Accéder directement au contenu Accéder directement à la navigation
Article dans une revue

Non-linear PDEs for gap probabilities in random matrices and KP theory

Abstract :

Airy and Pearcey-like kernels and generalizations arising in random matrix theory are expressed as double integrals of ratios of exponentials, possibly multiplied with a rational function. In this work it is shown that such kernels are intimately related to wave functions for polynomial (Gelfand–Dickey) reductions or rational reductions of the KP-hierarchy; their Fredholm determinant also satisfies linear PDEs (Virasoro constraints), yielding, in a systematic way, non-linear PDEs for the Fredholm determinant of such kernels. Examples include Fredholm determinants giving the gap probability of some infinite-dimensional diffusions, like the Airy process, with or without outliers, and the Pearcey process, with or without inliers.

Type de document :
Article dans une revue
Liste complète des métadonnées
Contributeur : Okina Université d'Angers <>
Soumis le : lundi 30 novembre 2020 - 15:21:05
Dernière modification le : mardi 1 décembre 2020 - 03:25:53

Lien texte intégral




Mark Adler, Mattia Cafasso, Pierre van Moerbeke. Non-linear PDEs for gap probabilities in random matrices and KP theory. Physica D. Nonlinear Phenomena, 2012, 241 (23–24), pp.2265 - 2284. ⟨10.1016/j.physd.2012.08.016⟩. ⟨hal-03031613⟩



Consultations de la notice