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Abstract

In this paper we discuss classical elliptic current algebras and show that there are two
different choices of commutative test function algebras related to a complex torus leading to
two different elliptic current algebras. Quantization of these classical current algebras gives
rise to two classes of quantized dynamical quasi-Hopf current algebras studied by Enriquez,
Felder and Rubtsov and by Arnaudon, Buffenoir, Ragoucy, Roche, Jimbo, Konno, Odake
and Shiraishi.

In memory of Leonid Vaksman

1 Introduction

Classical elliptic algebras are ”quasi-classical limits” of quantum algebras whose structure is
defined by an elliptic R-matrix. The first elliptic R-matrix appeared as a matrix of Boltzmann
weights for the eight-vertex model [3]. This matrix satisfies the Yang-Baxter equation using
which one proves integrability of the model. An investigation of the eight-vertex model [4]
uncovered its relation to the so-called generalized ice-type model – the Solid-On-Solid (SOS)
model. This is a face type model with Boltzmann weights which form a matrix satisfying a
dynamical Yang-Baxter equation.

In this paper we restrict our attention to classical current algebras (algebras which can be
described by a collection of currents) related to the classical r-matrices and which are quasi-
classical limits of SOS-type quantized elliptic current algebras. The latter were introduced by
Felder [13, 14] and the corresponding R-matrix is called usually a Felder R-matrix. In loc. cit.
the current algebras were defined by dynamical RLL-relations. At the same time Enriquez and
one of authors (V.R.) developed a theory of quantum current algebras related to arbitrary genus
complex curves (in particular to an elliptic curve) as a quantization of certain (twisted) Manin
pairs [9] using Drinfeld’s new realization of quantized current algebras. Further, it was shown in
[7] that the Felder algebra can be obtained by twisting of the Enriquez-Rubtsov elliptic algebra.
This twisted algebra will be denoted by Eτ,η and it is a quasi-Hopf algebra.

Originally, the dynamical Yang-Baxter equation appeared in [16, 13, 14]. The fact that
elliptic algebras could be obtained as quasi-Hopf deformations of Hopf algebras was noted first
in a special case in [2] and was discussed in [15]. The full potential of this idea was realized
in papers [1] and [17]. It was explained in these papers how to obtain the universal dynamical
Yang-Baxter equation for the twisted elliptic universal R-matrix from the Yang-Baxter equation
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for the universal R-matrix of the quantum affine algebra Uq(ĝ). It was also shown that the image
of the twisted R-matrix in finite-dimensional representations coincides with SOS type R-matrix.

Konno proposed in [20] an RSOS type elliptic current algebra (which will be denoted by
Up,q(ŝl2)) generalizing some ideas of [19]. This algebra was studied in detail in [18] where it was
shown that commutation relations for Up,q(ŝl2) expressed in terms of L-operators coincide with
the commutation relations of the Enriquez-Felder-Rubtsov algebra up to a shift of the elliptic
module by the central element. It was observed in [18] that this difference of central charges can
be explained by different choices of contours on the elliptic curve entering in these extensions. In
the case of the algebra Eτ,η the elliptic module is fixed, while in the case of Up,q(ŝl2), p = eiπτ , it
turn out to be a dynamical parameter shifted by the central element. Commutation relations for
these algebras coincide when the central charge is zero, but the algebras themselves are different.
Furthermore, the difference between these two algebras was interpreted in [8] as a difference in
definitions of half-currents (or Gauss coordinates) in L-operator representation. The roots of
this difference are related to different decomposition types of so-called Green kernels introduced
in [9] for quantization of Manin pairs: they are expanded into Taylor series in the case of the
algebra Eτ,η and into Fourier series for Up,q(ŝl2).

Here, we continue a comparative study of different elliptic current algebras. Since the Green
kernel is the same in both the classical and the quantum case we restrict ourselves only to the
classical case for the sake of simplicity. The classical limits of quasi-Hopf algebras Eτ,η and
Up,q(ŝl2) are quasi-Lie bialgebras denoted by eτ (ŝl2) and uτ (ŝl2) respectively. We will give an
”analytic” description of these algebras in terms of distributions. Then, the different expan-
sions of Green kernels will be interpreted as the action of distributions on different test function
algebras. We will call them Green distributions. The scalar products for test function alge-
bras which define their embedding in the corresponding space of distributions are defined by
integration over different contours on the surface.

Let us describe briefly the structure of the paper. Section 2 contains some basic notions and
constructions which are used throughout the paper. Here, we remind some definitions from [9].
Namely, we define test function algebras on a complex curve Σ, a continuous non-degenerate
scalar product, distributions on the test functions and a generalized notion of Drinfeld currents
associated with these algebras and with a (possibly infinite-dimensional) Lie algebra g. Hence,
our currents will be certain g-valued distributions. Then we review the case when g is a loop
algebra generated by a semi-simple Lie algebra a. We also discuss a centrally and a co-centrally
extended version of g and different bialgebra structures. The latter are based on the notion of
Green distributions and related half-currents.

We describe in detail two different classical elliptic current algebras which correspond to two
different choices of the test function algebras (in fact they correspond to two different coverings
of the underlying elliptic curve).

Section 3 is devoted to the construction and comparison of classical elliptic algebras eτ (ŝl2)
and uτ (ŝl2). In the first two subsections we define elliptic Green distributions for both test
function algebras. We pay special attention to their properties because they manifest the main
differences between the corresponding elliptic algebras. Further, we describe these classical
elliptic algebras in terms of the half-currents constructed using the Green distributions. We can
see how the half-currents inherit the properties of Green distributions. In the last subsection we
show that the half-currents describe the corresponding bialgebra structure. Namely, we recall
the universal classical r-matrices for both elliptic classical algebras eτ (ŝl2) and uτ (ŝl2) and make
explicit their relation to the L-operators. Then, the corresponding co-brackets for half-currents
are expressed in a matrix form via the L-operators.

In the next paper [21] we will describe different degenerations of the classical elliptic current
algebras in terms of degenerations of Green distributions. We will discuss also the inverse
problem of reconstruction of the trigonometric and elliptic classical r-matrices from the rational
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and trigonometric r-matrices using approach of [11].

2 Currents and half-currents

Current realization of the quantum affine algebras and Yangians was introduced by Drinfeld in
[5]. In these cases the currents can be understood as elements of the space A[[z, z−1]], where A
is a corresponding algebra. Here we introduce a more general notion of currents suitable even
for the case when the currents are expressed by integrals instead of formal series.

Test function algebras. Let K be a function algebra on a one-dimensional complex manifold
Σ with a point-wise multiplication and a continuous invariant (non-degenerate) scalar product〈·, ·〉 : K× K → C. We shall call the pair (K,

〈·, ·〉) a test function algebra. The non-degeneracy
of the scalar product implies that the algebra K can be extended to a space K′ of linear con-
tinuous functionals on K. We use the notation

〈
a(u), s(u)

〉
or

〈
a(u), s(u)

〉
u

for the action of
the distribution a(u) ∈ K′ on a test function s(u) ∈ K. Let {εi(u)} and {εi(u)} be dual bases
of K. A typical example of the element from K′ is the series δ(u, z) =

∑
i ε

i(u)εi(z). This is a
delta-function distribution on K because it satisfies

〈
δ(u, z), s(u)

〉
u

= s(z) for any test function
s(u) ∈ K.

Currents. Consider an infinite-dimensional complex Lie algebra g and an operator x̂ : K → g.
The expression x(u) =

∑
i ε

i(u)x̂[εi] does not depend on a choice of dual bases in K and is called
a current corresponding to the operator x̂ (x̂[εi] means an action of x̂ on εi). We should interpret
the current x(u) as a g-valued distribution such that

〈
x(u), s(u)

〉
= x̂[s]. That is the current

x(u) can be regarded as a kernel of the operator x̂ and the latter formula gives its invariant
definition.

Loop algebras. Let {x̂k}, k = 1, . . . , n be a finite number of operators x̂k : K → g, where
g is an infinite-dimensional space spanned by x̂k[s], s ∈ K. Consider the corresponding currents
xk(u). For these currents we impose the standard commutation relations

[xk(u), xl(v)] =
n∑

m=1

Cm
kl xm(u)δ(u, v) (2.1)

where Cm
kl are structure constants of some semi-simple Lie algebra a, dim a = n (equality (2.1)

is understood in sense of distributions). These commutation relations equip g with a Lie algebra
structure. The Lie algebra g defined in such a way can be viewed as a Lie algebra a⊗K with the
brackets [x⊗ s(z), y ⊗ t(z)] = [x, y]a ⊗ s(z)t(z), where x, y ∈ a, s, t ∈ K. This algebra possesses
an invariant scalar product

〈
x⊗ s, y⊗ t

〉
= (x, y)

〈
s(u), t(u)

〉
u
, where (·, ·) is an invariant scalar

product on a proportional to the Killing form.
Central extension. The algebra g = a ⊗ K can be extended by introducing a central

element c and a co-central element d. Let us consider the space ĝ = (a⊗K)⊕C⊕C and define
an algebra structure on this space. Let the element c ≡ (0, 1, 0) commute with everything and
the commutator of the element d ≡ (0, 0, 1) with the elements x̂[s] ≡ (x⊗ s, 0, 0), x ∈ a, s ∈ K,
is given by the formula [d, x̂[s]] = x̂[s′], where s′ is a derivation of s. Define the Lie bracket
between the elements of type x̂[s] requiring the scalar product defined by formulae

〈
x̂[s], ŷ[t]

〉
=

〈
x⊗ s, y ⊗ t

〉
,

〈
c, x̂[s]

〉
=

〈
d, x̂[s]

〉
= 0

to be invariant. It gives the formula

[x̂[s], ŷ[t]] = ([x⊗ s, y ⊗ t]0, 0, 0) + c ·B(x1 ⊗ s1, x2 ⊗ s2) (2.2)

where [·, ·]0 is the Lie bracket in the algebra g = a ⊗ K and B(·, ·) is a standard 2-cocycle:
B

(
x⊗s, y⊗t

)
= (x, y)

〈
s′(z), t(z)

〉
z
. The expression x̂[s] depends linearly on s ∈ K and, therefore,
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can be regarded as an action of operator x̂ : K → ĝ. The commutation relations for the algebra ĝ

in terms of currents x(u) corresponding to these operators can be written in the standard form:
[c, x(u)] = [c, d] = 0 and

[x1(u), x2(v)] = x3(u)δ(u, v)− c · (x1, x2)dδ(u, v)/du, [d, x(u)] = −dx(u)/du (2.3)

where x1, x2 ∈ a, x3 = [x1, x2]a.
Half-currents. To describe different bialgebra structures in the current algebras we have

to decompose the currents in these algebras into difference of the currents which have good
analytical properties in certain domains: x(u) = x+(u) − x−(u). The g-valued distributions
x+(u), x−(u) are called half-currents. To perform such a decomposition we will use so-called
Green distributions [9]. Let Ω+, Ω− ⊂ Σ × Σ be two domains separated by a hypersurface
∆̄ ⊂ Σ × Σ which contains the diagonal ∆ = {(u, u) | u ∈ Σ} ⊂ ∆̄. Assume that there
exist distributions G+(u, z) and G−(u, z) regular in Ω+ and Ω− respectively such that δ(u, z) =
G+(u, z) − G−(u, z). To define half-currents corresponding to these Green distributions we
decompose them as G+(u, z) =

∑
i α

+
i (u)β+

i (z) and G−(u, z) =
∑

i α
−
i (u)β−i (z). Then the half-

currents are defined as x+(u) =
∑

i α
+
i (u)x̂[β+

i ] and x−(u) =
∑

i α
−
i (u)x̂[β−i ]. This definition

does not depend on a choice of decompositions of the Green distributions. The half-currents are
currents corresponding to the operators x̂± = ± x̂ · P±, where P±[s](z) = ±〈

G±(u, z), s(u)
〉
,

s ∈ K. One can express the half-currents through the current x(u), which we shall call a total
current in contrast with the half ones:

x+(u) =
〈
G+(u, z)x(z)

〉
z
, x−(u) =

〈
G−(u, z)x(z)

〉
z

(2.4)

Here
〈
a(z)

〉
z
≡ 〈

a(z), 1
〉
z
.

Two elliptic classical current algebras. In this paper we will consider the case when Σ is
a covering of an elliptic curve and Green distributions are regularization of certain quasi-doubly
periodic meromorphic functions. We will call the corresponding centrally extended algebras of
currents by elliptic classical current algebras. The main aim of this paper is to show the following
facts:

• There are two essentially different choices of the test function algebras K in this case
corresponding to the different covering Σ.

• The same quasi-doubly periodic meromorphic functions regularized with respect to the
different test function algebras define the different quasi-Lie bialgebra structures and,
therefore, the different classical elliptic current algebras.

• The internal structure of these two elliptic algebras is essentially different in spite of a
similarity in the commutation relations between their half-currents.

The first choice corresponds to K = K0, where K0 consists of complex-valued one-variable
functions defined in a vicinity of origin equipped with the scalar product

〈
s1(u), s2(u)

〉
=

∮

C0

du

2πi
s1(u)s2(u) (2.5)

Here C0 is a contour encircling zero and belonging to the intersection of domains of functions
s1(u), s2(u), such that the scalar product is a residue in zero. These functions can be extended
up to meromorphic functions on the covering Σ = C. The regularization domains Ω+, Ω− for
Green distributions in this case consist of the pairs (u, z) such that min(1, |τ |) > |u| > |z| > 0 and
0 < |u| < |z| < min(1, |τ |), respectively, where τ is an elliptic module, and ∆̄ = {(u, z) | |u| = |z|}.
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The second choice corresponds to K = K = K(Cyl). The algebra K consists of entire periodic
functions s(u) = s(u+1) on C decaying exponentially at Imu → ±∞ equipped with an invariant
scalar product

〈
s(u), t(u)

〉
=

1/2∫

−1/2

du

2πi
s(u)t(u), s, t ∈ K (2.6)

These functions can be regarded as functions on cylinder Σ = Cyl. The regularization domains
Ω+, Ω− for Green distributions consist of the pairs (u, z) such that − Im τ < Im(u− z) < 0 and
0 < Im(u− z) < Im τ respectively and ∆̄ = {(u, z) | Im u = Im z}.

Integration contour. The geometric roots of the difference between these two choices can
be explained as follows. These choices of test functions on different coverings Σ of elliptic curve
correspond to the homotopically different contours on the elliptic curve. Each test function can
be considered as an analytical continuation of a function from this contour – a real manifold –
to the corresponding covering. This covering should be chosen as a most homotopically simple
covering which permits to obtain a bigger source of test functions. In the first case, this contour
is a homotopically trivial and coincides with a small contour around fixed point on the torus.
We can always choose a local coordinate u such that u = 0 in this point. This explains the
notation K0. This contour corresponds to the covering Σ = C and it enters in the pairing (2.5).
In the second case, it goes along a cycle and it can not be represented as a closed contour on C.
Hence the most simple covering in this case is a cylinder Σ = Cyl and the contour is that one
in the pairing (2.6). This leads to essentially different properties of the current elliptic algebras
based on the test function algebras K = K0 and K = K(Cyl).

Restriction to the sl2 case. To make these differences more transparent we shall consider
only the simplest case of Lie algebra a = sl2 defined as a three-dimensional complex Lie algebra
with commutation relations [h, e] = 2e, [h, f ] = −2f and [e, f ] = h. We denote the constructed
current algebra ĝ for the case K = K0 as eτ (ŝl2) and for K = K = K(Cyl) as uτ (ŝl2). These
current algebras may be identified with classical limits of the quantized currents algebra Eτ,η(sl2)
of [7] and Up,q(ŝl2) of [18] respectively. The Green distributions appear in the algebras eτ (ŝl2)
and uτ (ŝl2) as a regularization of the same meromorphic quasi-doubly periodic functions but in
different spaces: (K0⊗K0)′ and (K ⊗K)′ respectively. Primes mean the extension to the space
of the distributions. We call them elliptic Green distributions. We define the algebras eτ (ŝl2)
and uτ (ŝl2) to be a priori different, because the main component of our construction, elliptic
Green distributions are a priori different being understood as distributions of different types:
related to algebras K0 and K respectively. It means, in particular, that their quantum analogs,
the algebras Eτ,η(sl2) and Up,q(ŝl2) are different.

3 Half-currents and co-structures

We start with a suitable definition of theta-functions and a conventional choice of standard
bases. This choice is motivated and corresponds to definitions and notations of [8].

Theta-function. Let τ ∈ C, Im τ > 0 be a module of the elliptic curve C/Γ, where
Γ = Z+τZ is a period lattice. The odd theta function θ(u) = −θ(−u) is defined as a holomorphic
function on C with the properties

θ(u + 1) = −θ(u), θ(u + τ) = −e−2πiu−πiτθ(u), θ′(0) = 1 (3.1)

3.1 Elliptic Green distributions on K0

3.1.2. Dual bases. Fix a complex number λ. Consider the following bases in K0 (n ≥ 0):
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εn;λ(u) = (−u)n, ε−n−1;λ(u) = un,

εn;λ(u) =
1
n!

(
θ(u + λ)
θ(u)θ(λ)

)(n)

, ε−n−1;λ(u) =
(−1)n

n!

(
θ(u− λ)

θ(u)θ(−λ)

)(n)

for λ 6∈ Γ and the bases εn;0(u) = (−u)n, ε−n−1;0(u) = un,

εn;0(u) =
1
n!

(
θ′(u)
θ(u)

)(n)

, ε−n−1;0(u) =
(−1)n

n!

(
θ′(u)
θ(u)

)(n)

for λ = 0. Here (·)(n) means n-times derivative. These bases are dual:
〈
εn;λ(u), εm;λ(u)

〉
= δn

m

and
〈
εn;0(u), εm;0(u)

〉
= δn

m with respect to the scalar product (2.5), which means

∑

n∈Z
εn;λ(u)εn;λ(z) = δ(u, z),

∑

n∈Z
εn;0(u), εn;0(z) = δ(u, z) (3.2)

3.1.3. Green distributions for K0 and the addition theorems. Here we follow the
ideas of [9] and [8]. We define the following distribution

G+
λ (u, z) =

∑

n≥0

εn;λ(u)εn;λ(z), G−
λ (u, z) = −

∑

n<0

εn;λ(u)εn;λ(z) (3.3)

G(u, z) =
∑

n≥0

εn;0(u)εn;0(z) =
∑

n<0

εn;0(z)εn;0(u) (3.4)

One can check that these series converge in sense of distributions and, therefore, define contin-
uous functionals on K0 called Green distributions. Their action on a test function s(u) reads

〈
G±

λ (u, z), s(u)
〉
u

=
∮

|u|>|z|
|u|<|z|

du

2πi

θ(u− z + λ)
θ(u− z)θ(λ)

s(u) (3.5)

〈
G(u, z), s(u)

〉
u

=
∮

|u|>|z|

du

2πi

θ′(u− z)
θ(u− z)

s(u) (3.6)

where integrations are taken over circles around zero which are small enough such that the
corresponding inequality takes place.

One can define a ’rescaling’ of a test function s(u) as a function s
(

u
α

)
, where α ∈ C, and

therefore a ’rescaling’ of distributions by the formula
〈
a(u

α

)
, s(u)

〉
=

〈
a(u), s(αu)

〉
. On the

contrary, we are unable to define a ’shift’ of test functions by a standard rule, because the
operator s(u) 7→ s(u + z) is not a continuous one 1. Nevertheless we use distributions ’shifted’
in some sense. Namely, we say that a two-variable distribution a(u, z) (a linear continuous
functional a : K0 ⊗ K0 → C) is ’shifted’ if it possesses the properties: (i) for any s ∈ K0 the
functions s1(z) =

〈
a(u, z), s(u)

〉
u

and s2(u) =
〈
a(u, z), s(z)

〉
z

belong to K0; (ii) ∂
∂ua(u, z) =

− ∂
∂za(u, z). Here the subscripts u and z mean the corresponding partial action, for instance,〈

a(u, z), s(u, z)
〉
u

is a distribution acting on K0 by the formula

〈〈
a(u, z), s(u, z)

〉
u
, t(z)

〉
=

〈
a(u, z), s(u, z)t(z)

〉

1Consider, for example, the sum sN (u) =
PN

n=0(
u
α
)n. For each z there exist α such that the sum sN (u + z)

diverges, when N →∞.
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The condition (ii) means the equality
〈
a(u, z), s′(u)t(z)

〉
= −〈

a(u, z), s(u)t′(z)
〉
. The condition

(i) implies that for any s ∈ K0 ⊗K0 the expression
〈
a(u, z), s(u, z)

〉
u

=
∑

i

〈
a(u, z), pi(u)

〉
u
qi(z) (3.7)

where s(u, z) =
∑

i pi(u)qi(z), belongs to K0 (as a function of z).
The Green distributions (3.3) and (3.4) are examples of the ‘shifted’ distributions. The

formula (3.2) implies that

G+
λ (u, z)−G−

λ (u, z) = δ(u, z), G(u, z) + G(z, u) = δ(u, z) (3.8)

The last formulae can be also obtained from (3.5), (3.6) taking into account that the function s(u)
has poles only in the points u = 0. As it is seen from (3.5), the oddness of function θ(u) leads to
the following connection between the λ-depending Green distributions: G+

λ (u, z) = −G−
−λ(z, u).

Now we define a semidirect product of two ’shifted’ distributions a(u, z) and b(v, z) as a linear
continuous functional a(u, z)b(v, z) acting on s ∈ K0 ⊗K0 ⊗K0 by the rule

〈
a(u, z)b(v, z), s(u, v, z)

〉
=

〈
a(u, z),

〈
b(v, z), s(u, v, z)

〉
v

〉
u,z

Proposition 3.1. The semi-direct products of Green distributions are related by the following
addition formulae

G+
λ (u, z)G−

λ (z, v) = G+
λ (u, v)G(u, z)−G+

λ (u, v)G(v, z)− ∂

∂λ
G+

λ (u, v) (3.9)

G+
λ (u, z)G+

λ (z, v) = G+
λ (u, v)G(u, z) + G+

λ (u, v)G(z, v)− ∂

∂λ
G+

λ (u, v) (3.10)

G−
λ (u, z)G−

λ (z, v) = −G−
λ (u, v)G(z, u)−G−

λ (u, v)G(v, z)− ∂

∂λ
G+

λ (u, v) (3.11)

G−
λ (u, z)G+

λ (z, v) = −G+
λ (u, v)G(z, u) + G+

λ (u, v)G(z, v)− ∂

∂λ
G+

λ (u, v) (3.12)

Proof. The actions of both hand sides of (3.9), for example, can be reduced to the integration
over the same contours with some kernels. One can check the equality of these kernels using the
degenerated Fay’s identity [12]

θ(u− z + λ)
θ(u− z)θ(λ)

θ(z + λ)
θ(z)θ(λ)

=
θ(u + λ)
θ(u)θ(λ)

θ′(u− z)
θ(u− z)

+
θ(u + λ)
θ(u)θ(λ)

θ′(z)
θ(z)

− ∂

∂λ

θ(u + λ)
θ(u)θ(λ)

(3.13)

The other formulae can be proved in the same way.

3.1.4. Projections. Let us notice that the vectors εn;λ(u) and ε−n−1;λ(u) span two com-
plementary subspaces of K0. The formulae (3.3) mean that the distributions G+

λ (u, z) and
G−

λ (u, z) define orthogonal projections P+
λ and P−

λ onto these subspaces. They act as P+
λ [s](z) =〈

G+
λ (u, z), s(u)

〉
u

and P−
λ [s](z) = −〈

G−
λ (u, z), s(u)

〉
u
. Similarly, the operators

P+[s](z) =
〈
G(u, z), s(u)

〉
u
, P−[s](z) =

〈
G(z, u), s(u)

〉
u

are projections onto the Lagrangian (involutive) subspaces spanned by the vectors εn;0(u) and
ε−n−1;0(u), respectively. The fact that the corresponding spaces are complementary to each
other is encoded in the formulae (3.8), which can be rewritten as P+

λ +P−
λ = id, P+ +P− = id.

The idempotent properties and orthogonality of these projections

P±
λ · P±

λ = P±
λ , P± · P± = P±, P+

λ · P−
λ = P−

λ · P+
λ = 0, P+ · P− = P− · P+ = 0
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are encoded in the formulae
〈
G+

λ (u, z)G+
λ (z, v)

〉
z

= G+
λ (u, v) ,

〈
G+

λ (u, z)G−
λ (z, v)

〉
z

= 0 (3.14)〈
G−

λ (u, z)G−
λ (z, v)

〉
z

= −G−
λ (u, v) ,

〈
G−

λ (u, z)G+
λ (z, v)

〉
z

= 0 (3.15)〈
G(u, z)G(z, v)

〉
z

= G(u, v) ,
〈
G(u, z)G(v, z)

〉
z

= 0 (3.16)

which immediately follow from (3.3) and also can be obtained from the relations (3.9) – (3.12)
if one takes into account

〈
G(u, z)

〉
z

= 0,
〈
G(z, u)

〉
z

= 1.

3.2 Elliptic Green distributions on K

3.2.1. Green distributions and dual bases for K. The analogs of the Green distributions
G+

λ (u, z), G−
λ (u, z) are defined in this case by the following action on the space K

〈G±λ (u− z), s(u)
〉
u

=
∫

− Im τ<Im(u−z)<0
0<Im(u−z)<Im τ

du

2πi

θ(u− z + λ)
θ(u− z)θ(λ)

s(u) (3.17)

〈G(u− z), s(u)
〉
u

=
∫

− Im τ<Im(u−z)<0

du

2πi

θ′(u− z)
θ(u− z)

s(u) (3.18)

where we integrate over line segments of unit length (cycles of cylinder) such that the cor-
responding inequality takes place. The role of dual bases in the algebra K is played by
{jn(u) = e2πinu}n∈Z and {jn(u) = 2πie−2πinu}n∈Z, a decomposition with respect to these bases
is the usual Fourier expansion. The Fourier expansions for the Green distributions are 2

G±λ (u− z) = ±2πi
∑

n∈Z

e−2πin(u−z)

1− e±2πi(nτ−λ)
(3.19)

G(u− z) = πi + 2πi
∑

n 6=0

e−2πin(u−z)

1− e2πinτ
(3.20)

These expansions are in accordance with formulae

G+
λ (u− z)− G−λ (u− z) = δ(u− z) (3.21)
G(u− z) + G(z − u) = δ(u− z) (3.22)

where δ(u− z) is a delta-function on K, given by the expansion

δ(u− z) =
∑

n∈Z
jn(u)jn(z) = 2πi

∑

n∈Z
e−2πin(u−z) (3.23)

3.2.2. Addition theorems. Now we obtain some properties of these Green distributions
and compare them with the properties of their analogs G+

λ (u, z), G−
λ (u, z), G(u, z) described in

subsection 3.1. In particular, we shall see that some properties are essentially different. Let us
start with the properties of Green distribution which are similar to the case of algebra K0. They
satisfy the same addition theorems that were described in the subsection 3.1.

Proposition 3.2. The semi-direct product of Green distributions for algebra K is related by the
formulae (3.9)–(3.12) with the distributions G±λ (u− z), G(u− z) instead of G±

λ (u− z), G(u− z)
respectively.

2Fourier expansions presented in this subsection are obtained considering integration around boundary of
fundamental domain.
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Proof. The kernels of these distributions are the same and therefore the addition formula in
this case is also based on the Fay’s identity (3.13).

3.2.3. Analogs of projections. The Green distributions define the operators on K:

P+
λ [s](z) =

〈G+
λ (u− z), s(u)

〉
u
, P−λ [s](z) =

〈G−λ (u− z), s(u)
〉
u

P+[s](z) =
〈G(u− z), s(u)

〉
u
, P−[s](z) =

〈G(z − u), s(u)
〉
u

which are similar to their analogs P±
λ , P± and satisfy P+

λ + P−λ = id, P+ + P− = id (due
to (3.21)), but they are not projections. This fact is reflected in the following relations:

〈G+
λ (u− z)G+

λ (z − v)
〉
z

= G+
λ (u− v)− 1

2πi

∂

∂λ
G+

λ (u− v) (3.24)

〈G+
λ (u− z)G−λ (z − v)

〉
z

= − 1
2πi

∂

∂λ
G+

λ (u− v) (3.25)

〈G−λ (u− z)G+
λ (z − v)

〉
z

= − 1
2πi

∂

∂λ
G+

λ (u− v) (3.26)

〈G−λ (u− z)G−λ (z − v)
〉
z

= −G−λ (u− v)− 1
2πi

∂

∂λ
G+

λ (u− v) (3.27)

∂

∂λ
G+

λ (u− v)
〈G(u− z)G(z − v)

〉
z

= G(u− v)− 1
4πi

γ(u− v) (3.28)

〈G(u− z)G(v − z)
〉
z

=
〈G(z − u)G(z − v)

〉
z

=
1

4πi
γ(u− v) (3.29)

and γ(u− z) is a distribution which has the following action and expansion

〈
γ(u− z), s(u)

〉
= −θ′′′(0) + 4π2

3
+

+ 1
2∫

− 1
2

du

2πi

θ′′(u− z)
θ(u− z)

s(u)

γ(u− z) = −2π2 + 8π2
∑

n 6=0

e−2πin(u−z)+2πinτ

(1− e2πinτ )2

3.2.4. Comparison of the Green distributions. Contrary to (3.14)–(3.16) the formu-
lae (3.24)–(3.29) contain some additional terms in the right hand sides obstructing the operators
P±λ , P± to be projections. They do not decompose the space K(Cyl) in a direct sum of sub-
spaces as it would be in the case of projections P±

λ , P± acting on K0. Moreover, as one can see
from the Fourier expansions (3.19), (3.20) of Green distributions the images of the operators
coincide with whole algebra K: P±λ

(
K(Cyl)

)
= K(Cyl), P±(

K(Cyl)
)

= K(Cyl). As we shall see
this fact has a deep consequence for the half-currents of the corresponding Lie algebra uτ (ŝl2).
As soon as we are aware that the positive operators P+

λ , P+ as well as negative ones P−λ , P−
transform the algebra K to itself, we can surmise that they can be related to each other. This
is actually true. ¿From formulae (3.19), (3.20) we conclude that

G+
λ (u− z − τ) = e2πiλG−λ (u− z), G(u− z − τ) = 2πi− G(z − u) (3.30)

In terms of operator’s composition these properties look as

Tτ ◦ P+
λ = P+

λ ◦ Tτ = −e2πiλP−λ , Tτ ◦ P+ = P+ ◦ Tτ = 2πiI − P− (3.31)

where Tt is a shift operator: Tt[s](z) = s(z + t), and I is an integration operator: I[s](z) =∫ 1
2

− 1
2

du
2πis(u). This property is no longer true for the case of Green distributions from section 3.1.
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3.3 Elliptic half-currents

3.3.5. Tensor subscripts. First introduce the following notation. Let U = U(g) be a universal
enveloping algebra of the considered Lie algebra g and V be a U-module. For an element

t =
∑

k

ak
1 ⊗ . . .⊗ ak

n ⊗ uk
1 ⊗ . . .⊗ uk

m ∈ EndV ⊗n ⊗U⊗m

where n,m ≥ 0, ak
1, . . . , a

k
n ∈ EndV , uk

1, . . . , u
k
m ∈ U we shall use the following notation for an

element of EndV ⊗N ⊗U⊗M , N ≥ n,M ≥ m:

ti1,...,in,j1,...,jm =
∑

k

idV ⊗ · · · ⊗ idV ⊗ak
1 ⊗ idV ⊗ · · · ⊗ idV ⊗ak

n ⊗ idV ⊗ · · · ⊗ idV ⊗

⊗ 1⊗ . . .⊗ 1⊗ uk
1 ⊗ 1⊗ . . . . . .⊗ uk

m ⊗ 1⊗ . . .⊗ 1

where ak
s stays in the is-th position in the tensor product and uk

s stays in the js-th position.
3.3.6. Half-currents. The total currents h(u), e(u) and f(u) of the algebra eτ (ŝl2) can be

divided into half-currents using the Green distributions G(u, z), −G(z, u) for h(u); G+
λ (u, z),

G−
λ (u, z) for e(u); and G+

−λ(u, z) = −G−
λ (z, u), G−

−λ(u, z) = −G+
λ (z, u). The relations of

type (2.4), then, look as

h+(u) =
〈
G(u, v)h(v)

〉
v
, h−(u) = −〈

G(v, u)h(v)
〉
v

(3.32)

e+
λ (u) =

〈
G+

λ (u, v)e(v)
〉
v
, e−λ (u) =

〈
G−

λ (u, v)e(v)
〉
v

(3.33)

f+
λ (u) =

〈
G+
−λ(u, v)f(v)

〉
v
, f−λ (u) =

〈
G−
−λ(u, v)f(v)

〉
v

(3.34)

so that h(u) = h+(u)− h−(u), e(u) = e+
λ (u)− e−λ (u), f(u) = f+

λ (u)− f−λ (u).
3.3.7. rLL-relations for eτ (ŝl2). The commutation relations between the half-currents can

be written in a matrix form. Let us introduce the matrices of L-operators:

L±λ (u) =
(

1
2h±(u) f±λ (u)
e±λ (u) −1

2h±(u)

)
(3.35)

as well as the r-matrices:

r+
λ (u, v) =




1
2G(u, v) 0 0 0

0 −1
2G(u, v) G+

−λ(u, v) 0
0 G+

λ (u, v) −1
2G(u, v) 0

0 0 0 1
2G(u, v)


 (3.36)

Proposition 3.3. The commutation relations of the algebra eτ (ŝl2) in terms of half-currents
can be written in the form:

[d, L±λ (u)] = − ∂

∂u
L±λ (u) (3.37)

[L±λ,1(u), L±λ,2(v)] = [L±λ,1(u) + L±λ,2(v), r+
λ (u− v)] + H1

∂

∂λ
L±λ,2(v)−

−H2
∂

∂λ
L±λ,1(u) + h

∂

∂λ
r+
λ (u− v) (3.38)

[L+
λ,1(u), L−λ,2(v)] = [L+

λ,1(u) + L−λ,2(v), r+
λ (u− v)] + H1

∂

∂λ
L−λ,2(v)−H2

∂

∂λ
L+

λ,1(u)

+ h
∂

∂λ
r+
λ (u− v) + c · ∂

∂u
r+
λ (u− v) (3.39)

where H =
(

1 0
0 −1

)
and h = ĥ[ε0;0]. The L-operators satisfy an important relation

[H + h,L±(u)] = 0 (3.40)
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Proof. Using the formulae (3.14) – (3.16) we calculate the scalar products on the half-currents:〈
L±λ,1(u), L±λ,2(v)

〉
= 0,

〈
L+

λ,1(u), L−λ,2(v)
〉

= −r+
λ (u, v). Differentiating these formulae by u

we can obtain the values of the standard co-cycle on the half-currents: B
(
L±λ,1(u), L±λ,2(v)

)
=

0, B
(
L+

λ,1(u), L−λ,2(v)
)

= ∂
∂ur+

λ (u, v). Using the formulae (3.9)–(3.12) one can calculate the
brackets [·, ·]0 on the half-currents. Representing them in the matrix form and adding the
co-cycle term one can derive the relations (3.38), (3.39). Using the formulae [h,L±λ (v)] =
tr1

〈
H1[L+

λ,1(u), L±λ,2(v)]
〉
u
, tr1

〈
H1r

+
λ (u, v)

〉
u

= H, tr1
〈
[H1, L

+
λ,1(u)]r+

λ (u, v)
〉
u

= 0 we obtain
the relation (3.40) from (3.38), (3.39).

3.3.8. rLL-relations for uτ (ŝl2). Now consider the case of the algebra uτ (ŝl2). The half-
currents, L-operators L±λ (u) and r-matrix r+λ (u− v) are defined by the same formulas as above
with distributions G(u, v) and G±

λ (u, v) replaced everywhere by the distributions G(u, v) and
G±λ (u, v). We have

Proposition 3.4. The commutation relations of algebra uτ (ŝl2) in terms of half-currents can
be written in the form:

[L±λ,1(u),L±λ,2(v)] = [L±λ,1(u) + L±λ,2(v), r+λ (u− v)] + H1
∂

∂λ
L±λ,2(v)

−H2
∂

∂λ
L±λ,1(u) + h

∂

∂λ
r+λ (u− v)− c · ∂

∂τ
r+λ (u− v) (3.41)

[L+
λ,1(u),L−λ,2(v)] = [L+

λ,1(u) + L−λ,2(v), r+λ (u− v)] + H1
∂

∂λ
L−λ,2(v)

−H2
∂

∂λ
L+

λ,1(u) + h
∂

∂λ
r+λ (u− v) + c ·

(
∂

∂u
− ∂

∂τ

)
r+λ (u− v) (3.42)

where h = ĥ[j0]. We also have in this case the relation

[H + h,L±(u)] = 0 (3.43)

Proof. To express the standard co-cycle on the half currents through the derivatives of the
r-matrix we need the following formulae

1
2πi

∂

∂u

∂

∂λ
G+

λ (u− v) =
∂

∂τ
G+

λ (u− v)

1
2πi

∂

∂u

∂

∂λ
G−λ (u− v) =

∂

∂τ
G−λ (u− v) =

∂

∂τ
G+

λ (u− v)

1
4πi

∂

∂u
γ(u− v) =

∂

∂τ
G(u− v)

Using these formulae we obtain

B
(L±λ,1(u),L±λ,2(v)

)
= − ∂

∂τ
r+λ (u− v), B

(L+
λ,1(u),L−λ,2(v)

)
=

(
∂

∂u
− ∂

∂τ

)
r+λ (u− v)

Using the formulae

[h,L±λ (v)] = 2 tr1
〈
H1[L+

λ,1(u), L±λ,2(v)]
〉
u

tr1
〈
H1r

+
λ (u, v)

〉
u

= H/2

tr1
〈
[H1, L

+
λ,1(u)]r+

λ (u, v)
〉
u

=
i

π

∂

∂λ
L±λ (v)

we get the relation (3.43) from (3.41), (3.42).
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3.3.9. Peculiarities of half-currents for uτ (ŝl2). To conclude this subsection we discuss
the implication of the properties of Green distributions described in the end of the previous
section to the Lie algebra uτ (ŝl2). The fact that the images of the operators P±λ , P± coincide with
all the space K means that the commutation relations between the positive (or negative) half-
currents are sufficient to describe all the Lie algebra uτ (ŝl2). This is a consequence of construction
of the Lie algebra uτ (ŝl2) as the central extension of sl2⊗K. To obtain all commutation relations
given in Proposition 3.4 from relations between only positive (or negative) half-currents one can
use, firstly, the connection between positive and negative ones:

h+(u− τ) = 2πih + h−(u), e+(u− τ) = e2πiλe−(u), f+(u− τ) = e−2πiλf−(u)

which follows from the properties of Green distributions expressed in formulae (3.30); secondly,
relations (3.43), which also follow from the relations between only positive (respectively negative)
half-currents; and finally, one needs to use the equality

∂

∂τ
G±λ (u− z − τ) = e2πiλ(− ∂

∂u
+

∂

∂τ
)G−λ (u− z)

At this point we see the essential difference of the Lie algebra uτ (ŝl2) with the Lie algebra eτ (ŝl2).

3.4 Coalgebra structures of eτ (ŝl2) and uτ (ŝl2)

We describe here the structure of quasi-Lie bialgebras for our Lie algebras eτ (ŝl2) and uτ (ŝl2). We
will start with an explicit expression for universal (dynamical) r-matrices for both Lie algebras.

Proposition 3.5. The universal r-matrix for the Lie algebra eτ (ŝl2) defined as

rλ =
1
2

∑

n≥0

ĥ[εn;0]⊗ ĥ[εn;0] +
∑

n≥0

f̂ [εn;λ]⊗ ê[εn;λ] +
∑

n<0

ê[εn;λ]⊗ f̂ [εn;λ] + c⊗ d

satisfies the Classical Dynamical Yang-Baxter Equation (CDYBE)

[rλ,12, rλ,13] + [rλ,12, rλ,23] + [rλ,13, rλ,23] = h1
∂

∂λ
rλ,23 − h2

∂

∂λ
rλ,13 + h3

∂

∂λ
rλ,12 (3.44)

Denote by Πu the evaluation representation Πu : eτ (ŝl2) → EndVu, where Vu = C2 ⊗K0 and
the subscript u means the argument of the functions belonging to K0:

Πu : ĥ[s] 7→ s(u)H, Πu : ê[s] 7→ s(u)E, Πu : f̂ [s] 7→ s(u)F (3.45)

and Πu : c 7→ 0, Πu : d 7→ ∂
∂u , where H =

(
1 0
0 −1

)
, E = ( 0 1

0 0 ), F = ( 0 0
1 0 ), s ∈ K0. The relations

between L-operators and the universal r-matrix are given by the formulae

L+
λ (u) = (Πu ⊗ id)rλ, L−λ (u)− c

∂

∂u
= −(Πu ⊗ id)rλ,21 (3.46)

and r+
λ (u− v) = (Πu⊗Πv)rλ. Taking into account these formulae and applying (Πu⊗Πv ⊗ id),

(id⊗Πu⊗Πv), (Πu⊗ id⊗Πv) to the equation (3.44) we derive the relation (3.38) with the signs
‘+’, the relation (3.38) with the signs ‘−’ and the relation (3.39) respectively. Applying (Πu⊗ id)
or (id⊗Πu) to the identity [∆h, rλ] = 0 we derive the relation (3.40).

The co-bracket δ : eτ (ŝl2) → eτ (ŝl2)∧ eτ (ŝl2) and an element ϕ ∈ eτ (ŝl2)∧ eτ (ŝl2)∧ eτ (ŝl2) are
defined as δx = [∆x, rλ] = [x⊗ 1 + 1⊗ x, rλ] for x ∈ eτ (ŝl2) and

ϕ = −[rλ,12, rλ,13]− [rλ,12, r23]− [rλ,13, rλ,23] = −h1
∂

∂λ
rλ,23 + h2

∂

∂λ
rλ,13 − h3

∂

∂λ
rλ,12
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They equip the Lie algebra eτ (ŝl2) with a structure of a quasi-Lie bialgebra [6]. This fact
follows from the equality r12 + r21 = Ω, where Ω is a tensor Casimir element of algebra eτ (ŝl2).
To calculate this co-bracket on the half-currents in the matrix form we apply (Πu ⊗ id⊗ id),
(id⊗ id⊗Πu) to the equation (3.44) and derive

δL+
λ (u) = −[L+

λ,1(u), L+
λ,2(u)] + H

∂

∂λ
rλ − h ∧ ∂

∂λ
L+

λ (u)

δL−λ (u) = −[L−λ,1(u), L−λ,2(u)] + H
∂

∂λ
rλ − h ∧ ∂

∂λ
L−λ (u)− c ∧ ∂

∂u
L−λ (u)

We can see also that δh = 0, δc = 0, δd = 0.

Proposition 3.6. The universal r-matrix for the Lie algebra uτ (ŝl2) defined by formula

rλ =
1
4
ĥ[j0]⊗ ĥ[j0] +

1
2

∑

n6=0

ĥ[jn]⊗ ĥ[jn]
1− e2πinτ

+
∑

n∈Z

ê[jn]⊗ f̂ [jn]
1− e2πi(nτ+λ)

+
∑

n∈Z

f̂ [jn]⊗ ê[jn]
1− e2πi(nτ−λ)

+ c⊗ d

satisfies the equation

[rλ,12, rλ,13] + [rλ,12, rλ,23] + [rλ,13, rλ,23] =

= h1
∂

∂λ
rλ,23 − h2

∂

∂λ
rλ,13 + h3

∂

∂λ
rλ,12 − c1

∂

∂τ
rλ,23 + c2

∂

∂τ
rλ,13 − c3

∂

∂τ
rλ,12

The relations between the universal matrix rλ and L-operators of the algebra uτ (ŝl2) are
the same as for the algebra eτ (ŝl2) with a proper modification of the evaluation representation
Πu : uτ (ŝl2) → EndVu, Vu = C2 ⊗K defined by the same formulas (3.45) as above for s ∈ K.

The bialgebra structure of uτ (ŝl2) is defined in analogous way as for the algebra eτ (ŝl2) and
can be presented in the form

δL+
λ (u) = −[L+

λ,1(u),L+
λ,2(u)] + H

∂

∂λ
rλ − h ∧ ∂

∂λ
L+

λ (u) + c ∧ ∂

∂τ
L+

λ (u)

δL−λ (u) = −[L−λ,1(u),L−λ,2(u)] + H
∂

∂λ
rλ − h ∧ ∂

∂λ
L−λ (u)− c ∧

( ∂

∂u
− ∂

∂τ

)
L−λ (u)
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