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Abstract

We consider some polynomial Poisson structures induced by Nambu brackets and
Hamiltonian systems associated with them. The case of Poisson brackets induced by
the canonical Nambu structure is discussed in details. We show that it provides in
a natural way a Poisson structure on the product of the two algebraic curves. We
consider explicitly several types of the integrable systems associated with such a con-
struction. In particular we obtain the ”elegant” integrable system of Fairlie and its
various generalizations, two particle elliptic and ”double elliptic” Calogero system and
their ’higher genus’ analogs.

1 Introduction

Exact solvability of non-linear systems of ordinary differential equations is connected with
a possibility to represent them in Hamiltonian form and find a set of mutually commuting
(with respect to the corresponding Poisson structure) integrals of motion.

One of the possible generalizations of the Hamiltonian formalism and Poisson brackets is
so-called multi-Hamiltonian (n-Hamiltonian) formalism and Nambu brackets [1], [2] which
is an n-ary generalization of Poisson brackets. It permits to write down dynamical equations
possessing at once n − 1 evident first integrals — ”Hamiltonians” of the Nambu system
under consideration. On the other hand using a Nambu-Poisson structure it is possible to
express Poisson brackets and Hamiltonian equations using n − 2 Hamiltonians involving in
the definition of the Nambu dynamics. The resulting Poisson bracket will be degenerated and
the chosen n− 2 Hamiltonians will coincide with the Casimir functions of this bracket. The
level surface of these functions are symplectic leaves of the corresponding Poisson structure
and one can always restrict the dynamics of all the considered Hamiltonian systems onto
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them. Hence, this procedure permits one to define a Poisson structure on a wide class of
manifolds — on any submanifold of codimension (n− 2) in the initial Nambu manifold.

In the present paper we consider a situation with so-called ”canonical” Nambu brackets
when the initial phase space is Cn+k (Rn+k). The corresponding symplectic leaves of the
Nambu-Poisson structure have a dimension 2 and, hence, all initial complicated nonlinear
dynamical systems in n + k dynamical variables turned out to be simply integrable in the
sense of Liouville (after restriction onto all symplectic leaves whose geometry is completely
determined by the n + k − 2 functions taken to be Casimirs). We restrict ourselves to a
consideration of the most simple ”physical” situation when there are two groups of vari-
ables on the initial phase space - n ”coordinates” and k ”momenta” such that the resulting
two-dimensional symplectic leaf coincides with a product of two (complex) one-dimensional
manifolds – algebraic curves embedded into the spaces of ”coordinates” and ”momenta”
correspondingly. We call such systems ”Hamiltonian systems on the coupled curves”.

It turned out that there are a lot of remarkable examples among this class of integrable
systems and that they generalize some well-known such as the Euler-Nahm top, the ”elegant”
Fairlie integrable system [3] as well as their closed ”cousins” [?]. The Fairlie ”elegant” system
is associated with an algebraic curve embedded into a linear space by a system of special
quadrics. The curve is a covering of a hyperelliptic curve. It is necessary to note that the
hyperelliptic curves appear also as auxiliary spectral curves in the other class of the integrable
models (see [5], [6],[7] for the general case and [8] for the elliptic case). On the contrary,
in the present paper, the corresponding parameters on the curve are not auxiliary but play
a role of the dynamical variables. It should be noted also, that a ”Nambu” interpretation
to the Fairlie systems was known previously (see f.e. [10],[?],[4]). In our paper we give
a Hamiltonian interpretation to the Fairlie systems. We also obtain a class of integrable
generalizations (”doubling”) of Fairlie systems which we call ”coupled” or ”doubled” Fairlie
systems1. At last, one more integrable generalization of Fairlie systems and ”coupled” Fairlie
systems is connected with special higher order curves. This generalization seems to be also
new and they contain in particular a seven-dimensional generalization of Euler-Nambu top
of Fairlie and Ueno ([?],[?])

Another interesting integrable Hamiltonian system that arising in the framework of our
approach is a ”non-harmonic oscillator on algebraic curves”. It occurs that in the case when
the corresponding curve is elliptic it coincides with the two-particle Calogero system, and in
other cases could be considered as its higher genus analogs.

The paper organizes in the following way: we start with a general remind of Nambu
brackets and the Nambu-Poisson structures. Then we define in obvious manner a notion
of the Nambu-Poisson structure associated with a pair of ”coupled” curves. We specify
some easy but important partial cases of this construction and the appearing integrable
Hamiltonian systems...

We shall work basically with smooth (complex or real) (C∞) manifolds. Sometimes we
will use also algebraic curves and varieties with underlying holomorphic Poisson or symplectic

1Another type of the ”doubling” to the Fairlie system — namely its complexification was recently con-
sidered in the framework of the Hamiltonian formalism in [9]
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brackets.

2 Nambu bracket and Poisson bracket

2.1 General Construction

In this section we will remind the basic facts about Nambu and Nambu-Poisson structures
[1], [2]. These structures had appeared in the framework of the Nambu mechanics as a
generalization of “classical” Hamiltonian mechanics and the notion of the Nambu bracket
which was introduced by Nambu in 1973 [1] as a natural generalization of the Poisson bracket.
A Nambu bracket on a manifold M is an antisymmetric n-ary operation:

{., ...., .} : C∞(M)⊗n → C∞(M)

such that the following three properties are valid:
1. The antisymmetry under a transposition σ ∈ Σn:

{f1, ...., fn} = (−1)|σ|{fσ(1), ...., fσ(n), };

2. The coordinate-wise ” Leibnitz rule” for any h ∈ C∞(M):

{hf1, ...., fn} = h{f1, ...., fn}+ f1{h, ...., fn};

3. The ”fundamental identity” (which replaces the usual Jacobi identity):

{{f1, ...., fn}, fn+1, ..., f2n−1}+ {fn, {f1, ...., ˇ(fn), fn+1}, fn+2, ..., f2n−1}+ ...

+{fn, ...., f2n−2, {f1, ...., fn−1, f2n−1}} = {f1, ...., fn−1, {fn, fn+1, ..., f2n−1}}

for any f1, ., f2n−1 ∈ C∞(M).
A dynamics on a Nambu manifold is governed by n− 1 Hamiltonians H1,..., Hn−1:

dxi
dt

= {xi, H1, ...., Hn−1},

where xi are local coordinates on M .
Example 1. The most common example of the Nambu structure is the so-called ”canon-

ical” Nambu structure on the linear space Cn (Rn) with the coordinates x1, ...xn:

{f1, ...., fn} = Jac(f1, ...., fn) =
∂(f1, ...., fn)

∂(x1, ...., xn)
. (1)
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2.2 Nambu-Poisson bracket on the ”coupled” curves

As we have mentioned above a Nambu bracket is an n-ary generalization of the Poisson
bracket by the very construction. On the other hand it is easy to construct an ordinary
Poisson bracket starting with a Nambu structure. Let us consider the simplest example of
this construction. Let M be a Nambu manifold with an n-ary bracket {., ...., .}. Let us fix
n− 2 arbitrary functions F1, ...Fn−2 on M and define with their help the following bracket:

{f, g} ≡ {f, g, F1, ...., Fn−2}. (2)

It follows easily from the above properties of Nambu structure that the bilinear differential
operation (2) is a Poisson bracket. It follows immediately that functions F1, ..., Fk are Casimir
functions of this Poisson structure, i.e. {f, Fk} = 0 for any function f on M .

Let us now consider the canonical Nambu bracket (1) on the space Cn. Let us fix n− 2
functions Fk and construct using the formula (2) the corresponding Poisson brackets. It is
evident that it provides a symplectic structure on the two-dimensional manifolds M -the
common level set of the Casimir Functions Fk (symplectic leaf of the Poisson structure (2)).

Now we will pass to the description of the corresponding structure in the most interesting
case which will be the basic throughout this note.

Let us now consider the space Cn+k with the coordinates x1 = q1, . . . , xn = qn, xn+1 =
p1, . . . , xk = pk and the following induced ”canonical” Nambu-Poisson bracket (2) de-
fined with the help of n + k − 2 polynomial functions F1(q1, .., qn), ..., Fn−1(q1, ..., qn) and

F̃1(p1, .., pk), ..., F̃k−1(p1, ..., pk). The common level to each of this two sets of functions de-
fines an algebraic curve embedded in the affine space of the dimension n and k correspond-
ingly. Hence the formula (2) gives us a symplectic structure on the direct product of two
algebraic curves.

Let us consider the explicit form of these brackets. Direct calculation gives:

{qi, pj} =
∂(qi, F1...., Fn−1)

∂(q1, ...., qn)

∂(pj, F̃1, ...., F̃k−1)

∂(p1, ...., pk)
(3)

{qi, qj} = {pi, pj} = 0. (4)

Denote by q = (q1, . . . , qn) and by p = (p1, . . . , pk) and by H = H(q, p) a Hamiltonian
function on Cn+k. Then the corresponding Hamiltonian equations of motion are written as:

dqi
dt

= {qi, H(q, p)} =
∂(qi, F1...., Fn−1)

∂(q1, ...., qn)

∂(H, F̃1, ...., F̃k−1)

∂(p1, ...., pk)
(5)

dpi
dt

= {pi, H(q, p)} = −∂(pi, F̃1, ...., F̃k−1)

∂(p1, ...., pk)

∂(H,F1...., Fn−1)

∂(q1, ...., qn)
(6)

The coordinates qi and pi may be viewed as the generalized ”coordinates and momentum”.
There are several interesting examples of such the systems that correspond to the different
choices of n and k and different choices of the functions Fi and F̃j. We will consider two
most interesting cases.
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2.3 Case k = 1: ”Particle” on the algebraic curve

Let us consider the following partial case of this situation when all components of the mo-
mentum p = (p1, . . . , pk) are linear functions of a fixed one. In other words, let k = 1 and
we take F̃i ≡ pi = p1 = p.

In this case we obtain the following bracket on the space Cn+1:

{qi, p} =
∂(qi, F1...., Fn−1)

∂(q1, ...., qn)
, {qi, qj} = 0, (7)

where Fi are again Casimir functions.
The equations of motion of a ”particle” with the folowing natural Hamiltonian function

H =
1

2
p2 + V (q1, ..., qn)

on the corresponding curve has the form:

dqi
dt

= p
∂(qi, F1...., Fn−1)

∂(q1, ...., qn)
,
dp

dt
= −∂(V, F1...., Fn−1)

∂(q1, ...., qn)
. (8)

These equations generalize canonical Hamiltonian equations onto the case of the algebraic
curves. Let us now consider several concrete examples of the algebraic curves and associated
integrable Hamiltonian systems.

2.4 Case of the special higher order curves

Let us consider algebraic curve embedded into Cn by the following equations of the order m:

F1 = 1/m(qm1 −qm2 ) = c1, F2 = 1/m(qm2 −qm3 ) = c2, · · · , Fn−1 = 1/m(qmn−1−qmn ) = cn−1. (9)

This curve is a covering of a curve defined by the equation

ym(u) =
n∏
i=1

(u− ei), where y(u) ≡
n∏
i=1

qi, q
m
i ≡ (u− ei).

Example 1. The most interesting case of the curves (9) is the case of the second order
(m = 2) curves:

F1 = 1/2(q21 − q22) = c1, F2 = 1/2(q22 − q23) = c2, · · · , Fn−1 = 1/2(q2n−1 − q2n) = cn−1. (10)

This curve is a covering of a hyperelliptic curve defined by the equation

y2 =
n∏
i=1

(u− ei), where q2i ≡ (u− ei).
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The curve (10) for n > 3 is not hyperelliptic. Its genus is equal to g = (n− 3)2n−2 + 1 [7].
Example 2. Let us consider the case n = 3. In this case genus of the curve is g = 1 and it

is elliptic. Indeed (see [8]) equations (10) for n = 3 define the embedding of the elliptic curve
into C3. Its uniformization is made by the Weierstrass ℘ -function: u = ℘(x), y = 1/2℘′(x).
Functions qi, i = 1, 2, 3 are expressed via Jacobi elliptic functions:

q1(x) =
1

sn(x)
, q2(x) =

dn(x)

sn(x)
, q3(x) =

cn(x)

sn(x)
. (11)

Bracket (7) corresponding to the general polynomial curves (9) acquires the form:

{qi, p} =
ym−1(u)

qm−1i

=
∏
i 6=k

qm−1k {qi, qj} = 0, i, j = 1, . . . , n, (12)

or in the coordinates u, p:
{u, p} = mym−1(u). (13)

Remark 1. In the case n = 3, m = 2 we obtain that u(x) = ℘(x) is globally defined
univalued meromorphic function on torus. In the case n > 3 it is not true and all the
corresponding expressions have only a local character.

Let us consider two examples of the Hamiltonian systems that are associated with these
brackets and correspond to the cases of free-particle and ”generalized oscillator” Hamiltoni-
ans.

2.4.1 ”Free motion on the curve”

Let us consider Hamiltonian system (8) with the Poisson bracket (12) and free Hamiltonian:

H =
1

2
p2. (14)

The Hamiltonian equations of motion that correspond to the evident integral of motion
P = 1

m
p = 1

m

√
2H in the coordinates qi have the following form:

dqi
dτ

=
∏
i 6=k

qm−1k , i = 1, . . . , n. (15)

We call this system of the ordinary differential equations ”generalized Fairlie system”.
In the case m = 2 the corresponding system of differential equations acquires the form:

dqi
dτ

=
∏
i 6=k

qk, (16)

i.e. coincides with the so called ”elegant integrable equations” of Fairlie ([3]). In other words
we get that the equations of Fairlie coincide with the equations of the free-particle motion
on the covering of the hyperelliptic curve.
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The solution of the generalized Fairlie system written in the terms of the coordinate u

du

dτ
= ym−1(u)⇒ τ(u) =

∫
du

ym−1(u)
(17)

provides at the same time canonical conjugated coordinate to the momenta p: {p, τ(u)} = m.
Example 3. In the case n = 3 of equations (15) we obtain the generalized Nahm top:

dq1
dτ

= qm−12 qm−13 ,
dq2
dτ

= qm−11 qm−13 ,
dq3
dτ

= qm−11 qm−12 . (18)

In the m = 2 case equations (18) coincide with the equations of the Euler-Nahm top:

dq1
dτ

= q2q3,
dq2
dτ

= q1q3,
dq3
dτ

= q1q2. (19)

2.4.2 Unharmonic oscillator on the higher order curves

Let us consider Hamiltonian system (8) with the Poisson bracket (12) and the special poly-
nomial Hamiltonian of the generalized unharmonic oscillator:

H =
1

2
p2 +

1

n

n∑
i=1

qmi . (20)

The Hamiltonian equations in the local coordinates u,p have the following form:

du

dt
= 2mpym−1(u),

dp

dt
= −mym−1(u) (21)

One can easily integrate these equations:

du

dt
= 2m

√
(2E − u)ym−1(u)⇒ t =

∫
du

2mym−1(u)
√

(2E − u)
, (22)

where we took into account on the trajectories H = 1/2p2 + u = E is a constant of motion

and put for convenience that
n∑
i=1

ei = 0.

Example 4. In the case of the Hamiltonian systems on the second order curves (m = 2)
we obtain the Hamiltonian of n-component harmonic oscillator living on the curve (10):

H =
1

2
p2 +

1

n

n∑
i=1

q2i =
1

2
p2 + u. (23)

Remark 2. In the case of the rational degeneration ei → 0 and n > 1 this system does
not go to the usual oscillator because in this case also bracket (12) is not canonical. In the
case n = 1 bracket (12) is canonical and our system coincide with the usual oscillator.

In the elliptic n = 3 case corresponding Hamiltonian (23) acquires the form:

H = 1/2(p2 + ℘(x))

and coincide with two particle Calogero system. That is why systems with the Hamiltonian
(23) may be viewed as a direct ”hyperelliptic” generalization of two particle Calogero system.
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2.5 Case k = n: Hamiltonian systems on the ”doubled” curves

Let us again consider the ”canonical” Nambu-Poisson brackets (2) defined with the help of
n− 1 polynomial functions F1, . . . , Fn−1 taking them in ”two-fold”: once as the polynomials
in the coordinates F1(q1, .., qn), ..., Fn−1(q1, ..., qn) and in other hand, as the functions on
momenta: F1(p1, .., pn), ..., Fn−1(p1, ..., pn) i.e. the case when the corresponding functions

are equal Fi = F̃i, i = 1, . . . , n− 1.
The explicit form of these Nambu-Poisson ”double” brackets are given by the direct

computation:

{qi, pj} =
∂(qi, F1...., Fn−1)

∂(q1, ...., qn)

∂(pj, F1, ...., Fn−1)

∂(p1, ...., pn)
(24)

{pi, pj} = {qi, qj} = 0. (25)

2.5.1 Special ”doubled” higher order curves.

Let us consider the case of the two identical algebraic curves embedded into C2n by the
following equations of the order m:

F1 = 1/m(qm1 − qm2 ) = c1, F2 = 1/m(qm2 − qm3 ) = c2, · · · , Fn−1 = 1/m(qmn−1 − qmn ) = cn−1,
(26)

F̃1 = 1/m(pm1 − pm2 ) = c′1, F̃2 = 1/m(pm2 − pm3 ) = c′2, · · · , F̃n−1 = 1/m(pmn−1 − pmn ) = c′n−1.
(27)

This curve is a covering of a curve defined by the equation

ym(u) =
n∏
i=1

(u− ei), ỹm(v) =
n∏
i=1

(v − e′i) where qmi ≡ (u− ei), pmi ≡ (v − e′i).

In this case the Poisson-Nambu bracket has the form:

{qi, pj} =
ym−1

qm−1i

ỹm−1

pm−1j

=
∏
i 6=k

qm−1k

∏
j 6=l

pm−1l , {qi, qj} = 0, {pi, pj} = 0. (28)

From the explicit form of the brackets it is evident that functions Fi(u) and Fj(v) are indeed
the Casimir functions, and the symplectic leaves of this bracket are 2-dimensional. By the
Darboux theorem on this symplectic leaves one may, at least locally, find coordinates x and
p with the canonical Poisson bracket.

It is easy to see that for the local coordinates on the product of the curves one may take
functions u and v. In their terms the corresponding Poisson bracket has the following form:

{u, v} = m2y(u)ỹ(v).

The (local) canonical Darboux coordinates are given by the integrals:

x =
1

m

∫
du

ym−1(u)
, p =

1

m

∫
du

mỹm−1(v)
.

8



Example 5. If we take in the formulas (26)-(27) m = 2 we obtain a product of two
coverings ( see Example 1) of the hyperelliptic curves defined by the equation

y2(u) =
n∏
i=1

(u− ei), ỹ2(v) =
n∏
i=1

(v − e′i) where q2i ≡ (u− ei), p2i ≡ (v − e′i).

In the terms of local coordinates u, v the corresponding Poisson bracket has the form:

{u, v} = 4y(u)ỹ(v).

Canonical Darboux coordinates for this bracket are given by the hyperelliptic integrals:

x =

∫
du

2y(u)
, p =

∫
du

2ỹ(v)
.

Let us now consider the Hamiltonian equations of motion corresponding to the brackets
(28) and to the special choices of the Hamiltonians.

2.5.2 Free motion on the ”doubled” higher order curves.

Let us consider the free particle-type polynomial Hamiltonian on the doubled curve:

H =
1

m

n∑
i=1

pmi . (29)

The Hamiltonian equations of motion have the following form:

dqi
dτ

= ỹm−1(v)
∏
i 6=k

qm−1k ,
dpi
dτ

= 0. (30)

Taking into account that on the level sets of the Hamiltonian we have that v = const we
obtain that Hamiltonian equations of motion (30) are equivalent to the generalized Fairlie
equations (15).

Example 6. In the case of doubled curves (10) Hamiltonian (29) is the free particle
Hamiltonian:

H =
1

2

n∑
i=1

p2i (31)

The Hamiltonian equations of motion have the following form:

dqi
dτ

= ỹ(v)
∏
i 6=k

qk,
dv

dτ
= 0 (32)

and coincide on the level sets of Hamiltonian H = const with the ”elegant” Fairlie equations.
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2.5.3 ”Doubled” generalized Fairlie system

Let us consider Hamiltonian system with the following ”higher degree oscillator” Hamilto-
nian:

H =
1

2n
(
n∑
i=1

pmi +
n∑
i=1

qmi ). (33)

The corresponding equations of motion have the following form:

dqi
dτ

=
∏
l=1,n

pm−1l

∏
i 6=k

qm−1k ,
dpi
dτ

= −
∏
l=1,n

qm−1l

∏
i 6=k

pm−1k (34)

System (38) may be called a ”double” of generalized Fairlie integrable system.
In the terms of functions u and v it has the following form:

du

dt
= m(y(u)ỹ(v))m−1,

dv

dt
= −m(y(u)ỹ(v))m−1 (35)

This system of equation can be easily integrated:

du

dt
= m(ỹ(2E − u)y(u))m−1 ⇒ t =

∫
du

m(y(u)ỹ(2E − u))m−1
, (36)

where we have taken into account that on the trajectories H = 1/2(v + u) = E is constant

and have put for simplicity
n∑
i=1

ei =
n∑
i=1

e′i = 0.

Example 7. Let us now put in the above formulas n = 2, i.e. let us consider system on
the product of two second order curves (10) with the second order Hamiltonian:

H =
1

2n
(
n∑
i=1

p2i +
n∑
i=1

q2i ). (37)

This is the Hamiltonian of ordinary oscillator living on the ”double-hyperelliptic” curve.
The corresponding equations of motion have the following form:

dqi
dτ

=
∏
l=1,n

pl
∏
i 6=k

qk,
dpi
dτ

= −
∏
l=1,n

ql
∏
i 6=k

pk. (38)

System (38) may be called a ”double” of the Fairlie ”elegant” integrable system.
Remark 3. In the case of the rational degeneration ei → 0, e′i → 0 and n > 1 Hamiltonian

system with the Hamiltonian (37) does not go to the usual oscillator because in this case
bracket (28) is not canonical. In the case n = 1,m = 2 bracket (28) is canonical and our
system coincide with the usual oscillator.

In the elliptic n = 3 case Hamiltonian (37) acquires the form:

H = 1/6(℘(p) + ℘(x)).
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We may call the system with such a Hamiltonian a ”two-particle double-elliptic” Calogero
system. That is why systems (37) may be also called ”two-particle double hyperelliptic”
Calogero system.

Remark 4. Warning: This system is quite different from the 2-particle ”double-elliptic”
system of [11],[12] which is self-dual with respect to an appropriate ”Ruijsenaars duality”.
Our ”free-double elliptic” Calogero system is also a self-dual with respect to the Fourier-
Legendre transformation which replace the x−torus by the momentum p−torus( a sort of
the ”mirror” transform). This tori are ”independent” (they have different moduli) and the
initial three-particle motion is replaced by two independent particles which are living each on
its own torus. The ”double-elliptic” system of [11],[12] moves on a sort of bi-elliptic surface
( which is in fact a part of a Kummer surface parameterized by Adler-Van Moerbeke type
system of 5 quadrics (see the details in [10]).
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