass several formulas that recently appeared in the literature
and are mostly concerned with generalized Calabi–Yau structures ([6], [20], [21], [13]) and should
reproduce our formula if the Courant algebroid is reduced to a Lie algebroid.
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