Accéder directement au contenu Accéder directement à la navigation
Article dans une revue

Free divisors in prehomogeneous vector spaces

Abstract :

We study linear free divisors, that is, free divisors arising as discriminants in prehomogeneous vector spaces, and in particular in quiver representation spaces. We give a characterization of the prehomogeneous vector spaces containing such linear free divisors. For reductive linear free divisors, we prove that the numbers of geometric- and representation-theoretic irreducible components coincide. As a consequence, we find that a quiver can only give rise to a linear free divisor if it has no (oriented or unoriented) cycles. We also deduce that the linear free divisors which appear in Sato and Kimura's list of irreducible prehomogeneous vector spaces are the only irreducible reductive linear free divisors. Furthermore, we show that all quiver linear free divisors are strongly Euler homogeneous, that they are locally weakly quasihomogeneous at points whose corresponding representation is not regular, and that all tame quiver linear free divisors are locally weakly quasihomogeneous. In particular, the latter satisfy the logarithmic comparison theorem.

Type de document :
Article dans une revue
Liste complète des métadonnées

https://hal.univ-angers.fr/hal-03040207
Contributeur : Okina Université d'Angers <>
Soumis le : vendredi 4 décembre 2020 - 11:20:27
Dernière modification le : samedi 5 décembre 2020 - 03:20:55

Lien texte intégral

Identifiants

Collections

Citation

Jean-Michel Granger, David Mond, Mathias Schulze. Free divisors in prehomogeneous vector spaces. Proceedings of the London Mathematical Society, 2011, 102 (5), pp.923 - 950. ⟨10.1112/plms/pdq046⟩. ⟨hal-03040207⟩

Partager

Métriques

Consultations de la notice

6