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Double Poisson brackets on free associative algebras

Alexander Odesskii, Vladimir Rubtsov, and Vladimir Sokolov

Dedicated to the memory of S.V. Manakov

Abstract. We discuss double Poisson structures in sense of M. Van den Bergh
on free associative algebras focusing on the case of quadratic Poisson brackets.
We establish their relations with an associative version of Yang-Baxter equa-
tions, we study a bi-hamiltonian property of the linear-quadratic pencil of the
double Poisson structure and propose a classification of the quadratic double
Poisson brackets in the case of the algebra with two free generators. Many
new examples of quadratic double Poisson brackets are proposed.

1. Introduction

A Poisson structure on a commutative algebra A is a Lie algebra structure on
A given by a Lie bracket

{−,−} : A×A �→ A,

which is a derivation of A i.e. satisfies the Leibniz rule

{a, bc} = {a, b}c+ b{a, c}, a, b, c ∈ A,

for the right (and, hence, for the left) argument.
It is well-known (see the discussion in [12]) that a naive translation of this

definition to the case of a non-commutative associative algebra A is not very inter-
esting because of lack of examples different from the usual commutator (for prime
rings it was shown in [13]).

It turns out [12,17] that a natural generalization of Poisson structures on com-
mutative associative algebras to a non-commutative case is a Lie structure on the
vector space H0(A,A) = A/[A,A], where [A,A] is the vector space spanned by all
commutators ab− ba where a, b ∈ A. The elements of this space are 0−dimensional
cyclic homology classes of A and they are represented by ”cyclic words” whose let-
ters are the elements of A [5]. In [12] such a structure was called an H0−Poisson
structure while in [10] the terminology a ”non-abelian Poisson bracket” was used.
Both names are somehow misleading to our mind (because one deals with a Lie
structure with no multiplication structure on H0(A,A)). Therefore we would sug-
gest to call it a trace bracket by the following reason.

Let A be a (unital) associative algebra over C. For a fixed natural n we denote
by

Repn(A) := Hom(A,Matn(C))
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the space of n−dimensional representations of A, and by C[Repn(A)] the coordinate
ring of this affine scheme Repn(A). Let tr : A → C[Repn(A)] be the trace map. It
is clear that tr(a) is a GLn(C)−invariant element for any a ∈ A.

Since the map tr is well defined also on elements of A/[A,A], any trace bracket
{} induces the following genuine Poisson bracket on the representation space func-
tion algebras:

{tr(a), tr(b)} = tr({a, b})
on Im(tr). This bracket (according to results from [16, 21] can be extended to
the subalgebra of all GLn(C)−invariant elements of C[Repn(A)] and, in certain
important cases, even to the whole algebra C[Repn(A)].We shall refer such brackets
on C[Repn(A)] and C[Repn(A)]GLn(C) as trace Poisson brackets.

In this paper we shall consider as a basic example the case of free associative
algebra A = C < x1, . . . , xm > .

The coordinate algebra C[Repn(A)] in this case is the polynomial ring of mn2

variables xj
i,α, where

xα → Mα =

⎛
⎝ x1

1,α · xn
1,α

· · ·
x1
n,α · xn

n,α

⎞
⎠ , 1 ≤ α ≤ m.

The map tr gives the following interpretation of the variables xj
i,α : if Ej

i denotes

the (i, j)−matrix unit (i.e. the n × n matrix with 0 everywhere except the i−th

row and j−th column) then xj
i,α = tr(Ei

jMα).

The group GLn(C) acts on M1, ...,Mm by the conjugations. Any trace bracket
on the free algebra A is extended on C[Repn(A)] and it yields a usual GLn(C)−
invariant Poisson bracket such that the bracket between traces of any two matrix
polynomials Pi(M1, ...,Mm), i = 1, 2 is a trace of some matrix polynomial P3.
Notice that not any GLn(C)−invariant Poisson bracket on C[Repn(A)] is a trace
Poisson.

There are two different ways to represent explicitly the same trace brackets in
the free algebra case. One is a standard way used in the Integrable System theory
(see [8]), where brackets are given by

{a, b} =< grad a, Θ(grad b) >, a, b ∈ A/[A,A],

for some Hamiltonian operator Θ, a skew-symmetric operator expressed via left
and right multiplication operators on A. The trace brackets define a Hamiltonian
formalism for integrable models with matrix variables [8]. In particular, some of
such models are bi-Hamiltonian with respect to compatible linear and quadratic
trace Poisson brackets [10].

Another approach can be developped in terms of double Poisson brackets in-
troduced in [17]. We shall remind their definition.

Definition 1.1. (M. Van den Bergh). A double Poisson bracket on an asso-
ciative algebra A is a C-linear map {{, }} : A⊗ A �→ A⊗ A satisfying the following
conditions:

(1.1) {{u, v}} = −{{v, u}}◦,

(1.2) {{u, {{v, w}}}}l + σ{{v, {{w, u}}}}l + σ2{{w, {{u, v}}}}l = 0,
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and

(1.3) {{u, vw}} = (v ⊗ 1){{u,w}}+ {{u, v}}(1⊗ w).

Here (u ⊗ v)◦ := v ⊗ u; {{v1, v2 ⊗ v3}}l := {{v1, v2}} ⊗ v3 and σ(v1 ⊗ v2 ⊗ v3) :=
v3 ⊗ v1 ⊗ v2.

Notice that very similar relations but with a different bi-module structure in
(1.3) have appeared in [4].

The relations between double and trace Poisson brackets are established by
M.Van den Bergh [17] as follows. Let μ denote the multiplication map μ : A ⊗
A → A i.e. μ(u ⊗ v) = uv. We define a C−bilinear bracket operation in A by
{−,−} := μ({{−,−}}).

Proposition 1.2. Let {{−,−}} be a double Poisson bracket on A. Then {−,−}
is a trace bracket on A/[A,A] which is defined as

(1.4) {ā, b̄} = μ({{a, b}},
ou ā means the image of a ∈ A under the natural projection A → A/[A,A].

If A = C < x1, . . . , xm > is the free associative algebra, then C[Repn(A)] =

C[xj
i,α] where 1 ≤ α ≤ m.

If {{xα, xβ}} is a double Poisson bracket on A = C < x1, . . . , xm >, then, using
the Sweedler convention and drop the sign of sum, we obtain the trace Poisson
brackets on C[Repn(A)]:

{xj
i,α, x

l
k,β} = {{xα, xβ}}

′j
k {{xα, xβ}}”li

In this paper we shall consider linear and quadratic double Poisson brackets on
free associative algebras. It turns out that linear double brackets are in one-to-one
correspondence with m-dimensional associative algebra structures [18]. We estab-
lish relations between a class of quadratic double brackets and constant solutions
of classical associative Yang-Baxter equation on Matm(C) introduced in [1]. The
examples of double brackets related to non-constant solutions of various associative
Yang-Baxter equations will be discussed in the forthcoming paper [11].

2. Quadratic double Poisson brackets

Let A = C < x1, . . . , xm > be the free associative algebra. If double brackets
{{xi, xj}} between all generators are fixed, then the bracket between two arbitrary
elements of A is uniquely defined by identities (1.1) and (1.3). It follows from (1.1)
that constant, linear, and quadratic double brackets are defined by

(2.1) {{xi, xj}} = cij1⊗ 1, ci,j = −cj,i,

(2.2) {{xi, xj}} = bkijxk ⊗ 1− bkji1⊗ xk,

and

(2.3) {{xα, xβ}} = ruvαβ xu ⊗ xv + avuαβ xuxv ⊗ 1− auvβα 1⊗ xvxu,

where

(2.4) rσεαβ = −rεσβα,

correspondingly. The summation with respect to repeated indexes is assumed.
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It is easy to verify that the bracket (2.1) satisfies (1.2) for any skew-symmetric
tensor cij . For the bracket (2.2) the condition (1.2) is equivalent to the identity

(2.5) bμαβb
σ
μγ = bσαμb

μ
βγ ,

which means that bσαβ are structure constants of an associative algebra A.

Proposition 2.1. The bracket ( 2.3) satisfies ( 1.2) iff the following relations
hold:

(2.6) rλσαβr
μν
στ + rμσβτ r

νλ
σα + rνσταr

λμ
σβ = 0,

(2.7) aσλαβa
μν
τσ = aμσταa

νλ
σβ ,

(2.8) aσλαβa
μν
στ = aμσαβr

λν
τσ + aμνασr

σλ
βτ

and

(2.9) aλσαβa
μν
τσ = aσναβr

λμ
στ + aμνσβr

σλ
τα.

The trace Poisson bracket corresponding to any double Poisson bracket (2.3)
can be defined on C[Repn(A)] by the following way [10]:

(2.10) {xj
i,α, x

j′

i′,β} = rγεαβx
j′

i,γx
j
i′,ε + aγεαβx

k
i,γx

j′

k,εδ
j
i′ − aγεβαx

k
i′,γx

j
k,εδ

j′

i

where xj
i,α are entries of the matrix xα and δji is the Kronecker delta-symbol.

Relations (2.4), (2.6)-(2.9) hold iff (2.10) is a Poisson bracket.
Under a linear change of the generators xα → gβαxβ the coefficients of tensors

r and a are transformed in the standard way:

(2.11) rγσαβ → gλαg
μ
βh

γ
νh

σ
ε r

νε
λμ, aγσαβ → gλαg

μ
βh

γ
νh

σ
ε a

νε
λμ,

Here gβαh
γ
β = δγα.

The system of algebraic equations (2.4), (2.6)-(2.9) admits the following invo-
lution:

(2.12) rγσαβ → rσγαβ , aγσαβ → −aσγβα.

Given a solution r of (2.4), (2.6), one can put aijuv = 0 to satisfy equations
(2.7)-(2.9). Note that the algebraic system of equations (2.4), (2.6) besides (2.12)
admits the involution

(2.13) rγσαβ → rαβγσ .

Some examples of double Poisson brackets with zero tensor a can be found using
the one-to-one correspondence [1] between solutions of (2.4), (2.6) up to equivalence
(2.11) and exact representations of anti-Frobenius algebras up to isomorphisms.

Recall that an anti-Frobenius algebra is an associative algebra J (not necessarily
with unity) with non-degenerate anti-symmetric bilinear form ( , ) satisfying the
following relation

(2.14) (x, yz) + (y, zx) + (z, xy) = 0

for all x, y, z ∈ J .
Construction. Let J be a p-dimensional associative anti-Frobenius subalge-

bra in Matm with a basis yi = (yαγ,i), i = 1, ..., p. Let G = (gij) be the matrix
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of the form. Then the tensor rαβγδ = gijyαγ,iy
β
δ,j , where G−1 = (gij), satisfies (2.4),

(2.6).

Example 2.2. Let J be the associative algebra of all m × m matrices with
zero m-th row, (x, y) = trace([x, y] kT ), where k ∈ J is a fixed generic element.
The corresponding bracket up to equivalence (2.11) is given by a tensor r with the
following non-zero components

(2.15) rαβαβ = rβααβ = rααβα = −rαααβ =
1

λα − λβ
, α �= β.

Here λ1, . . . , λN are arbitrary pairwise distinct parameters. The generalization of
(2.15) to the case k zero rows, where k is any divisor of m, can be found in [20]. �

It would be interesting to find an algebraic structure generalizing the anti-
Frobenius algebras that corresponds to the whole set of relations (2.4), (2.6)-(2.9).

We may interpret the four index tensors r and a as:

• 1) operators on V ⊗ V , where V is an m-dimensional vector space;
• 2) elements of Matm(C)⊗Matm(C);
• 3) operators on Matm(C).

For the first interpretation let V be a linear space with a basis eα, α = 1, ...,m.
Define linear operators r, a on the space V ⊗ V by

r(eα ⊗ eβ) = rσεαβeσ ⊗ eε, a(eα ⊗ eβ) = aσεαβeσ ⊗ eε.

Then the identities (2.4), (2.6)-(2.9) can be written as

(2.16)

r12 = −r21, r23r12 + r31r23 + r12r31 = 0,

a12a31 = a31a12,

σ23a13a12 = a12r23 − r23a12,

a32a12 = r13a12 − a32r13.

Here all operators act in V ⊗ V ⊗ V , σij means the transposition of i-th and j-th
components of the tensor product, and aij , rij mean operators a, r acting in the
product of the i-th and j-th components.

Note that first two relations mean that the tensor r should be skew-symmetric
solution of the classical associative Yang-Baxter equation [1].

In the second interpretation we consider the following elements fromMatm(C)⊗
Matm(C): r = rkmij eik ⊗ ejm, a = akmij eik ⊗ ejm, where eij are the matrix unities:

ejie
m
k = δjke

m
i . Then (2.4), (2.6)-(2.9) are equivalent to (2.16), where tensors belong

to Matm(C) ⊗ Matm(C) ⊗ Matm(C). Namely, r12 = rmk
ij eik ⊗ ejm ⊗ 1 and so on.

The element σ is given by σ = eji ⊗ eij .
For the third interpretation, we shall define operators r, a, r̄, a∗ : MatN →

MatN by r(x)pq = rmp
nq x

n
m, a(x)pq = amp

nq x
n
m, r̄(x)pq = rpmnq x

n
m, a∗(x)pq =

apmqn xn
m.
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Then (2.4), (2.6)-(2.9) provide the following operator identities:

r(x) = −r∗(x), r(x)r(y) = r(xr(y)) + r(x)y),

r̄(x) = −r̄∗(x), r̄(x)r̄(y) = r̄(xr̄(y)) + r̄(x)y),

a(x)a∗(y) = a∗(y)a(x),

a∗(ya(x)) = r(xa∗(y))− r(x)a∗(y),

a(x)a(y) = −a(r(y)x)− a(yr(x)),

a∗(a(x)y) = r(a∗(y)x)− a∗(y)r(x),

a(ya∗(x)) = −r̄(xa(y)) + r̄(x)a(y),

a∗(x)a∗(y) = a∗(r̄(y)x) + a∗(yr̄(x)),

a(a∗(x)y) = −r̄(a(y)x) + a(y)r̄(x)

for any x, y. First two of these identities mean that operators r and r̄ satisfies the
Rota-Baxter equation [7] and this fact implies also that the new matrix multipli-
cations ◦r and ◦r̄ defined by

x ◦r y = r(x)y + xr(y), x ◦r̄ y = r̄(x)y + xr̄(y)

are associative.

2.1. Examples and classification of low dimensional quadratic double
Poisson brackets. It is easy to see that for m = 1 non-zero quadratic double
Poisson brackets does not exist. In the simplest non-trivial case m = 2 the system
of algebraic equations (2.4), (2.6)-(2.9) can be straightforwardly solved .

Theorem 2.3. Let m = 2. Then the following Cases 1-7 form a complete list
of quadratic double Poisson brackets up to equivalence ( 2.11). We present non-zero
components of the tensors r and a only.

Case 1. r2122 = −r1222 = 1. The corresponding (non-zero) double brackets read

{{v, v}} = v ⊗ u− u⊗ v;

Case 2. r2122 = −r1222 = 1, a1121 = a1222 = 1. The corresponding (non-zero) double
brackets:

{{v, v}} = v ⊗ u− u⊗ v + vu⊗ 1− 1⊗ vu, {{v, u}} = u2 ⊗ 1, {{u, v}} = −1⊗ u2;

Case 3. r2122 = −r1222 = 1, a1112 = a2122 = 1. The corresponding (non-zero) double
brackets:

{{v, v}} = v ⊗ u− u⊗ v + uv ⊗ 1− 1⊗ uv, {{u, v}} = u2 ⊗ 1, {{v, u}} = −1⊗ u2;

Case 4. r2221 = −r2212 = 1. The corresponding (non-zero) double brackets:

{{v, u}} = v ⊗ v, {{u, v}} = −v ⊗ v;

Case 5. r2221 = −r2212 = 1,; a2111 = a2212 = 1. The corresponding (non-zero) double
brackets:

{{v, u}} = v ⊗ v − 1⊗ v2, {{u, v}} = −v ⊗ v + v2 ⊗ 1, {{u, u}} = uv ⊗ 1− 1⊗ uv;

Case 6. r2221 = −r2212 = 1,; a1211 = a2221 = −1. The corresponding (non-zero)
double brackets:

{{v, u}} = v ⊗ v − v2 ⊗ 1, {{u, v}} = −v ⊗ v + 1⊗ v2, {{u, u}} = −vu⊗ 1 + 1⊗ vu;
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Case 7. a1122 = 1. The corresponding (non-zero) double brackets:

{{v, v}} = u2 ⊗ 1− 1⊗ u2.

Proof. Solving the system (2.6) for six components of the skew-symmetric
tensor r, we obtain the following two solutions (we present non-zero components of
the tensor r only):

(2.17) r2122 = −r1222 = x2, r2111 = −r1211 = y2, r2112 = r2121 = −r1221 = −r1212 = xy

and
(2.18)

r2221 = −r2212 = x2, r1121 = −r1112 = y2, r1221 = r2121 = −r2112 = −r1212 = xy,

where x and y are arbitrary parameters. Under the transformation (2.11) the
parameters in (2.17) are changed as follows:

x → 1

Δ
(xg22 + yg12), y → 1

Δ
(xg21 + yg11),

where Δ = g22g11 − g12g21. For solution (2.18) we have

x → 1

Δ
(−xg11 + yg21), y → 1

Δ
(xg12 − yg22).

For non-zero solution (2.17) the remaining system (2.7)-(2.9) for the tensor a
besides for zero solution has the following two solutions:

(2.19) a1121 = a1222 = x2, a2111 = a2212 = −y2, a1111 = a1212 = −a2121 = −a2222 = xy,

and

(2.20) a1112 = a2122 = x2, a1211 = a2221 = −y2, a1111 = a2121 = −a1212 = −a2222 = xy.

For (2.18) the system (2.7)-(2.9) has the following two solutions:

(2.21) a2111 = a2212 = x2, a1121 = a1222 = −y2, a1111 = a1212 = −a2121 = −a2222 = xy,

and

(2.22) a1211 = a2221 = −x2, a1112 = a2122 = y2, a1212 = a2222 = −a1111 = −a2121 = xy.

In the case of zero tensor r the remaining system (2.7)-(2.9) has the following
solution:

a1122 = x4, a1112 = a1121 = −a1222 = −a2122 = x3y,

a1111 = a2222 = −a1212 = −a1221 = −a2112 = −a2121 = x2y2,

a2212 = a2221 = −a1211 = −a2111 = xy3, a2211 = y4

with the transformation rule

x → 1

Δ2
(xg22 + yg12), y → 1

Δ2
(xg21 + yg11).

Using (2.11), we normalize the solutions obtained above by x = 1, y = 0 and arrive
at the statement of the theorem 2.3. �

Remark 2.4. Cases 2 and 3 as well as Cases 5 and 6 are linked via involution
(2.12).

Remark 2.5. Case 1 is equivalent to the double bracket from Example 1 with
m = 2.
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Remark 2.6. It is easy to verify (see [1]) that there exist only two non-
isomorphic anti-Frobenius subalgebras in Mat2. They are matrices with one zero
column and matrices with one zero row. Cases 1 and 4 correspond to them.

Remark 2.7. Notice that the trace Poisson brackets for Cases 2 and 4 are
non-degenerate. Corresponding symplectic forms can be found in [2] (Example 5.7
and Lemma 7.1).

Remark 2.8. The corresponding Lie algebra structures on the trace space
A/[A,A] defining by 1.4 are trivial (abelian) in all cases, except the cases 2, 3 and
4 :

[ū, v̄] = −ū2 (Case 2), [ū, v̄] = ū2 (Case 3), [ū, v̄] = −v̄2 (Case 4).

This cases give the isomorphic Lie algebra structures on A/[A,A] with respect to
the involutions u → v, v → u and u → u v → −v.

Example 2.9. Consider the trace Poisson bracket (2.10) corresponding toCase
6. Its Casimir functions are given by

tr vk, truvk, k = 0, 1, ...

where u = x1, v = x2. Functions trui and tr vui, where i = 2, 3, ... commute each
other with respect to this bracket.

The simplest integrable ODE system with matrix variables corresponds to the
Hamiltonian H = 1

2 tru
2. This system has the following form

(2.23) ut = vu2 − uvu, vt = −uv2 + vuv.

The matrix v−1u is an integral of motion for this system. The corresponding reduc-
tion u = vC, where C is arbitrary constant matrix, gives rise to known integrable
model [8]

vt = v2Cv − vCv2.

The cyclic reduction of the latter equation yields the non-abelian modified Volterra
equation.

To study symplectic leaves for this bracket we show that the bracket is equiv-
alent to a pencil of compatible linear Poisson brackets.

Let

v = TΛT−1, u = TY T−1,

where Y is a generic matrix, Λ = diag(λ1, ..., λm), where λi �= λj and λi �= 0, and T
is a generic invertible matrix with t1,j = 1. If we fix values of the Casimir functions
tr vk then λi become constants.

Consider yi,j and ti,j , i > 1 as coordinates on the corresponding (2n2 − n)-
dimensional Poisson submanifold. Then in this coordinates the restriction of the
initial quadratic Poisson bracket {, } has the form

{, } =
m∑
i=1

λi {, }i,

where {, }i are some linear Poisson brackets.
Describe the structure of the Lie algebra G corresponding to the pencil. It turns

out that

G = Y ⊕ T ,
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where [Y ,Y ] ⊂ Y , [Y , T ] ⊂ T , [T , T ] = {0}. The subalgebra Y of dimension n2

is generated by yij and the Y-module T of dimension n(n − 1) is generated by
ti,j , i > 1.

As an algebra Y can be considered as a trivial central extension of the algebra
Z spanned by zi,j = yi,j − yi,i, where i �= j by by y1,1, ..., yn,n.

The radical of Z is spanned by ri =
∑

j �=i
1
λj
zj,i.

The centralizer S of r1 is isomorphic to gln−1(C) with r1 being central. The
isomorphism between S and Matn−1(C) is given by

eij →
1

λj
(zj+1,1 − zj+1,i+1), i, j = 1, ..., n− 1,

where zk,k = 0 for any k. Here eij are the matrix unities.
The radical of Z is the direct sum of two commutative S-modules of dimensions

n− 1 and 1. The first one is spanned by vi = ri − r1. The second is generated by
r1. The commutator relations between the modules is given by [r1, vi] = vi.

The module T is a direct sum of n-dimensional submodules Ti spanned by
ti,k, i > 1. The commutator relations are

[yi,j , tk,l] = δilλi(tk,i − tk,j). �
A complete classification in the case m = 3 based on a straightforward analysis

of equations (2.4), (2.6)-(2.9) seems to be a solvable but very tedious task. How-
ever, additional assumptions that are equivalent to a system of linear equations for
components of tensors r and a simplifies the problem. For example, we can easily
obtain several new examples of double Poisson brackets assuming that trxk

2 and
trxk

3 , where k = 1, 2, ... are Cazimir functions. One of such brackets is given by

r2221 = r2331 = r3231 = −r2212 = −r3213 = −r2313 = 1, a1211 = a2221 = a2311 = a3231 = −a2313 = −1.

The corresponding (non-zero) double Poisson brackets:

{{y, x}} = y ⊗ y − y2 ⊗ 1, {{x, y}} = −y ⊗ y + 1⊗ y2,

{{z, x}} = y⊗z+z⊗y−zy⊗1−1⊗yz, {{x, z}} = −y⊗z−z⊗y+yz⊗1+1⊗zy;

{{x, x}} = −yx⊗ 1 + 1⊗ yx− zy ⊗ 1 + 1⊗ zy.

Taking H = 1
2 trx

2
1 as a Hamiltonian for the corresponding trace Poisson

bracket (2.10), we arrive at an integrable system

ut = vu2 − uvu+ wvu− uwv, vt = −uv2 + vuv, wt = [w, [u, v]],

where u = x1, v = x2, w = x3. After the reduction w = 0 this system coincides
with (2.23).

Another way to construct new examples is to consider brackets homogeneous
with respect to any rescaling xi → μixi, μi ∈ C. Notice that all canonical forms
Case 1-Case 7 in Theorem 1 are homogeneous. When m = 3 one of the simplest
homogeneous brackets is given by

r3122 = −r1322 = α, a1322 = β, a3122 = γ.

for some constant α, β, γ. The corresponding family of (non-zero) double Poisson
brackets reads as:

{{y, y}} = α(z ⊗ x− x⊗ z) + β(xz ⊗ 1− 1⊗ xz) + γ(zx⊗ 1− 1⊗ zx).
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3. Compatible linear and quadratic double Poisson bracket

The bi-Hamiltonian approach to integrability has been developed by F.Magri
and his group [3]. It is based on the notion of compatible Poisson brackets. By
analogy we define compatible double Poisson brackets as follows.

Definition 3.1. Double Poisson brackets {{u, v}}1 and {{u, v}}2 on an associa-
tive C− algebra A are called compatible if

{{u, v}}1 + λ{{u, v}}2
is a double Poisson bracket on A for any λ ∈ C

The compatibility criteria for a pair of double Poisson brackets is quite similar
to the usual one:

{{u, {{v, w}}2}}1 + σ{{v, {{w, u}}2}}1 + σ2{{w, {{u, v}}2}}1+
+{{u, {{v, w}}1}}2 + σ{{v, {{w, u}}1}}2 + σ2{{w, {{u, v}}1}}2 = 0.

It is clear that compatible double Poisson brackets induce (see Proposition 1) com-
patible trace Poisson brackets.

Consider the case when one of the brackets is a linear double bracket and
another is a quadratic.

Proposition 3.2. Let A = C < x1, . . . , xn >. Consider the linear and the
quadratic double Poisson brackets given by the ( 2.2) and ( 2.3). Then their com-
patibility conditions have the following form:

(3.1) bsαγa
vu
sβ − bsγβa

vu
αs + busβa

vs
αγ − bvαsa

su
γβ = 0

(3.2) bsβαr
uv
sγ − buβsr

sv
αγ − bvsαr

us
βγ − bvγsa

us
βα + busγa

sv
βα = 0.

Proof. Straightforward verification. �
Let A be an m-dimensional associative algebra with the multiplication law

eiej = bkijek. Define linear operators r, a on the space A⊗A by

r(eα ⊗ eβ) = rσεαβeσ ⊗ eε, a(eα ⊗ eβ) = aσεαβeσ ⊗ eε.

In terms of these operators acting on A the compatibility conditions (3.1), (3.2)
can be rewritten as

(3.3) a(xz ⊗ y)− a(x⊗ zy) + a(x⊗ z)(1⊗ y)− (x⊗ 1)a(z ⊗ y) = 0,

and

(3.4) r(yx⊗z)−(y⊗1)r(x⊗z)−r(y⊗z)(1⊗x)−(1⊗z)a(y⊗x)+a(y⊗x)(z⊗1) = 0.

The relation (3.3) is nothing but the cocycle condition for the Hochschild cochains
C2(A,A⊗A). Here we consider the outer bimodule structure in A⊗A.

Consider the class of associative algebras A such that the first and second
Hochschild cohomology with coefficients in the outer bimodule A⊗A are trivial. In
particular, semi-simple associative algebras belong to this class. If H2(A,A⊗A) =
0, then

(3.5) a(x⊗ y) = φ(xy)− (x⊗ 1)φ(y)− φ(x)(1⊗ y)

for some φ : A → A⊗A. The operator φ is defined up to the double derivations

ds : x → (x⊗ 1) s− s (1⊗ x),

where s ∈ A⊗A is an arbitrary element.
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Proposition 3.3. Suppose that the tensor a is defined by ( 3.5). If H1(A,A⊗
A) = 0, then any solution of ( 3.4) has the form

(3.6) r(x⊗ y) = (x⊗ 1)ψ(y)− ψ(y)(1⊗ x) + (1⊗ y)φ(x)− φ(x)(y ⊗ 1)

for some ψ : A → A⊗A.

Proof. Let

r(x⊗ y) = r̃(x⊗ y) + (1⊗ y)φ(x)− φ(x)(y ⊗ 1).

It follows directly from (3.4) and (3.5) that

r̃(yx⊗ z)− (y ⊗ 1)r̃(x⊗ z)− r̃(y ⊗ z)(1⊗ x) = 0

If H1(A,A⊗A) = 0, then

r̃(x⊗ y) = (x⊗ 1)ψ(y)− ψ(y)(1⊗ x)

for some ψ : A → A⊗ A.
We denote as usual by σ the flip σ(x⊗ y) = y ⊗ x. It follows from r(x⊗ y) =

−σ ◦ r(y ⊗ x) that

(3.7) (1⊗ y)μ(x)− μ(x)(y ⊗ 1) + (x⊗ 1)(σ ◦ μ(y))− (σ ◦ μ(y))(1⊗ x) = 0,

where μ(x) = φ(x) + σ ◦ ψ(x).
We are searching all candidates for μ : A → A ⊗ A to be a solution of 3.7 for

any x, y ∈ A. The trivial solution μ = 0 and hence, ψ = −σφ implies the solution
for r(x⊗ y) in the form

(3.8) r(x⊗ y) = (σ ◦ φ(y))(1⊗ x)− (x⊗ 1)(σ ◦ φ(y)) + (1⊗ y)φ(x)− φ(x)(y⊗ 1).

If we take μ in the form

μ(x) = (x⊗ 1)s− s(1⊗ x),

where s ∈ A⊗A is an arbitrary skew-symmetric element : σ(s) = −s. Then we can
straightforwardly verify that μ(x) is a solution of 3.7.

In this case

φ+ σψ = (x⊗ 1)s− s(1⊗ x)

and we can choose φ̃ = φ+ (x⊗ 1)s− s(1⊗ x) such that ψ = −σφ̃ and the answer
for r(x⊗ y) is again given by 3.8. �

Conjecture. If A is a finite unital associative algebra such thatH1(A,A⊗A) =
H2(A,A⊗ A) = 0, then all solutions of 3.7 have the form (x ⊗ 1)s − s(1 ⊗ x) for
some s ∈ Λ2(A).

We have checked the conjecture in the case of matrix associative algebra.
The case a(x⊗ y) = 0 corresponds to

(3.9) φ : x → (x⊗ 1) s− s (1⊗ x),

where s ∈ A⊗A is any fixed element. Define a tensor r by formulas (3.8) and (3.9).
Explicitely, up to a constant multiplier,

(3.10) r(x⊗ y) = s(y ⊗ x) + (x⊗ y)s− (1⊗ y)s(1⊗ x)− (x⊗ 1)s(y ⊗ 1).
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Theorem 3.4. Ler r is defined by ( 3.10) and s ∈ A⊗A satisfies the associative
Yang-Baxter equation on A:

(3.11) s12 = −s21, s23s12 + s31s23 + s12s31 = 0.

Then

{{xα, xβ}} = ruvαβ xu ⊗ xv

is a quadratic double Poisson bracket on T (A) = C < x1, . . . , xm > compatible with
the linear bracket

{{xi, xj}} = bkijxk ⊗ 1− bkji1⊗ xk,

where ruvαβ are components of σr and bkij are structure constants of A.

Remark 3.5. We observe that in the case a = 0 the condition 3.4 is the outer
bimodule derivation property in the first argument. That is why the quadratic
double Poisson bracket from the theorem 2 can be written in following way:

(3.12) {{u, v}} = σr(u⊗ v), u, v ∈ A.

Then σr obviously satisfies the outer bimodule derivation property in the second
argument which guaranties the Leibniz property 1.3 for the double bracket defined
by 3.12. In other words the tensor R := σr : A⊗A → A⊗A satisfies to T. Schedler
conditions ([19]):

• R(u⊗ v) = −σRσ(u⊗ v);
• R12R13 +R13R23 −R23R12 = 0;
• R can be considered as a derivation of Ae⊗Ae−action on (A⊗A)l,r with
values in (A ⊗ A)i,o where (A ⊗ A)l,r means that Ae ⊗ Ae acts on the
left factor of A⊗ A by the first (left) Ae and on the right factor - by the
second Ae :

(u⊗ uo)⊗ (v ⊗ vo)(a⊗ b) = (uauo)⊗ (vbvo).

Analogously, (A⊗A)i,o means that Ae⊗Ae acts on the left factor of A⊗A
by the inner action and on the right factor - by the outer action:

(u⊗ uo)⊗ (v ⊗ vo)(a⊗ b) = (vauo)⊗ (ubvo).

Remark 3.6. The conditions of the Theorem 2 are satisfied for the case of
finite- dimenisonal quasi-triangular coboundary infinitesimal bialgebra([1]). The
conditions 3.11 mean that the algebra A has also a compatible coalgebra structure
Δs : A → A⊗A such that Δs(x) = (x⊗ 1)s− s(1⊗ x) for s ∈ Λ2(A).

Remark 3.7. We observe that there is a natural class of skew-symmetric 2-
tensors s ∈ Λ2(A). Namely, M. Van den Bergh [17] had introduce a notion of a
”momentum” map in the case of double Poisson brackets. Let us remind that there
is a distinguish double derivation Δ : A → A⊗A such that Δ(a) = a⊗1−1⊗a for
any a ∈ A. Then the moment map for A is an element m ∈ A such that {{m, a}} =
Δ(a). Sometimes the double derivationHm := {{m,−}} is called a Hailtonian double
vector field. The image of the moment map is evidently a skew-symmetric tensor
so we can take as a particular case of the previous remark the solution

μm(x) = (x⊗ 1){{m, b}} − {{m, b}}(1⊗ x) = (x⊗ 1)Hm(b)−Hm(b)(1⊗ x)

for any b ∈ A.
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Example 3.8. Let A = Mat2(C) = C < x, y, z, t > . Then there exists a unique
(up to equivalence) quadratic bracket with a = 0 compatible with the corresponding
linear one. This bracket has the following form:

r1223 = r1333 = r1443 = r2212 = r2224 = r4131 = r4232 = r4333 = 1.

The remaining non-zero components of tensor r are defined by the skew-symmetry
of r : rijpq = −rjiqp.

The corresponding (non-zero) double Poisson brackets can be expressed as

{{x, y}} = y ⊗ y; {{x, z}} = −x⊗ t; {{y, z}} = x⊗ y − y ⊗ t;

{{y, t}} = y ⊗ y; {{z, z}} = x⊗ z + t⊗ z − z ⊗ x− z ⊗ t;

{{z, t}} = −t⊗ x.

It is a straightforward verification that a Casimir element is given by C = x+ t
but it is impossible to restrict the brackets to the ”Casimir zero level” (the traceless

matrices in the representation A = Mat2(C) = {
(
x y
z t

)
} :

{{x, y}} = y ⊗ y; {{x, z}} = x⊗ x; {{y, z}} = x⊗ y + y ⊗ x;

{{y, x}} = y ⊗ y; {{z, z}} = 0; {{z, x}} = x⊗ x

(the ”restricted” brackets are not skew-symmetric).

4. Conclusions and perspectives

We have discussed an analogue of the Lenard- Magri compatibility for linear and
quadratic double Poisson brackets in free associative algebras. We have interpreted
this conditions in terms of Hochchild cochains and we have proposed few examples
of solutions to these conditions. We have classified all double Poisson brackets in the
case of the free associative algebra with two generators. Our interest to the double
Poisson structures was initially motivated by some examples of a non-commutative
integrability discussed previously in [8] and [10]. We are going to review a version
of non-commutative Hamiltonian formalism connected the trace and double Poisson
brackets with the initial approach of [8,14] in the forthcoming publications.

There are still many other interesting questions which deserve to be discussed.
The natural question of a quantization of the Van den Bergh construction was posed
by D. Calaque (private communication;see also

http://mathoverflow.net/questions/29543/what-is-a-double-star-product).

Our theorem (3.4) gives an idea of such a quantization for the tensor algebra asso-
ciative r−matrix R using a quantization (if it is known ) of the associative skew-
symmetric r−matrix s in 3.11. The latter can be quantized using the ideas of
[6].

We have focused in this paper on the case of the free associative algebra. But
the construction of double brackets was widely studied in the framework of the non-
commutative symplectic geometry ([5,12,17]) aiming to describe a trace Poisson
structure on quiver path algebra representations. The paper [2] proposes some
r −matrix constructions to such quadratic structures. Some of examples from [2]
are coincided with our examples. We want to stress that cited paper doesn’t study
general quadratic double Poisson brackets and the compatibility with their linear
counterparts. We hope to address the study of quiver path algebra Poisson brackets
and relations with [2] elsewhere.
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The original Van den Bergh construction contains also many other interesting
structures and one of them is a Quasi-Poisson double structure ( when the double
analog of the Jacobi identity 1.3 is no more valid or the ”triple product” {{u, v, w}} ∈
A ⊗ A ⊗ A is non-zero but is somehow ”under a control”). See the details in
[17]. Recently an interesting paper [15] had discussed the Quasi-Poisson double
structures with the analogs of trace brackets on representations of the group algebra
A = K(π) where the group π is the fundamental group of a surface. The relations
with the Goldman bracket, skein algebra and Fox multiplication were discussed. It
would be interesting to compare our tensor approach to the results of [15].

Finally, the last but not the least interesting subject concerns to general (
not necessary constant ) solutions of various associative Yang-Baxter equations.
The paper in progress ([11]) contains some preliminary results in classification of
parameter-dependent double Poisson brackets and some of new examples of such
brackets.
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