Accéder directement au contenu Accéder directement à la navigation
Communication dans un congrès

Compatible Poisson brackets, quadratic Poisson algebras and classical r-matrices

Abstract :

We show that for a general quadratic Poisson bracket it is possible to define a lot of associated linear Poisson brackets: linearizations of the initial bracket in the neighborhood of special points. We prove that the constructed linear Poisson brackets are always compatible with the initial quadratic Poisson bracket. We apply the obtained results to the cases of the standard quadratic r-matrix bracket and to classical “twisted reflection algebra” brackets. In the first case we obtain that there exists only one non-equivalent linearization: the standard linear r-matrix bracket and recover well-known result that the standard quadratic and linear r-matrix brackets are compatible.We show that there are a lot of non-equivalent linearizations of the classical twisted Reflection Equation Algebra bracket and all of them are compatible with the initial quadratic bracket.

Type de document :
Communication dans un congrès
Liste complète des métadonnées

https://hal.univ-angers.fr/hal-03031608
Contributeur : Okina Université d'Angers <>
Soumis le : lundi 30 novembre 2020 - 15:20:56
Dernière modification le : jeudi 3 décembre 2020 - 03:22:07

Fichier

chp3a10.10072f978-3-642-00873-...
Accord explicite pour ce dépôt

Identifiants

Collections

Citation

Vladimir Roubtsov, T. Skrypnyk. Compatible Poisson brackets, quadratic Poisson algebras and classical r-matrices. The Abel symposium 2008, Jun 2008, Tromso, Norway. pp.311 - 333, ⟨10.1007/978-3-642-00873-3_15⟩. ⟨hal-03031608⟩

Partager

Métriques

Consultations de la notice

12

Téléchargements de fichiers

45