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Compatible Poisson Brackets, Quadratic Poisson
Algebras and Classical r-Matrices

V. Roubtsov and T. Skrypnyk

Abstract We show that for a general quadratic Poisson bracket it is possible to de-
fine a lot of associated linear Poisson brackets: linearizations of the initial bracket
in the neighborhood of special points. We prove that the constructed linear Poisson
brackets are always compatible with the initial quadratic Poisson bracket.

We apply the obtained results to the cases of the standard quadratic r-matrix
bracket and to classical “twisted reflection algebra” brackets. In the first case we
obtain that there exists only one non-equivalent linearization: the standard linear
r-matrix bracket and recover well-known result that the standard quadratic and lin-
ear r-matrix brackets are compatible. We show that there are a lot of non-equivalent
linearizations of the classical twisted Reflection Equation Algebra bracket and all
of them are compatible with the initial quadratic bracket.

1 Introduction

The theory of compatible Poisson brackets (or so-called bihamiltonian theory) has
appeared almost 30 years ago [1]. Magri had observed the following highly non-
trivial fact: a linear combination of two Poisson brackets (or two Poisson tensors) is
not always again a Poisson but demands an additional compatibility condition (the
annihilation of mutual Schouten brackets for two Poisson tensors). The theory of
such compatible brackets (or in other terminology of linear Poisson pencils) was
developed later in many papers (see for example [2–6]). Compatibility conditions
of Lie-Poisson brackets on finite-dimensional spaces was recently systematically
studied in [7] in the assumption that one of the brackets is semisimple.

In the present paper we study linear Poisson pencils of quadratic and linear Pois-
son brackets. Although there exists a lot of examples of such compatible brackets in
literature (see for example [4, 14–16]), there is no (up to our knowledge) a general
compatibility theory for such the brackets .
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The central idea in this paper is the idea of a linearization which comes from the
Poisson–Lie group theory. In more detail, we show that it is possible to construct
compatible linear and quadratic Poisson brackets by a linearization of the quadratic
bracket in the neighborhood of zeros of their right-hand sides. For each of such zero
it is possible to define a linear Poisson bracket which, as we will show, is automat-
ically compatible with the initial quadratic one. We consider the application of this
result to the theory of integrable systems in a spirit of the Lenard–Magri scheme [1].
In particular, we obtain a set of commuting functions with respect to both linear
and quadratic brackets (we call them “integrals” or “hamiltonians”) starting from
polynomial Casimirs. It is necessary to emphasize that different choice of zeros of
the quadratic Poisson structure may produce non-equivalent linearizations and non-
equivalent sets of commuting hamiltonians. We show that the hamiltonian dynamics
with respect to one of these hamiltonians of degree k and quadratic bracket can be
re-written in the terms of hamiltonian dynamics with respect to a hamiltonian of the
degree k + 1 and the corresponding linear bracket. The last statement has a con-
ceptual importance from the point of view of classical dynamical systems: it means
that on the classical level the quadratic Poisson bracket produce the same integrable
dynamics as its linearization.

We apply the obtained results to a case of the standard quadratic r-matrix bracket
and after that to the classical “twisted Reflection Equation Algebra” brackets. We
consider spectral parameter-dependent case, though the same results evidently holds
true for the spectral parameter-independent situation. The geometry of compatible
linear and quadratic brackets associated with a constant r-matrix was considered
in [8]. The case of constant Reflection Equation Algebra bracket was extensively
studied in [9].

In the case of the standard quadratic r-matrix bracket [10, 11] (in the present pa-
per for the sake of simplicity we consider only the case of gl(n)-valued T -matrices):

{T1(λ), T2(μ)}2 = [r12(λ− μ), T1(λ)T2(μ)], (1)

we show that its linearizations in the neighborhood of its different zeros produce the
standard linear r-matrix bracket [10, 11]:

{T1(λ), T2(μ)}1 = [r12(λ− μ), T1(λ)+ T2(μ)], (2)

or isomorphic to it brackets. In this way we obtain that brackets (1) and (2) are
compatible for the arbitrary choice of the r-matrix r(λ − μ) satisfying classical
Yang–Baxter equation [10, 12, 13] and for the arbitrary choice of the “monodromy”
matrices T (λ) satisfying these brackets. The compatibility holds true both for spe-
cial matrices T (λ) that define structure of the finite dimensional quadratic algebra
(e.g. those with simple poles in some fixed set of points) and for general mero-
morphic T (λ) that define a structure of a infinite dimensional quadratic algebra.
This result generalizes a set of recent results [14–16] about the compatibility of the
linear and quadratic r-matrix brackets for the cases of the Belavins classical ellip-
tic r-matrix [17] and monodromy matrices T (λ) possessing simple poles. In the
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present paper we show that d(λ) = detT (λ) is a generating function of the Casimir
functions of the brackets (1) for any classical r-matrix r(λ − μ) taking the values
in sl(n) ⊗ sl(n). This fact is certainly known but its rigorous proof seems to be
absent in literature. We produce generating functions of commutative integrals of
the both of the above brackets applying argument-shift method to the function d(λ).
We show that generating functions of integrals of order k produce the same inte-
grable dynamics with respect to the quadratic brackets as generating functions of
order k + 1 with respect to the linear bracket.

The main class of our examples is connected with the classical twisted reflection
algebra:

{T1(λ), T2(μ)}2 = r12(λ− μ)T1(λ)T2(μ)− T1(λ)r
σ1
12 (−λ− μ)T2(μ)−

− T2(μ)r
σ2
12 (λ+ μ)T1(λ)+ T1(λ)T2(μ)r

σ1σ2
12 (μ− λ) (3)

where σ is a second order automorphism of gl(n). (In in the case σ = 1 brackets (3)
coincide with the classical limits of standard Reflection Equation algebras [18,19].)
We show that there are non-equivalent “linearizations” of these brackets determined
by the non-dynamical matrices K(λ), where K(λ) satisfies the following equation:

r12(λ− μ)K1(λ)K2(μ)−K1(λ)r
σ1
12 (−λ− μ)K2(μ) =

= K2(μ)r
σ2
12 (λ+ μ)K1(λ)−K1(λ)K2(μ)r

σ1σ2
12 (μ− λ). (4)

These linear brackets have in terms of new variables T K(λ) ≡ T (λ)K−1(λ) the
following explicit form:

{T K1 (λ), T K2 (μ)}1 = [r12(λ− μ)−K2(μ)r
σ2
12 (λ+ μ)K−1

2 (μ), T K1 (λ)]−
− [r21(μ− λ)−K1(λ)r

σ1
21 (λ+ μ)K−1

1 (λ), T K2 (μ)]. (5)

All linearizations corresponding to different K(λ) are compatible with the initial
twisted reflection algebra bracket (3). In the case of g = sl(2), elliptic r-matrix
r(λ−μ) of Sklyanin [10], trivial automorphism σ andK(λ) = 1 such compatibility
was observed in the first time in [15]. In the general case our result seems to be new.

Let us also note that the bracket (5) is an example of the linear Poisson bracket
governed by the non-skew symmetric r-matrices r(λ, μ) [20–22]. In our case we
have:

r(λ, μ) = rσ,K(λ, μ) ≡ r12(λ− μ)−K2(μ)r
σ2
12 (λ+ μ)K−1

2 (μ). (6)

The classical r-matrix rσ,K(λ, μ) may be obtained also from some other consider-
ations [23].

Let us emphasize that each solution of (4) produces its own set of commuting
with respect to the bracket (3) functions. This gives one possibility to obtain a lot of
different commuting families of functions with respect to the same bracket (3). We
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consider in detail the families of solutions of (4) and the families of the correspond-
ing linear structures given by the r-matrix (6) in the simplest case of g = sl(2) and
elliptic r-matrix of Sklyanin [10]. We also show that D(λ) = detT (λ) is a generat-
ing function of the Casimir functions of the brackets (3) for any classical r-matrix
r(λ − μ). We produce generating functions of commutative integrals of the above
brackets applying argument-shift method to the function D(λ). We show that gen-
erating functions of the integrals of order k produce the same integrable dynamics
with respect to the quadratic bracket (3) as generating functions of order k + 1 with
respect to the linear bracket (5).

The structure of the paper is the following: in Sect. 2 we consider general theory
of consistent quadratic and linear Poisson brackets. In Sect. 3 we apply the results
of Sect. 2 to the quadratic brackets (1) and (3) investigate their linearizations and
corresponding algebras of integrals.

2 Compatible Brackets and Linearization: General Case

Let M be a (finite or infinite-)dimensional manifold. Let {Ti |i ∈ I } (where I is
some finite set in the finite-dimensional case, or Z in the infinite-dimensional case)
be the coordinate functions in some local chart on this manifold. Let us consider a
quadratic Poisson bracket on M , admitting in these coordinates the following ex-
plicit form:

{Ti, Tj }2 =
∑

k,l∈I
Cklij TkTl. (7)

Here the tensor Cklij is assumed to be such that the sum (in infinite-dimensional
case) is correctly defined. In this paper we will not study the global aspects of the
manifoldM geometry, preferring to work in the fixed local chart.

We will now linearize this quadratic bracket. In other words we will obtain a
linear Poisson bracket which is in a natural way associated with the bracket (7) and
is defined on the tangent space V in some fixed point c ∈ M with the coordinates
ci . In more detail, let us consider in the same local card some curve Ti(η) such that
the following decomposition

Ti = ci + ηLi + o(η) (8)

holds true in the vicinity of the point Ti = ci . Here Li are the coordinates in the
tangent space.

Remark 1. The idea of linearization had come form the theory of Poisson–Lie
groups, where Ti are considered to be components of the group element and Li
are considered to be components of the corresponding element of the Lie algebra.
The expansion (8) in this case is simply expansion of the exponent in the Taylor
power series. We will return to this case in the further examples.
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It occurred, that not for all the points c ∈ M or, equivalently, not for all param-
eters ci such an expansion and “linearized” Poisson bracket exist. The following
Proposition holds true:

Proposition 2.1 The expansion (8) define in a correct way a linear Poisson bracket
on V if and only if constants ci satisfy the following condition:

∑

k,l∈I
Cklij ckcl = 0,∀i, j ∈ I, (9)

i.e. lie on zeros cone of the quadratic Poisson structure (7). The corresponding linear
Poisson structure has in this case the following form:

{Li, Lj }1 =
∑

k,l∈I
Cklij (ckLl + clLk). (10)

Proof. In order to obtain a correct linearization we will consider instead the bracket
(7) an equivalent (proportional) bracket :

{Ti, Tj }′2 = η
∑

k,l∈I
Cklij TkTl. (11)

Let us substitute expansion (8) in this Poisson bracket. Taking into account that ci
are complex or real numbers constant lying in the kernel of the Poisson brackets we
obtain:

η2{Li, Lj } + o(η2) = η
∑

k,l∈I
Cklij ckcl + η2

∑

k,l∈I
Cklij (ckLl + clLk)+ o(η2).

Comparing the coefficients near powers of η in the both sides of this expression we
obtain the statement of the Proposition.

Now, having defined the linear Poisson structure on the tangent space V , we can
(using the diffeomorphism of the tangent space in a point of the local chart to the
local chart itself) consider the bracket (7) also to be defined on the space V , i.e. on
the coordinate functionsLi or vise verse bracket (10) to be defined on the coordinate
functions Ti .

In the subsequent we will use the following standard definition [1]:
Definition. Two poisson brackets { , }2 and { , }1 are called to be compatible if

their linear combination is again a Poisson bracket.
The existence of the compatible Poisson bracket is important for the correspond-

ing theory of integrable systems. The theory of compatible Poisson brackets was
conceived in the paper [1] and developed in papers [2–7]. Using compatible Pois-
son brackets it is possible to construct the algebra of mutually Poisson-commutative
functions – “integrals of motion” of an integrable hamiltonian system (see, for ex-
ample, Theorem 2.1 below).
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The following important Proposition holds true:

Proposition 2.2 The quadratic order Poisson bracket (7) is always compatible with
its linearization – the linear Poisson bracket (10).

Remark 2. Note that it is possible to define a linearization – the corresponding linear
Poisson bracket for an arbitrary polynomial bracket of the degree n. But in the case
n > 2 the linearized bracket will not, generally speaking, be compatible with the
initial polynomial Poisson bracket.

Proof. The statement of the Proposition follows from the combination of the previ-
ous Proposition and trick with the shift of the argument [24]. Let us consider shift of
the local coordinates Ti : Ti → Ti + ηci , where ci are some constants and substitute
it in the bracket (7). Using the fact that ci are constants we will obtain the following
expression:

{Ti, Tj }η ≡ {Ti+ηci, Tj+ηcj }2 =
∑

k,l∈I

(
Cklij TkTl+ηCklij (ckTl+clTk)+η2Cklij ckcl

)
.

(12)

Let now constants ci satisfy conditions (9) (this is needed to the very existence of the
linearization (10)). In this case we will have that the last summand in the expression
(12) vanishes and we obtain the following expression:

{Ti, Tj }η = {Ti, Tj }2 + η{Ti, Tj }1,

where {Ti, Tj }1 ≡ ∑

k,l∈I
Cklij (ckTl+clTk) is “linearized” bracket (10) and {Ti, Tj }2 =

∑

k,l∈I
Cklij TkTl is the bracket (7). By other words, this means that linear combination

of the brackets {Ti, Tj }2 and {Ti, Tj }1 is again Poisson bracket, i.e. these brackets
are compatible.

Proposition is proved.
This Proposition is a generalization of the well-known in the quantum group

theory fact about the compatibility of the “first and second Sklyanin brackets” [10].
In the next subsections we will consider several examples of this sort.

But at first, let us remind the reason of the importance of theory of compatible
Poisson brackets (Lenard–Magri scheme) in the theory of classical integrable sys-
tems [1]. We will need the following version of this scheme of the construction of
the set of mutually commuting functions starting from the Casimir functions of one
of the compatible brackets:

Theorem 2.1 Let In(T ), Im(T ) be homogeneous polynomial invariants of the Pois-
son structure { , }2 of the degree n and m correspondingly. Let C satisfy conditions
(10). Then the functions Ink (T , C), I

m
k (T , C) obtained via the decomposition of the

function In(T + ηC) and Im(T + ηC) in the degrees of the parameter η:

In(T + ηC) =
n∑

k=0

ηkInk (T , C), I
m(T + ηC) =

m∑

k=0

ηkImk (T , C)
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constitute commuting family with respect to the brackets { , }2 and { , }1:

{Ink (T , C), Iml (T , C)}2 = {Ink (T , C), Iml (T , C)}1 = 0.

Proof. In order to prove this Proposition let us note that {In(T + ηC), F (T +
ηC)}η = 0 for arbitrary function F due to the fact that In(T + ηC) is a Casimir
function of the bracket { , }η. Putting F(T ) ≡ Im(T + (η′ − η)C) we obtain the
following equality:

{In(T + ηC), Im(T + η′C)}η = 0. (13)

In the analogous way one obtains the equality

{In(T + ηC), Im(T + η′C)}η′ = 0. (14)

From these identities, decomposing the functions In(T + ηC) and Im(T + η′C) in
the powers of parameters η and η′ and using the fact that { , }η = { , }2 + η{ , }1
we obtain the following equalities:

{Ink (T , C), Iml (T , C)}2 + {Ink−1(T , C), I
m
l (T , C)}1 = 0. (15a)

{Ink (T , C), Iml (T , C)}2 + {Ink (T , C), Iml−1(T , C)}1 = 0, (15b)

which are coefficients near the powers ηkη′l in these expansions. Taking into account
that Inn (T , C) = In(C), Imm (T , C) = Im(C) are constants with respect to the both
brackets, i.e.:

{In(C), Iml (T , C)}2 = {In(C), Iml (T , C)}1 = 0
{Ink (T , C), Im(C)}2 = {Ink (T , C), Im(C)}1 = 0

and substituting this into (15) we obtain the following equalities:

{Inn−1(T , C), I
m
l (T , C)}1 = 0, l ≥ 0, (16a)

{Ink (T , C), Imm−1(T , C)}1 = 0, k ≥ 0. (16b)
Making use of the equality (16a) and substituting it into the equality (15b), putting
there k = n − 1 we obtain that {Inn−1(T , C), I

m
l (T , C)}2 = 0, l > 0. In a similar

way using the equality (16b), substituting it into the equality (15a), putting there l =
m− 1 we obtain that {Imm−1(T , C), I

n
k (T , C)}2 = 0, k > 0. Taking into account that

In0 (T , C) ≡ In(T ), Im0 (T , C) ≡ Im(T ) are Casimir functions of the brackets { , }2
we obtain also that {Inn−1(T , C), I

m
0 (T , C)}2 = 0, {Imm−1(T , C), I

n
0 (T , C)}2 = 0.

Hence we have proved that

{Inn−1(T , C), I
m
l (T , C)}2 = {Inn−1(T , C), I

m
l (T , C)}1 = 0, l ∈ 0,m;

{Imm−1(T , C), I
n
k (T , C)}2 = {Imm−1(T , C), I

n
k (T , C)}1 = 0, k ∈ 0, n.
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Proceeding inductively we at last obtain that

{Inn−k(T , C), Iml (T , C)}1 = {Ink (T , C), Imm−l (T , C)}1 = 0,
{Inn−k(T , C), Iml (T , C)}2 = {Ink (T , C), Imm−l (T , C)}2 = 0.

for k ∈ 0, n, l ∈ 0,m. Theorem is proved.

Remark 3. Note, that each point C satisfying conditions (10) provides in the frame-
work of our construction its own algebra of Poisson-commuting (with respect to the
brackets { , }i ,i ∈ 1, 2) integrals.

The following proposition (a kind of “Lenard recursive relation” [1]) is a conse-
quence of the fact the constructed Poisson brackets { , }i ,i ∈ 1, 2 are compatible:

Proposition 2.3 The hamiltonian equation of motion with respect to the bracket
{ , }2 with the hamiltonian function Ink (T , C), (k < n and is fixed) coincides with
the hamiltonian equation of motion with respect to the brackets { , }1 with the hamil-
tonian function −Ink−1(T , C).

Proof. In order to prove this Proposition, let us consider the following Poisson
bracket:

{Ti + ηCi, In(T + ηC)}η = {Ti, In(T + ηC)}η = {Ti, In(T + ηC)}2+

+ η{Ti, In(T + ηC)}1 =
n∑

k=0

ηk{Ti, Ink (T , C)}2 +
n+1∑

k=1

ηk{Ti, Ink−1(T , C)}1 = 0,

where we have used that the function In(T + ηC) is a Casimir of the bracket { , }η
and Ci are constants with respect to this bracket. Due to the fact that this equality
holds true for all degrees of the parameter η, we obtain for 0 < k < n:

{Ti, Ink (T , C)}2 + {Ti, Ink−1(T , C)}1 = 0.

The hamiltonian equations of motion with respect to the hamiltonianH and brackets
{ , }k are standardly defined as follows:

dTi

dt
= {Ti,H }k

we obtain the statement of the proposition.

Remark 4. The above Proposition has a conceptual importance for the theory of
classical dynamical systems. Indeed, it means that the integrable dynamical sys-
tems constructed with the help of quadratic Poisson brackets and the hamiltonian
obtained with the help of the “argument shift method” as in the Theorem 2.1 may
be interpreted as hamiltonian equations of motion with respect to the correspond-
ing “linearized” Poisson bracket and the other “hamiltonian” obtained by the same
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“argument shift”. Thus, on the level of classical integrable dynamical systems, it
is sufficient to consider only linear Poisson brackets, because the corresponding
quadratic bracket produces the same integrable dynamics.

3 Quadratic Algebras and Poisson–Lie Groups

In this section we will illustrate the results of the previous section on the examples
of the quadratic Poisson algebra related to the RT T and to the Reflection Equation
Algebras which are the main objects of interest of the present paper. In some cases
the obtained results are well-known, in other cases they seemed to be new. For the
sake of simplicity and in order to avoid global geometrical and topological subtleties
we will restrict ourselves to the case of the Lie group GL(n) and the corresponding
Lie algebra gl(n).

3.1 First and Second Sklaynin Brackets

Compatibility

Let us consider the reductive Lie algebra gl(n) and its simple subalgebra sl(n). Let
us consider a meromorphic function of two complex variables r12(λ−μ) taking val-
ues in sl(n)⊗ sl(n) satisfying the usual classical Yang–Baxter equation [10,12,13]:

[r12(λ− μ), r13(λ− ν)] = [r23(μ− ν), r12(λ− μ)+ r13(λ− ν)], (17)

where r12(λ−μ), considered as a matrix acting in the space sl(n), is nondegenerate.

Remark 5. It is possible also to consider nondegenerate gl(n)-valued r-matrices

r ′(λ, μ) ≡ f (λ, μ) · 1⊗ 1+ r(λ− μ),

where r(λ − μ) ∈ sl(n) ⊗ sl(n), f (λ, μ) is an arbitrary function of two complex
variables, but they will lead to the same Poisson structures as r(λ − μ) and, that is
why, we will restrict ourselves to the consideration of sl(n)-valued r-matrices.

The important fact [13] is that from the classical Yang–Baxter equation follows
the skew-symmetry of the r-matrix r12(λ, μ):

r12(λ− μ) = −r21(μ− λ).

This gives a possibility to define, using r12(λ, μ), so-called Sklyanin quadratic
bracket [10]:

{T1(λ), T2(μ)}2 = [r12(λ− μ), T1(λ)T2(μ)], (18)
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where T1(λ) ≡ T (λ)⊗1, T2(μ) ≡ 1⊗T (μ), T (λ) takes values in a classical matrix
Lie groupGL(n), and is a meromorphic function of spectral parameter λ. Due to the
fact, that all our consideration will have a local character, we will, slightly abusing
the language, consider T (λ) to be an element of gl(n).

Remark 6. Generally speaking, the bracket (18) is defined in the infinite-
dimensional space of meromorphic functions of λ where it defines a structure
of an infinite-dimensional quadratic algebra. It also defines the structure of finite-
dimensional quadratic algebras in special subspaces of meromorphic functions. For
example, in the case of sl(2) elliptic r-matrix and matrices T (λ) possessing one
simple pole at λ = 0 it defines the Sklyanin algebra [25] or “many-poled” Sklyanin
algebras in the cases of matrices T (λ) with many simple poles [15].

We will not need to write more explicitly the commutation relations (18) leaving
them in the “convoluted” form. Let us now consider the expansion (8):

T (λ) = C(λ)+ ηL(λ)+ o(η),

where C ∈ GL(n). It gives us the following linearization:

{L1(λ), L2(μ)}1 = [r12(λ− μ),L(λ)⊗ C(μ)+ C(λ)⊗ L(μ)]. (19)

Here the “initial point” C in this decomposition satisfies the following condition:

[r12(λ, μ), C(λ)⊗ C(μ)] = 0. (20)

Remark 7. Note that the linearization condition (20) has the same form for all
infinite-dimensional quadratic structures defined by the (18) and for all finite-
dimensional substructures (like the Sklyanin algebra [25], the many-poled Sklyanin
algebra [15], etc.).

In the special case, when C(λ) coincides with a unit element of the groupGL(n)
(C(λ) = 1), we obtain from (21) the standard “second” Sklyanin bracket:

{L1(λ), L2(μ)}1 = [r12(λ− μ),L1(λ)+ L2(μ)]. (21)

Hence we have recovered the well-known fact [11] that “first” and “second Sklyanin
brackets” are compatible.

It is easy to show that the bracket (19) is equivalent to the bracket (21). Indeed,
making a change of variables: L(λ) = LC(λ)C(λ) and using the condition (19) we
obtain that the bracket (19) pass to the bracket (21). Hence, in this class of examples
one does not come to the different compatible structures choosing different initial
points for linearization. The situation is different in the case of other quadratic alge-
bras, the examples of which we will consider in the next subsections. As we will see
the choice of the “initial point” in the neighborhood of which we linearize Poisson
bracket may lead to different Lie algebraic structures.
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Algebra of Integrals

Let us now consider an impact of compatibility of quadratic and linear Sklyanin
brackets in the corresponding theory of integrable systems. We will show, in
particular, that commutativity of generating functions of the classical integrals
tr(T (λ))k (or tr(L(λ))k) with respect to the both linear and second order Poisson
brackets may be derived using only the theory of compatible Poisson brackets.

In order to use the theory of bihamiltonian systems we have to describe Casimir
functions of the quadratic Sklyanin brackets on gl(n). The following result is true:

Theorem 3.1 Let d(λ) be a determinant of the gl(n)-valued monodromy matrix
T (λ). Then d(λ) is a generating function of the Casimir functions of the bracket
(18) for all types of “monodromy” matrices T (λ) satisfying the brackets (18) and
for all types of sl(n)⊗ sl(n)-valued r-matrices.

Proof. In order to prove the theorem we have to show that {d(λ), Tij (μ)}2 = 0,
where the bracket { , }2 has the form (18). Let us notice at first that trL(λ) is a
Casimir function of the bracket (21) for any sl(n)-valued r-matrix r12(λ, μ). Indeed:

{tr1(L1(λ)), L2(μ)} = tr1([r12(λ− μ),L1(λ)])+ [tr1(r12(λ− μ)), L2(μ)] = 0.

The first summand is equal to zero as a trace of commutator and the second one
is equal to zero because tr1(r12(λ − μ)) = 0 due to the fact that our r-matrix is
sl(n)-valued.

Now let us make the following change of variables:

T (λ) = exp L(λ). (22)
Keeping in mind the well-known relation of determinants and traces we obtain:

d(λ) ≡ detT (λ) = exp trL(λ). (23)

If the change of variables (22) had been Poisson,the equality (23) would have been
sufficient for the proof of the theorem. But, unfortunately, it is not Poisson. Nev-
ertheless the change of variables (22) will be still useful. Indeed, let us explicitly
calculate expressions {exp L1(λ), exp L2(μ)}2 and {exp L1(λ), exp L2(μ)}1. We
have:

{exp L1(λ), exp L2(μ)}2 = [r12(λ− μ), exp L1(λ)exp L2(μ)] =

=
∞∑

k,l=0

1
k!l! [r12(λ− μ),Lk1(λ)Ll2(μ)]. (24)

Hereafter it is implied that L0
1(λ) ≡ 1. On the other hand we obtain:

{exp L1(λ), exp L2(μ)}1 =
∞∑

k,l=0

1
k!l! {L

k
1(λ), L

l
2(μ)}1. (25)
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By the recursion applied first to k and then to l we obtain the following equality:

{Lk1(λ), Ll2(μ)}1 = (
k−1∑

i=0

L1(λ)
i[r12(λ− μ),Ll2(μ)]L1(λ)

k−1−i+

l−1∑

j=0

L2(μ)
j [r12(λ− μ),Lk1(λ)]L2(μ)

l−1−j ). (26)

Now we will rewrite the formula (26) in the following way:

1
k!l! {L

k
1(λ), L

l
2(μ)}1 =

1
2(k − 1)!l! (L1(λ)

k−1[r12(λ− μ),Ll2(μ)] + [r12(λ− μ),Ll2(μ)]L1(λ)
k−1)+

1
2k!(l − 1)! ([r12(λ− μ),Lk1(λ)]L2(μ)

l−1 + L2(μ)
l−1[r12(λ− μ),Lk1(λ)])+

1
2k!l! (

k−1∑

i=0

[L1(λ)
i, [[r12(λ− μ),Ll2(μ)], L1(λ)

k−1−i]]+

l−1∑

j=0

[[L2(μ)
j , [r12(λ− μ),Lk1(λ)]], L2(μ)

l−1−j ]).

Using this equality, the Leibnitz rule for the commutator, the fact that [Lk1(λ),
Ll2(μ)] = 0 and renaming the indices k − 1 → k, when summing the first two
summands of the right-hand side of this equality with respect to k, l and l − 1 → l

when summing the next two summands of the right-hand side of this equality with
respect to k, l, it is easy to show that

∞∑

k,l=0

1
k!l! {L

k
1(λ), L

l
2(μ)}1 =

∞∑

k,l=0

1
k!l! [r12(λ− μ),Lk1(λ)Ll2(μ)]+

∞∑

k,l=0

1
2k!l! (

k−1∑

i=0

[L1(λ)
i, [[r12(λ− μ),Ll2(μ)], L1(λ)

k−1−i]]+

l−1∑

j=0

[[L2(μ)
j , [r12(λ− μ),Lk1(λ)]], L2(μ)

l−1−j ]).

By other words we have obtained that:

{exp L1(λ), exp L2(μ)}2 = {exp L1(λ), exp L2(μ)}1 − X̃12(L), where
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X̃12(L) ≡
∞∑

k,l=0

1
2k!l! (

k−1∑

i=0

[L1(λ)
i, [[r12(λ− μ),Ll2(μ)], L1(λ)

k−i]]+

+
l−1∑

j=0

[[L2(μ)
j , [r12(λ− μ),Lk1(λ)]], L2(μ)

l−1−j ]).

Now, we remark, that using the Jacobi identity and the fact that [Lk1(λ), Lj2(μ)] = 0

the expression
l−1∑

j=0
[[L2(μ)

j , [r12(λ − μ),Lk1(λ)]], L2(μ)
l−1−j ]) can be further

transformed in the following form:
l−1∑

j=0
[L1(λ)

k, [[r12(λ−μ),Lj2(μ)], L2(μ)
l−1−j ]].

Hence, we can re-write the expression for X̃12(L) as:

X̃12(L) =
∞∑

m=0

[Lm1 (λ),X(m)12 (L)]. (27)

Now, let us consider the expression

{d(λ), T2(μ)}2 ≡
n∑

k,l=1

{d(λ), Tkl(μ)}2Xkl =

=
n∑

i,j,k,l=1

∂d(λ)

∂Tij (λ)
{Tij (λ), Tkl(μ)}2Xkl = 〈∇1d(λ), {T1(λ), T2(μ)}2〉1,

where ∇1d(λ) ≡
n∑

i,j=1

∂d(λ)

∂Tij (λ)
Xji ⊗ 1, and 〈 , 〉1 means the scalar product in the

first factor of the tensor product gl(n) ⊗ gl(n). As it was shown above, we can
re-write this as follows:

〈∇1d(λ), {T1(λ), T2(μ)}2〉1 = 〈∇1d(λ), {T1(λ), T2(μ)}1〉1 − 〈∇1d(λ), X̃12(L)〉1,
(28)

where {T1(λ), T2(μ)}1 ≡ {expL1(λ), expL2(μ)}1. On the other hand first sum-
mand in (28) can be written in the following form:

〈∇1d(λ), {T1(λ), T2(μ)}1〉1 = {d(λ), T2(μ)}1 = {exp trL1(λ), expL2(μ)}1.

Taking into account that trL(λ) is a Casimir function of the brackets { , }1 we obtain
that {exp trL1(λ), expL2(μ)}1 = 0.

Let us consider the second summand in the equality (28). Let us take into account

that
1
d(λ)

∂d(λ)

∂Tij (λ)
= (T −1(λ))ji and, hence, ∇1d(λ) = d(λ)T −1

1 (λ). That is why
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we obtain:

〈∇1d(λ)

d(λ)
, X̃12(L)〉1 = 〈T −1

1 (λ), X̃12(L)〉1 =
∞∑

m=0

〈T1(λ)
−1, [Lm1 (λ),X(m)12 (L)]〉1.

On the other hand

〈T1(λ)
−1, [Lm1 (λ),X(m)12 (L)]〉1 = 〈[T1(λ)

−1, Lm1 (λ)], X(m)12 (L)〉1,

where we have used the ad-invariance of the pairing 〈 , 〉1. Now using the fact that
T1(λ)

−1 = exp (−L1(λ)) and the evident fact that [exp (−L1(λ)), L
m
1 (λ)] = 0 we

obtain that the second summand in (28) is also zero.
Theorem is proved.

Remark 8. The theorem above is a generalization of the well-known for the concrete
r-matrices fact that detT (λ) is a Casimir function of the quadratic r-matrix bracket
onto the case of the arbitrary r-matrices (including all trigonometric r-matrices of
Belavin and Drienfield [13], non-standard rational r-matrices of Stolin [26], etc.).

From the Theorems 3.1 and 2.1 follows the next:

Corollary 3.1 Denotebydk(T (λ)) thecoefficients in thedecomposition:Det(T (λ)+
ηI) =

n∑

k=0
dk(T (λ))η

k . Then dk(T (λ)) are generators of an Abelian subalgebra

with respect to the both linear and quadratic r-matrix brackets (21) and (18), i.e.:

{dk(T (λ)), dl(T (μ))}1 = {dk(T (λ)), dl(T (μ))}2 = 0.

Proof. In order to prove this corollary it is enough to use the Theorem 2.1 applied for
the two polynomial Casimir functions d(T (λ)) and d(T (μ)) of the bracket { , }2.

Remark 9. Functions {dk(T (λ))} define the same algebra of integrals as functions
{trT l(λ)} and are connected with them by the well-known Newton formulas. Nev-
ertheless, it is nice to notice that they could be obtained from the consideration of
bihamiltonity and Casimir element d(λ) only. This may have deep meaning, because
in the quantum case operators {trT̂ l(λ)} stops to be commutative, but quantum ana-
logues of the functions {dk(T (λ))} still are [27, 28].

Remark 10. It is easy to see that integrals obtained by the shift on another matrix
C ∈ Gl(n) are equivalent to the integrals obtained by the shift on the unit ma-
trix. Indeed, it is evident that Det(T (λ) + ηC(λ)) = DetCDet(T C(λ) + ηI),
where T C(λ) = T (λ)C−1(λ). But, due to the fact that [r12(λ, μ), C(λ)⊗ C(μ)] =
[r12(λ, μ), C

−1(λ) ⊗ C−1(μ)] = 0 elements T C(λ) define the same algebra (both
with respect to the quadratic and the linear brackets) as elements T (λ) in the case
C(λ) = 1.

Now, let us consider what the condition of compatibility of brackets (21) and (18)
yields from the point of view of the corresponding dynamics. For this purpose, in
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principle, we need to decompose the generating functions dk(T (λ)) with respect to
the spectral parameter λ. Using the fact that T (λ) is meromorphic functions this can
always be done using the decomposition in Laurent power series. In the special cases
the other decompositions may be also used [14]. In the present paper we will not do
these decompositions explicitly leaving all the expressions in the “convoluted” form
of the generating functions. Using the Proposition 2.3 we obtain the following:

Proposition 3.1 Hamiltonian equations of motion with respect to the bracket { , }2
with a hamiltonian being one of the functions obtained by a decomposition of func-
tion dk(T (λ)),k < n, coincide with the hamiltonian equations of motion with respect
to the brackets { , }1 with the hamiltonian being the corresponding function ob-
tained by the decomposition of function−dk−1(T (λ)), i.e. on the level of generating
functions the following equality is true:

{dk(T (λ)), T (μ)}2 = −{dk−1(T (λ)), T (μ)}1.

In the case k = n− 1 this Proposition implies the following important corollary:

Corollary 3.2 Hamiltonian equations of motion with respect to the bracket { , }2
with a hamiltonian being one of the functions obtained by a decomposition of func-
tion trT (λ) coincide with the hamiltonian equations of motion with respect to the
brackets { , }1 with the hamiltonian being the corresponding function obtained by

the decomposition of the function
1
2
tr(T 2(λ)), i.e. on the level of generating func-

tions the following equality holds true:

{tr(T (λ)), T (μ)}2 = 1
2
{tr(T 2(λ)), T (μ)}1.

Proof. In order to derive this statement it is sufficient to put in the previous proposi-
tion k = n− 1, use Newton identities and the fact that function trT (λ) is a Casimir
function of the linear r-matrix bracket { , }1.

3.2 “Twisted Reflection Equation Algebra” and Its Linearizations

Compatible Brackets

Let, as in the previous subsection, r(λ − μ) be a sl(n) ⊗ sl(n)-valued solution of
the classical Yang–Baxter equation (17), and T (λ) be a meromorphic function of
spectral parameter λ taking the values in a classical matrix Lie group GL(n).

Let σ be some automorphism of gl(n) (and sl(n)). Let us consider the space of
functions T (λ) the following quadratic brackets:

{T1(λ), T2(μ)}2 = r12(λ− μ)T1(λ)T2(μ)− T1(λ)r
σ1
12 (−λ− μ)T2(μ)−

− T2(μ)r
σ2
12 (λ+ μ)T1(λ)+ T1(λ)T2(μ)r

σ1σ2
12 (μ− λ), (29)
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where rσ1
12 (λ) = σ ⊗ 1 · r12(λ), r

σ2
12 (λ) = 1 ⊗ σ · r12(λ), etc. By direct and tedious

calculation one can show that (29) is indeed a Poisson bracket, i.e. that it satisfies
Jacobi condition for the case of arbitrary automorphism σ and an arbitrary solution
r12(λ− μ) of the classical Yang–Baxter equation (see also Remark 14).

One may consider the bracket (29) defined on the infinite-dimensional space of
meromorphic functions of λ like in the case of previous subsection. We will call
the corresponding algebra a “twisted classical Reflection Equation Algebra”. The
bracket (29) may be also considered in some special finite-dimensional subspaces
of the space of meromorphic functions where it defines a structure of a finite-
dimensional quadratic algebra (see for example [16]).

Remark 11. Due to the known fact that all automorphisms of gl(n) are either inter-
nal or have a second order we may write that σ = AdK0σ0, where K0 ∈ GL(n) and
σ0 is an involutive external automorphism of gl(n) or σ0 = 1. All external auto-
morphisms of gl(n) as a Lie algebra are can be written as minus anti-automorphism
of gl(n) considered as an associative algebra, and we may write symbolically that
σ0(X) = −Xt where upper superscript t denotes anti-automorphism of gl(n) (in
particular the ordinary transposition). Moreover by substitution T (λ)→ T (λ)K−1

0
we can get rid of AdK0 and to consider hereafter only the case σ = σ0.

In the simplest case σ = 1, using the skew-symmetry of r(λ−μ), we obtain the
“classical Reflection Equation Algebra” which is a classical limit of the standard
quantum Reflection Equation Algebra [10, 19]:

{T1(λ), T2(μ)}2 = r12(λ− μ)T1(λ)T2(μ)+ T1(λ)r21(λ+ μ)T2(μ)−
− T2(μ)r12(λ+ μ)T1(λ)− T1(λ)T2(μ)r21(λ− μ). (30)

Let us linearize the quadratic bracket (29) it in the neighborhood of some point
T (λ) = K(λ). The sufficient condition of an existence of such a linearization is the
requirement (9), which acquires in the case at hand the following form:

r12(λ− μ)K1(λ)K2(μ)+K1(λ)K2(μ)r
σ1σ2
12 (μ− λ) =

= K2(μ)r
σ2
12 (λ+ μ)K1(λ)+K1(λ)r

σ1
12 (−λ− μ)K2(μ). (31)

Remark 12. For the case σ = 1 and r matrices r12(λ − μ) satisfying a symmetry
condition:

r12(λ− μ) = r21(λ− μ), (32)

the simplest possible choice K(λ) = 1 is a solution of (31). In sl(2) case the condi-
tion (32) is true, for example, for the classical rational r-matrix of Yang, for standard
trigonometric r-matrix and elliptic r-matrix. It is not true for non-standard rational
r-matrices of Stolin. In the case sl(n), n > 2 condition (32) is not true nor for stan-
dard trigonometric r-matrices neither for sl(n) elliptic r-matrices. Moreover, as we
will show in the example below, even for the r-matrices for which condition (32) is
satisfied there are a lot of other (except K = 1) solutions of (31).
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Using nondegenerate matrices K(λ) satisfying condition (31) it is possible to in-
troduce the corresponding linear bracket (10) which will have the following explicit
form:

{L1(λ),L2(μ)}1 = r12(λ− μ)K1(λ)L2(μ)+ r12(λ− μ)L1(λ)K2(μ)−
K1(λ)r

σ1
12 (−λ− μ)L2(μ)− L2(μ)r

σ2
12 (λ+ μ)K1(λ)+K1(λ)L2(μ)r

σ1σ2
12 (μ− λ)−

−L1(λ)r
σ1
12 (−λ−μ)K2(μ)−K2(μ)r

σ2
12 (λ+μ)L1(λ)−L1(λ)K2(μ)r

σ1σ2
12 (μ−λ).

(33)

Despite its complicated form, bracket (33) may be substantially simplified. Indeed,
after the replacement of the variables: L(λ) = LK(λ)K(λ), usage of the equality
(31) and skew symmetry of r12(λ − μ) it can be re-written in the following simple
form:

{LK1 (λ),LK2 (μ)}1 = [r12(λ− μ)−K2(μ)r
σ2
12 (λ+ μ)K−1

2 (μ),LK1 (λ)]−
− [r21(μ− λ)−K1(λ)r

σ1
21 (λ+ μ)K−1

1 (λ),LK2 (μ)]. (34)

Linear Poisson bracket (34) is a particular example of linear Poisson brackets gov-
erned by the non-skew symmetric r-matrices r12(λ, μ):

{L1(λ), L2(μ)}1 = [r12(λ, μ), L1(λ)] − [r21(μ, λ), L2(μ)], (35)

where r12(λ, μ) is a solution of “generalized” classical Yang–Baxter equation
[20–22]:

[r12(λ, μ), r13(λ, ν)] = [r23(μ, ν), r12(λ, μ)] + [r13(λ, ν), r32(ν, μ)].

As it is evident from the very definition, in our case:

r12(λ, μ) = rσ,K12 (λ, μ) ≡ r12(λ− μ)−K2(μ)r
σ2
12 (λ+ μ)K−1

2 (μ). (36)

Remark 13. The classical r-matrix (36) can be rewritten in the form:

r
σ(μ)
12 (λ, μ) = r12(λ− μ)− σ2(μ) · r12(λ+ μ), (37)

where σ2(μ) ≡ AdK2(μ) ·σ2. The r-matrix (37) may be obtained also from the other
considerations without appealing to the “twisted” quadratic Poisson brackets (29)
(see [23]).

Hence, we see that in this case the resulting classical r-matrices rσ,K12 (λ, μ)

and corresponding linear Lie-algebraic structures substantially depend on the initial
point K(λ) around which we linearize our quadratic Poisson bracket. For the fixed
r-matrix r(λ−μ) there may be many (even parametric families!) of such the points
K(λ) and all of the corresponding linear Poisson structures are compatible with
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the quadratic Poisson algebra (29). In order to illustrate this, we will consider the
following example of such the points K(λ) and their r-matrices rσ,K12 (λ, μ):

Example 1. Let g = sl(2) and σ = 1. Let Xi , i ∈ 1, 3 be the orthonormal basis
in sl(2) � so(3) with the commutation relations:

[Xi,Xj ] = εijkXk.

Let us consider the classical elliptic r-matrix of Sklyanin [18]:

r(λ− μ) =
3∑

k=1

rk(λ− μ)Xk ⊗Xk, (38)

where rk(λ) are expressed via Jacobi functions:

r1(λ) = 1
sn(λ)

, r2(u) = dn(λ)

sn(λ)
, r3(u) = cn(λ)

sn(λ)
. (39)

It is easy to see that r12(λ− μ) = −r12(λ− μ) due to the fact that functions rk(λ)
are odd.

Let us now introduce the standard “root” basis in sl(2):X0 = iX3,X± = i(X1±
iX2), with the standard commutation relations:

[X0, X±] = ±X±, [X+, X−] = 2X0.

In this basis we have that the skew-symmetric elliptic r-matrix acquires the follow-
ing form:

r(λ− μ) = r0(λ− μ)X0 ⊗X0 + r+(λ− μ)(X+ ⊗X− +X− ⊗X+)+
+ r−(λ− μ)(X+ ⊗X+ +X− ⊗X−), (40)

where r0(λ) = r3(λ), r+(λ) = 1
4 (r2(λ) + r1(λ)), r−(λ) = 1

4 (r2(λ) − r1(λ)) and
ri(λ) are defined using the formula (39).

Using the addition laws for the Jacobi functions [29] it is possible to prove that
the matrix

K(λ) ≡ K(λ, ξ) = diag(k1(λ), k2(λ)) ≡ diag(
sn(λ)

cn(λ)
+ sn(ξ)

cn(ξ)
,− sn(λ)
cn(λ)

+ sn(ξ)

cn(ξ)
)

satisfies (31) for arbitrary complex parameter ξ . This permits one to define a new
non-skew symmetric elliptic r-matrix using the formula (36). It has the following
form:

rK(λ, μ) = rK0 (λ, μ)X0 ⊗X0 + rK+−(λ, μ)X+ ⊗X− + rK−+(λ, μ)X− ⊗X++
+ rK++(λ, μ)X+ ⊗X+ + rK−−(λ, μ)X− ⊗X−, (41)
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where the correspondent coefficients are given by the following formulas:

rK+−(λ, μ) = r+(λ− μ)−
k2(μ)

k1(μ)
r+(λ+ μ),

rK−+(λ, μ) = r+(λ− μ)−
k1(μ)

k2(μ)
r+(λ+ μ),

rK++(λ, μ) = r−(λ− μ)−
k1(μ)

k2(μ)
r−(λ+ μ),

rK−−(λ, μ) = r−(λ− μ)−
k2(μ)

k1(μ)
r−(λ+ μ),

rK0 (λ, μ) = r0(λ− μ)− r0(λ+ μ).

Algebra of Integrals

Let us now consider the impact that has a compatibility of the second and linear
Poisson brackets on the corresponding theory of the integrable systems. We will
show, in particular, that commutativity of the generating functions of the classi-
cal integrals with respect to the both linear and quadratic Poisson brackets may be
shown using theory of compatible Poisson brackets only.

The following theorem holds true:

Theorem 3.2 LetD(λ) be a determinant of the gl(n)-valued “monodromy” matrix
T (λ) satisfying the brackets (29). ThenD(λ) is a generating function of the Casimir
function of the bracket (29) for all types of the nondegenerated r-matrices r(λ −
μ) ∈ sl(n)⊗ sl(n).
Proof. For the proof of the Theorem we will need the following Lemma that provides
a classical K(λ) �= 1 analogue of the known formula [18] that connect the “twisted
classical Reflection Equation Algebra” with the corresponding “classical” limit of
quantum group:

Lemma 3.1 Let matrix T (λ) satisfy the Poisson brackets (18) and constant matrix
K(λ) satisfy condition (31). Then:

(1) If σ(X) = X then the matrix

T (λ) = T (λ)K(λ)T −1(−λ) (42)

satisfy the Poisson brackets (29).
(2) If σ(X) = −Xt , where superscript “t” denotes the anti-automorphism of

gl(n) as associative algebra, then the matrix

T (λ) = T (λ)K(λ)T t (−λ) (43)

satisfy the Poisson brackets (29).
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Proof. In the case (1), using classical Yang–Baxter equations (18), it is easy to derive
the following equalities:

{T −1
1 (−λ), T −1

2 (−μ)}2 = −[r12(μ− λ), T −1
1 (−λ)T −1

2 (−μ)], (44a)

{T1(λ), T
−1

2 (−μ)}2 = T1(λ)r12(λ+ μ)T −1
2 (−μ)− T −1

2 (−μ)r12(λ+ μ)T1(λ),

(44b)

{T −1
1 (−λ), T2(μ)}2 = −T −1

1 (−λ)r12(−λ−μ)T2(μ)+T2(μ)r12(−λ−μ)T −1
1 (−λ).

(44c)

In the case (2), in the analogous way, using classical Yang–Baxter equations (18)
and the property of σ to be minus anti-automorphism of gl(n) it is straightforward
to obtain that:

{T t11 (−λ), T t22 (−μ)}2 = −[rσ1σ2
12 (μ− λ), T t11 (−λ)T t22 (−μ)], (45a)

{T1(λ), T
t2
2 (−μ)}2 = T1(λ)r

σ2
12 (λ+μ)T t22 (−μ)−T t22 (−μ)rσ2

12 (λ+μ)T1(λ), (45b)

{T t11 (−λ), T2(μ)}2 = −T t11 (−λ)rσ1
12 (−λ− μ)T2(μ)+ T2(μ)r

σ1
12 (−λ− μ)T t11 (−λ).

(45c)

Now the Lemma is proved by direct calculation, using the Leibnitz rule for the
Poisson bracket, relations (18), (44), (45) and (31).

In order to prove the theorem it is necessary to show that {D(λ), T (μ)}2 = 0.
By virtue of the multiplicative properties of the determinant and its invariance with
respect to the antiautomorphism t we obtain that D(λ) = k(λ)d(λ)d−1(−λ) (if
σ = 1) or D(λ) = k(λ)d(λ)d(−λ) (if σ is minus antiautomorphism of gl(n)).
On the other hand, using the fact that d(λ) is a generating function of the Casimir
functions of the bracket (18) we obtain:

{d(±λ), T (μ)}2 = {d(±λ), T −1(−μ)}2 =
= {d−1(−λ), T (μ)}2 = {d−1(−λ), T −1(−μ)}2 = 0.

Keeping in mind thatK(λ) is a constant (with respect to the Poisson bracket) matrix
and making use of the Lemma 3.1 we obtain that {D(λ), T (μ)}2 = 0.

Theorem is proved.

Remark 14. Due to the Remark 11 the Lemma 3.1 may be viewed as a proof (an
alternative to the direct calculational one) of the fact that formula (29) correctly
defines Poisson bracket.
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From the Theorems 3.2 and 2.1 follows the next statement:

Proposition 3.2 Denote by Dk(T (λ),K(λ)) the coefficients of the decomposition:

Det(T (λ)+ ηK(λ)) = k(λ)
n∑

k=0
Dk(T (λ),K(λ))ηk , where k(λ) ≡ detK(λ). Then

Dk(T (λ),K(λ)) are generators of an Abelian subalgebra with respect to the linear
and quadratic r-matrix brackets (33) and (29), i.e.:

{Dk(T (λ),K(λ)),Dl(T (μ),K(μ))}2 = {Dk(T (λ),K(λ)),Dl(T (μ),K(μ))}1 = 0.

Remark 15. The set of functions {Dk(T (λ),K(λ))} defines the same algebra of in-
tegrals as the set of functions {tr(T (λ)K−1(λ))k} and they are connected by the
well-known Newton formulas. The commutativity of functions from the last set may
be also proved directly using the condition (31), explicit form of brackets (29) and
brackets (33).

Remark 16. Note, that we have constructed different sets of functions {Dk(T (λ),
K(λ))} corresponding to different elements K(λ) commuting with respect to the
same quadratic brackets (29)! Commutativity of each of these sets of functions
is closely connected with the existence of the corresponding linearization of the
bracket (29) in the neighborhood of the point K(λ).

In order to identify the hamiltonian flows with respect to the different brackets
we need to decompose the generating functions Dk(T (λ),K(λ)) with respect to
the spectral parameter λ. Using the fact that T (λ) is meromorphic functions this
can always be done using the decomposition in Laurent power series. In the special
cases [15] one can also use the other decompositions. Nevertheless, we will not do
these decompositions explicitly, leaving all the expressions in the “convoluted” form
of the generating functions.

Using the Proposition 2.3 we obtain the following Proposition:

Proposition 3.3 Hamiltonian equations of motion with respect to the bracket (29)
with a hamiltonian being one of the functions obtained by a decomposition of the
function Dk(T (λ),K(λ)), k < n, coincide with the hamiltonian equations of mo-
tion with respect to the brackets (33) with the hamiltonian being the corresponding
function obtained by the decomposition of the function −Dk−1(T (λ),K(λ)), i.e. on
the level of generating functions the following equality is true:

{Dk(T (λ),K(λ)), T (μ)}2 = −{Dk−1(T (λ),K(λ)), T (μ)}1.

In the case k = n− 1 this Proposition implies the following Corollary:

Corollary 3.3 Hamiltonian equations of motion with respect to the bracket (29)
with a hamiltonian being one of the functions obtained by a decomposition of the
function tr(T (λ)K−1(λ)) coincide with the hamiltonian equations of motion with
respect to the brackets (33) with the hamiltonian being the corresponding function
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obtained by the decomposition of the function 1
2 tr(T (λ)K−1(λ))2, i.e. on the level

of generating functions the following equality is true:

{tr(T (λ)K−1(λ)), T (μ)}2 = 1
2
{tr(T (λ)K−1(λ))2, T (μ)}1.

Proof. In order to derive this statement it is sufficient to put in the previous proposi-
tion k = n− 1, use Newton identities and the fact that function tr(T (λ)K−1(λ)) is
a Casimir function of the linear r-matrix bracket (33).

4 Conclusion and Discussion

In the present paper we have shown that for a general quadratic Poisson bracket it
is possible to define many associated linear Poisson brackets – its linearizations in
the neighborhood of special points. We prove that the constructed linear Poisson
brackets are always compatible with the initial quadratic Poisson bracket. Using
the famous Lenard–Magri scheme we obtain mutually commuting with respect to
the both brackets “integrals” starting from Casimir functions of the initial quadratic
brackets. We show, that the hamiltonian dynamics with respect to one of these hamil-
tonians of degree k and quadratic bracket can be re-written in terms of hamiltonian
dynamics with respect to the corresponding linear bracket and the other one of these
hamiltonians of the degree k + 1.

We apply the obtained results to the cases of the standard quadratic r-matrix
bracket and classical “twisted reflection algebra” bracket. We show that in the last
case there are a lot of non-equivalent linearizations of the classical twisted reflection
algebra bracket and all of them are compatible with initial quadratic bracket. In
the both cases we show that generating functions of the classical integrals may be
obtained using the decomposition of the “shifted” Casimir function (determinant of
the monodromy matrix) of the corresponding quadratic Poisson bracket. In the first
case this fact may be viewed as kind of classical explanation of the trick with the
“quantum argument shift” of [27] (if the classical r-matrix is rational) and one more
“classical” argument for the support of the hypothesis of [30] in the case of general
classical r-matrix. In the second case it may give a hint how to quantize “higher
Gaudin hamiltonians” associated with the non-skew-symmetric r-matrix rσ,K(λ, μ)
(see [23]).
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