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Abstract
We generalized a recent observation (Khoroshkin and Pakuliak 2005 Theor.
Math. Phys. 145 1373) that the partition function of the six-vertex model
with domain wall boundary conditions can be obtained from a calculation of
projections of the product of total currents in the quantum affine algebra Uq(ŝl2)

in its current realization. A generalization is done for the elliptic current
algebra (Enriquez and Felder 1998 Commun. Math. Phys. 195 651, Enriquez
and Rubtsov 1997 Ann. Sci. Ecole Norm. Sup. 30 821). The projections of the
product of total currents in this case are calculated explicitly and are presented
as integral transforms of a product of the total currents. It is proved that the
integral kernel of this transform is proportional to the partition function of the
SOS model with domain wall boundary conditions.

PACS numbers: 02.20.−a, 02.20.Uw, 05.59.+q

1. Introduction

The main aim of this paper is to apply the elliptic current projection method to calculate the
universal elliptic weight functions. The projections of currents first appeared in the works of
Enriquez and the second author [4, 5]. This was a method for constructing a higher genus
analog of quantum groups in terms of Drinfeld currents [6]. The current (or ‘new’) realization
supplies the quantum affine algebra with another co-product (the ‘Drinfeld’ co-product). The
standard and Drinfeld co-products are related by a ‘twist’ (see [4]). The quantum algebra
is decomposed (in two different ways) into a product of two ‘Borel subalgebras’. We can
consider (for each subalgebra) its intersection with two other Borel subalgebras and express
it as their product. Thus we obtain for each subalgebra a pair of projection operators from

* This work is dedicated to the memory of Alexei Zamolodchikov.
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the subalgebra to each of these intersections. The above-mentioned twist is defined by a
Hopf pairing of the subalgebras and the projection operators (see section 4 where we recall an
elliptic version of this construction).

Further, Khoroshkin and the first author have applied this method for a factorization of the
universal R-matrix [7] in the quantum affine algebras and to obtain a universal weight function
[1, 8] for arbitrary quantum affine algebra. Most general elliptic weight functions were
introduced by Tarasov and Varchenko in [11]. The weight functions play a fundamental role
in the theory of deformed Knizhnik–Zamolodchikov and Knizhnik–Zamolodchikov–Bernard
equations. In particular, in the case of Uq(ĝln), acting by the projections of Drinfeld currents
on the highest weight vectors of irreducible finite-dimensional representations, one obtains
exactly the (trigonometric) weight functions or off-shell Bethe vectors. In the canonical nested
Bethe ansatz these objects are defined implicitly by the recursive relations. Calculations of
the projections are an effective way to resolve the hierarchical relations of the nested Bethe
ansatz.

It was observed in [1] that the projections for the algebra Uq(ŝl2) can be presented as
an integral transform and the integral kernel of this transform is proportional to the partition
function of the finite six-vertex model with domain wall boundary conditions (DWBC) [1].
Here we prove that the elliptic projections described in [2] can help to derive the partition
function for the elliptic models. It was shown in this paper that the calculation of the projections
in the current elliptic algebra [2, 3] yields the partition function of the solid-on-solid (SOS)
model with domain wall boundary conditions.

In [20] Korepin derived recurrent relations for the partition function for the finite six-vertex
model with domain wall boundary conditions. Further Izergin used them to find the expression
for the partition function in a determinant form [9]. The integral kernel of projections satisfies
the same recursive relations and gives another formula for the partition function.

The problem of generalization of the Izergin’s determinant formula to the elliptic case
was extensively discussed in the last two decades. One can prove that the statistical sum of
the SOS model with DWBC cannot be presented in the form of the single determinant. When
this paper was prepared Rosengren [10] has shown that this statistical sum for n × n lattice
can be written as a sum of 2n determinants generalizing the Izergin’s determinant formula.
His approach relates to some (dynamical) generalization of alternating-sign matrices and goes
along with the famous Kuperberg combinatorial demonstration [16].

We expect that the projection method gives a universal form of the elliptic weight function
[11] as it does in the case of the quantum affine algebras [12]. When this universal weight
function is presented as an integral transform of the product of the elliptic currents we show
that the integral kernel of this transform gives an expression of the partition function for
the SOS model. On one hand, we generalize Korepin’s recurrent relations and on the other
hand we generalize the method proposed in [1] for calculating the projections to the elliptic
case. We check that the integral kernel extracted from the universal weight function and
multiplied by a certain factor satisfies the obtained recurrent relations, which uniquely define
the partition function for the SOS model with DWBC. Our formula given by the projection
method coincides with the Rosengren’s one.

An interesting open problem which still deserves more extensive studies is a relation of
the projection method with elliptic Sklyanin–Odesskii–Feigin algebras. It was observed in the
pioneering paper [3] that the half of elliptic current generators satisfies the commutation
relations of W -elliptic algebras of Feigin. Another intriguing relation was observed in
[17]: a certain subalgebra in the ‘λ-generalization’ of Sklyanin algebra (a graded algebra
of meromorphic functions with ‘λ-twisted’ (anti)symmetrization product) satisfies the Felder
R-matrix quadratic relations [18]. The latter paper gives a description of the elliptic Bethe
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Figure 1. Graphical presentation of the Boltzmann weights.

eigenvectors or the elliptic weight functions. This is a strong indication that the projection
method should be considered and interpreted in the framework of (generalized) Sklyanin–
Odesskii–Feigin algebras. We hope to discuss it elsewhere.

The main results of the paper were reported in Seventh International Workshop
‘Supersymmetry and Quantum Symmetry’ in JINR, Dubna (Russia), 30 July–4 August, 2007.

The paper is organized as follows. In section 2, we briefly review the finite six-
vertex model with DWBC and present the formulae for the partition function: the Izergin’s
determinant formula and the formula obtained by the projection method. Section 3 is devoted
to the SOS model with DWBC. We introduce the model without great details and pose a
problem how to calculate the partition function of this model. We obtain analytical properties
of the partition function and prove that they allow us to reconstruct the partition function
exactly. In section 4, we introduce the projections in terms of the currents for the elliptic
algebra following [2]. We generalize the method proposed in [1] to our case to obtain the
integral representation of the projections of product of currents. Then, using a Hopf pairing we
extract the integral kernel and check that it satisfies all necessary analytical properties of the
partition function of the SOS model with DWBC. In section 5, we investigate a trigonometric
limit of the elliptic model and the partition function with DWBC. We arrive at the six-vertex
model case by two steps. The model obtained after the first step is a trigonometric SOS model.
Then we show that the degeneration of the expression derived in section 4 coincides with
the known expression for the six-vertex model partition function with DWBC. An appendix
contains the necessary information on the properties of elliptic polynomials. This terminology
goes back to Felder (see i.e. [13]). We should stress that our elliptic polynomial of order n
with a given character is also called by a ‘theta-function of order n norm α’ in [10].

2. Partition function of the finite six-vertex model

Let us consider a statistical system on a n × n square lattice, where the columns and rows
are enumerated from 1 to n from right to left and upward respectively. This is a six-vertex
model where vertices on the lattice are associated with Boltzmann weights which depend
on the configuration of the arrows around a given vertex. Six possible configurations are
shown in figure 1 and weights are functions of two spectral parameters z,w and anisotropy
parameters q:

a(z,w) = qz − q−1w, b(z,w) = z − w,

c(z,w) = (q − q−1)z, c̄(z, w) = (q − q−1)w.
(1)
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Figure 3. Inhomogeneous lattice with domain wall boundary conditions.

Let us associate the sign ‘+’ with the upward and left directed arrows, while the sign ‘−’ is
associated with the downward and right directed arrows as shown in figure 1. The Boltzmann
weights (1) are gathered in the matrix

R(z,w) =

⎛⎜⎜⎝
a(z,w) 0 0 0

0 b(z,w) c̄(z, w) 0
0 c(z,w) b(z,w) 0
0 0 0 a(z,w)

⎞⎟⎟⎠ (2)

acting in the space C
2⊗C

2 with the basis eα⊗eβ, α, β = ±. The entry R(z,w)
αβ

γ δ , α, β, γ, δ =
± coincides with the Boltzmann weight corresponding to figure 2:

Different repartitions of the arrows on the edges form different configurations {C}. A
Boltzmann weight of the lattice is a product of the Boltzmann weights in each vertex. We
define the partition function of the model summing the Boltzmann weights of the lattice over
all possible configurations subject to some boundary conditions:

Z({z}, {w}) =
∑
{C}

n∏
i,j=1

R(zi, wj )
αij βij

γij δij
. (3)

Here αij , βij , γij , δij are corresponding signs around the (i, j)th vertex. We consider an
inhomogeneous model when the Boltzmann weights depend on the column via the variable zi

and on the row via the variable wj (see figure 3).
We choose so-called domain wall boundary conditions (DWBC) that fix the boundary

arrows (signs) as is shown in figure 3. In other words, the arrows are entering on the left and
right boundaries and leaving on the lower and upper ones.
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In [9], Izergin has found a determinant presentation for the partition function of the lattice
with DWBC

Z({z}, {w}) = (q − q−1)n
n∏

m=1

wm

∏n
i,j=1(zi − wj)(qzi − q−1wj)∏
n�i>j�1(zi − zj )(wj − wi)

det

×
∣∣∣∣∣∣∣∣ 1

(zi − wj)(qzi − q−1wj)

∣∣∣∣∣∣∣∣
i,j=1,...,n

. (4)

The Izergin’s idea was to use a symmetry of the polynomial (3) and Korepin’s recurrent
relations for the quantity Z({z}, {w}) to observe that these recurrent relations allow us to
reconstruct Z({z}, {w}) in a unique way and that the same recurrent relations are valid for the
determinant formula (4).

On the other hand, it was observed that the integral kernel of the projection of n currents
is a polynomial of the same degree and it satisfies the same Korepin’s recurrent relations [1].
This means that this integral kernel coincides with the partition function for n × n lattice.
Moreover, the theory of projections gives another expression for the partition function:

Z({z}, {w}) = (q − q−1)n
n∏

m=1

wm

∏
n�i>j�1

q−1wi − qwj

wi − wj

×
∑
σ∈Sn

∏
1�i<j�n

σ(i)>σ(j)

qwσ(i) − q−1wσ(j)

q−1wσ(i) − qwσ(j)

∏
n�i>k�1

(qzi − q−1wσ(k)
∏

1�i<k�n

(zi − wσ(k)), (5)

where Sn is a permutation group. Here the factor qwσ(i)−q−1wσ(j)

q−1wσ(i)−qwσ(j)
appears in the product if both

the conditions i < j and σ(i) > σ(j) are satisfied simultaneously. We have to remark that
the representation (5) for the partition function of the six-vertex model with DWBC can be
obtained directly from the coordinate Bethe ansatz.

3. Partition function for the SOS model

3.1. Description of the SOS model

The SOS model is a face model. We introduce it as, usually, in terms of heights, but then
represent it in terms of R-matrix formalism as in [13]. This language is more convenient to
generalize the results reviewed in section 2 and to prove the symmetry of the partition function.

Consider a square n × n lattice with the vertices enumerated by index i = 1, . . . , n as in
the previous case. It has (n + 1) × (n + 1) faces enumerated by pairs (i, j), i, j = 0, . . . , n

(see figure 4). To each face we put a complex number called height in such a way that the
differences of the heights corresponding to the neighbor faces are ±1. Let us denote by dij the
height corresponding to the face (i, j) placed to the up-left from the vertex (i, j). Then
the last condition can be written in the form |dij −di−1,j | = 1, for i = 1, . . . , n, j = 0, . . . , n,
and |dij − dij−1| = 1 for i = 0, . . . , n, j = 1, . . . , n. Each distribution of heights dij

(i, j = 0, . . . , n) subject to these conditions and also to some boundary conditions defines
a configuration of the model. This means that the partition function of this model can be
presented in the form

Z =
∑
C

n∏
i,j=1

Wij (di,j−1, di−1,j−1, di−1,j , dij ), (6)

5
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Figure 4. The numeration of faces.

where Wij (di,j−1, di−1,j−1, di−1,j , dij ) are Boltzmann weights of (i, j)th vertex depending on
the configuration via connected heights as shown in figure 5 [14]:

Wij (d + 1, d + 2, d + 1, d) = a(ui − vj ) = θ(ui − vj + h̄),

Wij (d − 1, d − 2, d − 1, d) = a(ui − vj ) = θ(ui − vj + h̄),

Wij (d − 1, d, d + 1, d) = b(ui − vj ; h̄d) = θ(ui − vj )θ(h̄d + h̄)

θ(h̄d)
,

Wij (d + 1, d, d − 1, d) = b̄(ui − vj ; h̄d) = θ(ui − vj )θ(h̄d − h̄)

θ(h̄d)
,

Wij (d − 1, d, d − 1, d) = c(ui − vj ; h̄d) = θ(ui − vj + h̄d)θ(h̄)

θ(h̄d)
,

Wij (d + 1, d, d + 1, d) = c̄(ui − vj ; h̄d) = θ(ui − vj − h̄d)θ(h̄)

θ(−h̄d)
.

(7)

As in the six-vertex case the variables ui, vj are attached to the ith vertical and j th horizontal
lines respectively, h̄ is a nonzero anisotropy parameter4. The weights are expressed via the
ordinary odd theta-function defined by the conditions

θ(u + 1) = −θ(u), θ(u + τ) = −e−2πiu−πiτ θ(u), θ ′(0) = 1. (8)

Let us introduce the notations

αij = di−1,j − dij , βij = di−1,j−1 − di−1,j ,

γij = di−1,j−1 − di,j−1, δij = di,j−1 − dij .
(9)

The differences (9) take the values ±1 and we attach them to the corresponding edges as
in figure 2: γi,j+1 = αij is the sign attached to the vertical edge connecting the (i, j)th
vertex with the (i, j + 1)st one, βi,j+1 = δij is the sign attached to the horizontal edge
connecting the (i, j)th vertex with the (i + 1, j)th one. The configuration can be considered
as a distribution of these signs on the internal edges which are subjected to the conditions
αij + βij = γij + δij , i, j = 1, . . . , n. In terms of signs on external edges the DWBC are
the same as shown in figure 3. Additionally, we have to fix one of the boundary heights, for
example, dnn.

4 In the elliptic case we use additive variables ui, vj and an additive anisotropy parameter h̄ instead of the
multiplicative variables zi = e2π iui , wi = e2π ivi and the multiplicative parameter q = eπ ih̄.
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Figure 5. The Boltzmann weights for the SOS model.

The Boltzmann weights (7) can be presented as entries of the dynamical elliptic
R-matrix [13]:

Wij (di,j−1, di−1,j−1, di−1,j , dij ) = R(ui − vj ; h̄dij )
αij βij

γij δij
,

R(u; λ) =

⎛⎜⎜⎝
a(u) 0 0 0

0 b(u; λ) c̄(u; λ) 0
0 c(u; λ) b̄(u; λ) 0
0 0 0 a(u)

⎞⎟⎟⎠ .
(10)

Let T
αin
γi1

(ui, {v}, λi) be shape column transfer matrices. It is a matrix-valued function of
ui , all spectral parameters vj , j = 1, . . . , n and the parameters λi related to the heights:

T
αin

γi1
(ui, {v}, λi)

βin...βi1
δin...δi1

= (R(n+1,n)(ui − vn; λin)R
(n+1,n−1)(ui − vn−1; λi,n−1) · · · R(n+1,1)(ui − v1; λi1))

αin;βin...βi1

γi1;δin...δi1

= (R(n+1,n)(ui − vn;
in)R
(n+1,n−1)(ui − vn−1;
i,n−1) · · · R(n+1,1)(ui − v1;
i1))

αin;βin...βi1

γi1;δin...δi1
,

(11)

where λij = h̄dij = λi +h̄
∑n

l=j+1 δil, λi = h̄din = λ+h̄
∑n

l=i+1 αln,
ij = λi +h̄
∑n

l=j+1 H(l).
The matrix H(l) acts in the lth two-dimensional space Vl

∼= C
2 as diag(1,−1) and R-matrix

R(a,b) acts nontrivially in the tensor product of Va ⊗ Vb. The superscript n + 1 in the
R-matrices is regarded as an auxiliary space Vn+1 ∼= C

2. The partition function (6)
corresponding to DWBC (αin = +1, β1i = −1, γi1 = −1, δni = +1, i = 1, . . . , n) can be
represented through the column transfer matrices:

Z+−
−+({u}, {v}; λ) = (T+

−(u1, {v}, λ1) · · · T+
−(un, {v}, λn))

−...−
+...+ , (12)

where λi = λ + h̄(n − i). Similarly one can define the row transfer matrix.

3.2. Analytical properties of the partition function

Here we describe the analytical properties of the SOS model partition function analogical to
those used by Izergin to restore the partition function of the six-vertex model. These properties
uniquely define this partition function.

7
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Proposition 1. The partition function with DWBC Z+−
−+({u}, {v}; λ) is a symmetric function in

both sets of the variables ui and vj .

Proof. Proof is based on the dynamical Yang–Baxter equation (DYBE) for the R-matrix [13]

R(12)(t1 − t2; λ)R(13)(t1 − t3; λ + h̄H (2))R(23)(t2 − t3; λ)

= R(23)(t2 − t3; λ + h̄H (1))R(13)(t1 − t3; λ)R(12)(t1 − t2; λ + h̄H (3)).

In order to prove the symmetry of partition function Z+−
−+({u}, {v}; λ) under permutation

vj ↔ vj−1 we rewrite DYBE in the form

R(n+1,j)(ui − vj ;
ij )R
(n+1,j−1)(ui − vj−1;
ij + h̄H (j))

×R(j,j−1)(vj − vj−1;
ij ) = R(j,j−1)(vj − vj−1;
ij + h̄H (n+1))

×R(n+1,j−1)(ui − vj−1;
ij )R
(n+1,j)(ui − vj ;
ij + h̄H (j−1)). (13)

Multiplying the ith column matrix (11) by R(j,j−1)(vj − vj−1;
ij ) from the right and moving
this R-matrix to the left using (13), the relation [H1 + H2, R(u, λ)] = 0 and the equality

ij + h̄αin = 
i−1,j we obtain

T
αin

γi1
(ui, {v}, λi)R

(j,j−1)(vj − vj−1;
ij ) = R(j,j−1)(vj − vj−1;
i−1,j )

×P(j,j−1)
T

αin

γi1
(ui, {vj ↔ vj−1}, λi) · · · Tαnn

γn1
(un, {vj ↔ vj−1}, λn)P(j,j−1),

(14)

where P ∈ End(C2 ⊗C
2) is a permutation matrix: P(e1 ⊗e2) = e2 ⊗e1 for all e1, e2 ∈ C

2 and
notation {vj ↔ vj−1} means the set of the parameters {v} with vj−1 and vj are interchanged.
Multiplying the product of the column matrix by R(j,j−1)(vj − vj−1;
nj ) from right and
moving it to the left using (14) one yields

T
α1n

γ11
(u1, {v}, λ1) · · · Tαnn

γn1
(un, {v}, λn)R

(j,j−1)(vj − vj−1;
nj ) = R(j,j−1)(vj − vj−1;
0,j )

×P(j,j−1)
T

α1n

γ11
(u1, {vj ↔ vj−1}, λ1) · · · Tαnn

γn1
(un, {vj ↔ vj−1}, λn)P(j,j−1),

(15)

where 
0,j = λ + h̄
∑n

i=1 αin + h̄
∑n

l=j+1 H(l),
nj = λn = λ. Eventually, comparing the

matrix element (·)−,...,−
+,...,+ of both hand sides of (15), taking into account formula (12) and the

identities
R(u, λ)−−

γ δ = a(u)δ−
γ δ−

δ , R(u, λ)αβ
++ = a(u)δα

+δβ
+ ,

P−−
γ δ = δ−

γ δ−
δ , Pαβ

++ = δα
+δβ

+ ,

(where δα
γ is a Kronecker’s symbol) and substituting αin = +1, γi1 = −1 one derives

Z+−
−+({u}, {v}; λ) = Z+−

−+({u}, {vj ↔ vj−1}; λ). (16)

Similarly, using the row transfer matrix one can obtain the following equality from DYBE:

Z+−
−+({u}, {v}; λ) = Z+−

−+({uj ↔ uj−1}, {v}; λ). (17)

The partition function with DWBC satisfies relations (16) and (17) for each j = 1, . . . , n,
which is sufficient to establish the symmetry under an arbitrary permutation. �

Proposition 2. The partition function with DWBC (12) is an elliptic polynomial5 of degree n
with the character χ in each variable ui , where

χ(1) = (−1)n, χ(τ) = (−1)n exp

⎛⎝2π i

⎛⎝λ +
n∑

j=1

vj

⎞⎠⎞⎠ . (18)

5 The notion of elliptic polynomials and their properties are given in appendix A.
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Due to the symmetry with respect to the variables {u} it is sufficient to prove the proposition
for variable un. To present explicitly a dependence of Z+−

−+({u}, {v}; λ) on un we consider
all possibilities for states of edges attached to the vertices located in the nth column. First
consider the (n, n)th vertex. Due to the boundary conditions αnn = δnn = +1 and to the
condition αnn + βnn = γnn + δnn we have two possibilities: either βnn = γnn = −1 or
βnn = γnn = +1. In the first case one has a unique possibility for the whole residual part of nth
column: γnj = −1, βnj = +1, j = 1, . . . , n − 1; in the second case there are two possibilities
for the (n, n− 1)st vertex: either βn,n−1 = γn,n−1 = −1 or βn,n−1 = γn,n−1 = +1, etc. Finally
the partition function is represented in the form

Z+−
−+({u}, {v}; λ) =

n∑
k=1

n∏
j=k+1

a(un − vj )c̄(un − vk; λ + (n − k)h̄)

×
k−1∏
j=1

b̄(un − vj ; λ + (n − j)h̄)gk(un−1, . . . , u1, {v}; λ),

where gk(un−1, . . . , u1, {v}; λ) are functions not depending on un. Each term of this sum is
an elliptic polynomial of degree n with the same character (18) in the variable un.

Remark 1. Similarly one can prove that the function Z+−
−+({u}, {v}; λ) is an elliptic

polynomial of degree n with the character χ̃ in each variable vi , where χ̃ (1) = (−1)n,
χ̃ (τ ) = (−1)n e2π i(−λ+

∑n
i=1 ui).

Proposition 3. The nth partition function with DWBC (12) restricted to the condition
un = vn − h̄ can be expressed through the (n − 1)st partition function:

Z+−
−+(un = vn − h̄, un−1, . . . , u1; vn, vn−1, . . . , v1; λ) = θ(λ + nh̄)θ(h̄)

θ(λ + (n − 1)h̄)

×
n−1∏
m=1

(θ(vn − vm − h̄)θ(um − vn))Z
+−
−+(un−1, . . . , u1; vn−1, . . . , v1; λ). (19)

Considering the nth column and the nth row and taking into account that a(un −vn)
∣∣
un=vn−h̄

=
a(−h̄) = 0 we conclude that the unique possibility of having a non-trivial contribution is
βnn = γnn = −1, γnj = −1, βnj = +1, j = 1, . . . , n − 1, βin = −1, γin = +1, i =
1, . . . , n − 1. The last formulae impose the same DWBC for the (n − 1) × (n − 1) sublattice:
δn−1,j = βnj = +1, j = 1, . . . , n − 1, αi,n−1 = γin = +1, i = 1, . . . , n − 1, dn−1,n−1 = dnn.
Thus the substitution un = vn − h̄ into the partition function for the whole lattice gives us

Z+−
−+(un = vn − h̄, un−1, . . . , u1; vn, vn−1, . . . , v1; λ)

= c̄(−h̄; λ)

n−1∏
j=1

b̄(vn − vj − h̄; λ + (n − j)h̄)

n−1∏
i=1

b(ui − vn; λ + (n − i)h̄)

×Z+−
−+(un−1, . . . , u1; vn−1, . . . , v1; λ). (20)

Using the explicit expressions for the Boltzmann weights (7) one can rewrite the last formula
in the form (19).

Remark 2. From formula (20) we see that the following transformation of the R-matrix,

b(u, v; λ) → ρb(u, v; λ), b̄(u, v; λ) → ρ−1b̄(u, v; λ) (21)

does not change the recurrent relation (19), where ρ is a non-zero constant not depending on
u, v and λ.
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Lemma 1. If the set of functions {Z(n)(un, . . . , u1; vn, . . . , v1; λ)}n�1 satisfies the conditions
of the propositions 1, 2, 3 and the initial condition

Z(1)(u1; v1; λ) = c̄(u1 − v1) = θ(u1 − v1 − λ)θ(h̄)

θ(−λ)
(22)

then

Z+−
−+(un, . . . , u1; vn, . . . , v1; λ) = Z(n)(un, . . . , u1; vn, . . . , v1; λ). (23)

This lemma can be proved by induction over n. Let the equality (23) be valid for n − 1.
Consider the functions Z+−

−+(un, . . . , u1; vn, . . . , v1; λ) and Z(n)(un, . . . , u1; vn, . . . , v1; λ) as
functions of un. Both are elliptic polynomials of degree n with the character (18). They have
the same value in the point un = vn − h̄, and due to the symmetry of these functions with
respect to the parameters {vj }nj=1 they coincide in all the points un = vj − h̄, j = 1, . . . , n.
Then, from lemma 2 (see appendix A) these functions are identical.

Remark 3. As we see from the proof of lemma 1 it is sufficient to establish the symmetry
with respect to only the variables vj .

Remark 4. The transformation (21) of the R-matrix does not change the partition function
with DWBC.

4. Elliptic projections of currents

Let K0 = C[u−1][[u]] be a complete set of complex-valued meromorphic functions defined
in the neighborhood of origin, which have only simple poles at this point. Let {εi} and {εi} be
two dual bases in K0

∮
du
2π iε

i(u)εj (u) = δi
j .

4.1. Current description of the elliptic algebra

Let A be a Hopf algebra generated by elements ĥ[s], ê[s], f̂ [s], s ∈ K0, which are subjected
to linear relations

x̂[α1s1 + α2s2] = α1x̂[s1] + α2x̂[s2], α1, α2 ∈ C, s1, s2 ∈ K0,

where x ∈ {h, e, f } and some commutation relations. These relations will be written in terms
of currents

h+(u) =
∑
i�0

ĥ[εi;0]εi;0(u), h−(u) = −
∑
i�0

ĥ[εi;0]εi;0(u),

f (u) =
∑

i

f̂ [εi]ε
i(u), e(u) =

∑
i

ê[εi]ε
i(u).

(24)

The currents e(u) and f (u) are called total currents. They are defined by dual bases of K0 and
their definition does not depend on the choice of these dual bases (see [3, 15]). The currents
h+(u) and h−(u) are called Cartan currents and they are defined by a special basis

εk;0(u) = 1

k!

(
θ ′(u)

θ(u)

)(k)

, k � 0; εk;0(u) = (−u)k, k � 0.

The commutation relations read as follows [2]:

[K±(u),K±(v)] = 0, [K+(u),K−(v)] = 0, (25)

10
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K±(u)e(v)K±(u)−1 = θ(u − v + h̄)

θ(u − v − h̄)
e(v), (26)

K±(u)f (v)K±(u)−1 = θ(u − v − h̄)

θ(u − v + h̄)
f (v), (27)

θ(u − v − h̄)e(u)e(v) = θ(u − v + h̄)e(v)e(u), (28)

θ(u − v + h̄)f (u)f (v) = θ(u − v − h̄)f (v)f (u), (29)

[e(u), f (v)] = h̄−1δ(u, v)(K+(u) − K−(v)), (30)

where K+(u) = exp
(

eh̄∂u −e−h̄∂u

2∂u
h+(u)

)
,K−(u) = exp(h̄h−(u)) and δ(u, v) = ∑

n∈Z

un

vn+1 is a

delta-function6 for K0. The algebra A is a non-central version of the algebra A(τ) introduced
in [3]. This algebra is equipped with the co-product and co-unit:

�K±(u) = K±(u) ⊗ K±(u), (31)

�e(u) = e(u) ⊗ 1 + K−(u) ⊗ e(u), (32)

�f (u) = f (u) ⊗ K+(u) + 1 ⊗ f (u), (33)

ε(K±(u)) = 1, ε(e(u)) = 0, ε(f (u)) = 0. (34)

Let AF and AE be subalgebras of A generated by the generators ĥ[εi;0], f̂ [s], and
ĥ[εi;0], ê[s], respectively, s ∈ K0. The subalgebra AF is described by currents K+(u), f (u),
and the subalgebra AE by K−(u), e(u). Also, we introduce notations H + for the subalgebras
of A generated by ĥ[εi;0]. As was stated in [2] the bialgebras (AF ,�op) and (AE,�) are
dual to each other with respect to the Hopf pairing 〈·, ·〉:AF × AE → C defined in terms of
currents as follows: 〈f (u), K−(v)〉 = 〈K+(u), e(v)〉 = 0 and

〈f (u), e(v)〉 = h̄−1δ(u, v), 〈K+(u),K−(v)〉 = θ(u − v − h̄)

θ(u − v + h̄)
. (35)

These formulae uniquely define the Hopf pairing on AF × AE . In particular, one can derive
the following formula (see appendix B):

〈f (tn) · · · f (t1), e(vn) · · · e(v1)〉 = h̄−n
∑
σ∈Sn

∏
l<l′

σ(l)>σ(l′)

θ(vσ(l) − vσ(l′) + h̄)

θ(vσ(l) − vσ(l′) − h̄)

n∏
m=1

δ(tm, vσ(m)).

(36)

4.2. Projections of currents

We define the projections as linear maps acting in the subalgebra AF . In the subalgebra
AE dual projections act, which we do not consider here. The main tools to work with the
projections are shape half-currents f +

λ (u) and f −
λ (u) (defined further). For this reason we

define the projections in terms of the half-currents. The last ones are usually defined as parts
of the sum (24) (with the corresponding sign) such that f (u) = f +

λ (u) − f −
λ (u). Here λ

is a parameter of the decomposition of the total current into the difference of half-currents.

6 One can find more details about distributions acting on K0 and their significance in the theory of current algebras
in our previous paper [15].
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Elliptic half-currents are investigated in detail on the classical level in [15]. We will introduce
the half-currents by their representations via integral transforms of the total current f (u):

f +
λ (u) =

∮
|v|<|u|

dv

2π i

θ(u − v − λ)

θ(u − v)θ(−λ)
f (v),

f −
λ (u) =

∮
|v|>|u|

dv

2π i

θ(u − v − λ)

θ(u − v)θ(−λ)
f (v),

(37)

where λ /∈ � = Z + Zτ . The half-current f +
λ (u) is called positive and f −

λ (u)—negative.
The corresponding positive and negative projections are also parameterized by λ and they

are defined on the half-currents as follows:

P +
λ

(
f +

λ (u)
) = f +

λ (u), P −
λ

(
f +

λ (u)
) = 0, (38)

P +
λ

(
f −

λ (u)
) = 0, P −

λ

(
f −

λ (u)
) = f −

λ (u). (39)

Let us first define the projections in subalgebra Af generated by currents f (u). As a linear
space this subalgebra is spanned by the products f (un)f (un−1) · · · f (u1), n = 0, 1, 2, . . ..
This means that any element of Af can be presented as a sum (maybe infinite) of the integrals7∮

dun · · · du1

(2πi)n
f (un) · · · f (u1)sn(un) · · · s1(u1), sn, . . . , s1 ∈ K0. (40)

It follows from the PBW theorem proved in [2] that any element of Af can also be represented
as a sum of the integrals∮

dun · · · du1

(2π i)n
f −

λ+2(n−1)h̄(un) · · · f −
λ+2mh̄(um+1)f

+
λ+2(m−1)h̄(um) · · · f +

λ (u1)sn(un) · · · s1(u1),

sn · · · s1 ∈ K0, 0 � m � n, and, therefore, it is sufficient to define the projections on these
products of half-currents:

P +
λ (x−x+) = ε(x−)x+, P −

λ (y−y+) = y−ε(y+), (41)

where
x− = f −

λ+2(n−1)h̄(un) · · · f −
λ+2mh̄(um+1), y− = f −

λ (un) · · · f −
λ−2(n−m−1)h̄(um+1),

x+ = f +
λ+2(m−1)h̄(um) · · · f +

λ (u1), y+ = f +
λ−2(n−m)h̄(um) · · · f +

λ−2(n−1)h̄(u1).

The product of zero number of currents is identified with 1 and in this case: ε(1) = 1. The
counit ε of nonzero number of half-currents is always zero. So, this definition generalizes
formulae (38) and (39). We complete the definition of the projections on all the subalgebras
AF = Af · H + by formulae

P +
λ (at+) = P +

λ (a)t+, P −
λ (at+) = P −

λ (a)ε(t+),

where a ∈ Af , t+ ∈ H +.

4.3. The projections and the universal elliptic weight function

Consider the expressions of the form

P +
λ−(n−1)h̄(f (un)f (un−1) · · · f (u2)f (u1)), (42)

where the parameter λ − (n − 1)h̄ is chosen for some symmetry reasons. Let us begin with
the case n = 1. Formula (38) implies that the projection in this case is equal to the positive
half-current, which can be represented as an integral transform of the total current:

P +
λ (f (u1)) = f +

λ (u1) =
∮

|u1|>|v1|

dv1

2π i

θ(u1 − v1−λ)

θ(u1 − v1)θ(−λ)
f (v1).

7 The integral
∮

without limits means a formal integral—a continuous extension of the integral over the unit circle.
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The integral kernel of this transform gives the initial condition for the partition function with
a factor:

Z(1)(u1; v1; λ) = θ(h̄)θ(u1 − v1)
θ(u1 − v1−λ)

θ(u1 − v1)θ(−λ)
. (43)

The projections (42) can be calculated by generalizing the method proposed in [1] for the
algebra Uq(ŝl2). The method uses a recursion over n. Let us first present the last total current
in (42) as the difference of half-currents:

P +
λ−(n−1)h̄(f (un) · · · f (u2)f (u1)) = P +

λ−(n−3)h̄(f (un) · · · f (u2))f
+
λ−(n−1)h̄(u1)

−P +
λ−(n−1)h̄(f (un) · · · f (u2)f

−
λ−(n−1)h̄(u1)). (44)

In the first term we move out the positive half-current from the projection and, therefore, the
calculation of this term is reduced to the calculation of (n − 1)st projection. In the second
term in (44) we move the negative half-current to the left step by step by using the following
commutation relation [2]:

f (v)f −
λ (u1) = θ(v − u1 − h̄)

θ(v − u1 + h̄)
f −

λ+2h̄(u1)f (v) +
θ(v − u1 + λ + h̄)

θ(v − u1 + h̄)
Fλ(v),

where

Fλ(v) = θ(h̄)

θ(λ + h̄)

(
f +

λ+2h̄(v)f +
λ (v) − f −

λ+2h̄(v)f −
λ (v)

)
.

In each step we obtain an additional term containing Fλ(u) and in the last step the negative
half-current is annihilated by the projection:

P +
λ−(n−1)h̄(f (un) · · · f (u2)f

−
λ−(n−1)h̄(u1)) =

n∑
j=2

Qj(u1)Xj , (45)

where

Qj(u) = θ(uj − u + λ − (n − 2j + 2)h̄)

θ(uj − u + h̄)

j−1∏
k=2

θ(uk − u − h̄)

θ(uk − u + h̄)
,

Xj = P +
λ−(n−1)h̄(f (un) · · · f (uj+1)Fλ−(n−2j+3)h̄(uj )f (uj−1) · · · f (u2)).

Putting u1 = ui in (45) we can substitute the negative half-current into the positive one
due to the commutation relation for the total currents f (u) and the equality f (u)f (u) = 0.
Moving out the positive half-current to the left one obtains a linear system of equations for
Xi, i = 2, . . . , n:

P +
λ−(n−3)h̄(f (un) · · · f (u2))f

+
λ−(n−1)h̄(ui) =

n∑
j=2

Qj(ui)Xj . (46)

Multiplying each equation (46) by

θ(ui − u + λ)

θ(λ)

n∏
k=2

θ(uk − ui + h̄)

θ(uk − u + h̄)

n∏
k=2
k 	=i

θ(uk − u)

θ(uk − ui)
,

summing it over i = 2, . . . , n and using the interpolation formula (see appendix A)

Qj(u) =
n∑

i=2

Qj(ui)
θ(ui − u + λ)

θ(λ)

n∏
k=2

θ(uk − ui + h̄)

θ(uk − u + h̄)

n∏
k=2
k 	=i

θ(uk − u)

θ(uk − ui)
(47)
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one yields

P +
λ−(n−3)h̄(f (un) · · · f (u2))

n∑
i=2

θ(ui − u + λ)

θ(λ)

n∏
k=2

θ(uk − ui + h̄)

θ(uk − u + h̄)

n∏
k=2
k 	=i

θ(uk − u)

θ(uk − ui)
f +

λ−(n−1)h̄(ui)

=
n∑

j=2

Qj(u)Xj . (48)

Comparing (48) with (45) we conclude

P +
λ−(n−1)h̄(f (un) · · · f (u2)f

−
λ−(n−1)h̄(u1)) = P +

λ−(n−3)h̄(f (un) · · · f (u2))

×
n∑

i=2

θ(ui − u1 + λ)

θ(λ)

n∏
k=2

θ(uk − ui + h̄)

θ(uk − u1 + h̄)

n∏
k=2
k 	=i

θ(uk − u1)

θ(uk − ui)
f +

λ−(n−1)h̄(ui). (49)

Eventually, returning to formula (44) we derive the following expression for the projection:

P +
λ−(n−1)h̄(f (un) · · · f (u2)f (u1)) = P +

λ−(n−3)h̄(f (un) · · · f (u2))f
+
λ−(n−1)h̄(u1; un, . . . , u2),

(50)

where we introduce the linear combination of the currents:

f +
λ−(n−2m+1)h̄(um; un, . . . , um+1) = f +

λ−(n−2m+1)h̄(um) −
n∑

i=m+1

θ(ui − um + λ + (m − 1)h̄)

θ(λ + (m − 1)h̄)

×
n∏

k=m+1

θ(uk − ui + h̄)

θ(uk − um + h̄)

n∏
k=m+1

k 	=i

θ(uk − um)

θ(uk − ui)
f +

λ−(n−2m+1)h̄(ui). (51)

Continuing this calculation by the induction we obtain an expression for the projections in
terms of the half-currents (51):

P +
λ−(n−1)h̄(f (un) · · · f (u2)f (u1)) =

←−∏
n�m�1

f +
λ−(n−2m+1)h̄(um; un, . . . , um+1). (52)

To represent the projections (52) in integral form we first rewrite expression (51) in the
form

f +
λ−(n−2m+1)h̄(um; un, . . . , um+1) =

n∏
k=m+1

θ(uk − um)θ(h̄)

θ(uk − um + h̄)

(
n∏

k=m+1

Gh̄(uk − um)

× f +
λ−(n−2m+1)h̄(um) +

n∑
i=m+1

G−λ−(m−1)h̄(um − ui)

n∏
k=m+1

k 	=i

Gh̄(uk − ui)f
+
λ−(n−2m+1)h̄(ui)

)
,

(53)

where Gλ(u − v) = θ(u−v+λ)

θ(u−v)θ(λ)
. Substituting (37) into (53) and using the addition formula8

N∑
i=1

N∏
j=1
j 	=i

Gλj
(uj − ui)Gλ0(ui − v) =

N∏
i=1

Gλi
(ui − v), (54)

8 This formula can be proved using lemma 2 of appendix A.
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where λ0 = ∑N
i=1 λi , one can represent the half-currents (51) as an integral transform of the

total current:

f +
λ−(n−2m+1)h̄(um; un, . . . , um+1) =

n∏
k=m+1

θ(uk − um)

θ(uk − um + h̄)

×
∮

|ui |>|v|

dv

2π i

θ(um − v − λ − (m − 1)h̄)

θ(um − v)θ(−λ − (m − 1)h̄)

n∏
k=m+1

θ(uk − v + h̄)

θ(uk − v)
f (v). (55)

Replacing each combination of the half-currents (51) in (52) by their integral form we obtain

P +
λ−(n−1)h̄(f (un) · · · f (u2)f (u1)) =

∏
n�k>m�1

θ(uk − um)

θ(uk − um + h̄)

∮
|ui |>|vj |

dvn · · · dv1

(2π i)n

×
∏

n�k>m�1

θ(uk − vm + h̄)

θ(uk − vm)

n∏
m=1

θ(um − vm − λ − (m − 1)h̄)

θ(um − vm)θ(−λ − (m − 1)h̄)
f (vn) · · · f (v1).

(56)

Formulae (52) and (56) yield expressions for the universal elliptic weight functions in
terms of the current generators of the algebra A.

4.4. Universal weight function and the SOS model partition function

To extract the integral kernel from expression (56) and derive a formula for the partition
function we use the Hopf pairing (35). Let us calculate the following expression
generalizing (43):

Z(n)(un, . . . , u1; vn, . . . , v1; λ) =
n∏

i,j=1

θ(ui − vj )
∏

n�k>m�1

θ(uk − um + h̄)θ(vk − vm − h̄)

θ(uk − um)θ(vk − vm)

× (h̄θ(h̄))n
〈
P +

λ−(n−1)h̄(f (un) · · · f (u1)), e(vn) · · · e(v1)
〉
. (57)

Using the expression for the projection of the product of the total currents (56) and formula
(36) we obtain

Z(n)(un, . . . , u1; vn, . . . , v1; λ) = θ(h̄)n
n∏

i,j=1

θ(ui − vj )
∏
k>m

θ(vk − vm − h̄)

θ(vk − vm)

×
∑
σ∈Sn

∏
l<l′

σ(l)>σ(l′)

θ(vσ(l) − vσ(l′) + h̄)

θ(vσ(l) − vσ(l′) − h̄)

×
∏
k>m

θ(uk − vσ(m) + h̄)

θ(uk − vσ(m))

n∏
m=1

θ(um − vσ(m) − λ − (m − 1)h̄)

θ(um − vσ(m))θ(−λ − (m − 1)h̄)

=
∏
k>m

θ(vk − vm − h̄)

θ(vk − vm)

∑
σ∈Sn

∏
l<l′

σ(l)>σ(l′)

θ(vσ(l) − vσ(l′) + h̄)

θ(vσ(l) − vσ(l′) − h̄)

×
∏
k>m

θ(uk − vσ(m) + h̄)
∏
k<m

θ(uk − vσ(m))

×
n∏

m=1

θ(um − vσ(m) − λ − (m − 1)h̄)θ(h̄)

θ(−λ − (m − 1)h̄)
. (58)

We see from this formula that expression (58) defines a holomorphic function of the
variables ui .
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Theorem 1. The set of functions
{
Z(n)(un, . . . , u1; vn, . . . , v1; λ)

}
n�1 defined by formula (57)

satisfies the conditions of the propositions 1, 2, 3 and the initial condition (22). Therefore, by
virtue of theorem 1 they coincide with the partition functions of the SOS model with DWBC:

Z+−
−+(un, . . . , u1; vn, . . . , v1; λ) =

∏
n�k>m�1

θ(vk − vm − h̄)

θ(vk − vm)

×
∑
σ∈Sn

∏
l<l′

σ(l)>σ(l′)

θ(vσ(l) − vσ(l′) + h̄)

θ(vσ(l) − vσ(l′) − h̄)

∏
1�k<m�n

θ(uk − vσ(m))

×
∏

n�k>m�1

θ(uk − vσ(m) + h̄)

n∏
m=1

θ(um − vσ(m) − λ − (m − 1)h̄)θ(h̄)

θ(−λ − (m − 1)h̄)
. (59)

The initial condition (22) is verified by checking formula (43). The first factor on the
right-hand side of (57) is symmetric with respect to both sets of variables. Then the
symmetry with respect to the variables {u} and the variables {v} follows from the commutation
relations (29) and (28) respectively. Formula (58) implies that (57) are elliptic polynomials
of degree n with character (18) in variables ui , particularly in un. Now let us substitute
un = vn − h̄ into (58). The non-vanishing terms on the right-hand side correspond to the
permutations σ ∈ Sn satisfying σ(n) = n. Substituting un = vn − h̄ into these terms one
obtains the recurrent relation (19).

Remark 5. We do not want to recall here a definition of elliptic weight function from [11].
We observe only that our formula (57) is a specification of their definition (formula (2.30)
and lemma 2.31, p 21 of [11]) for special values of parameters. We should also stress that
we use here additive notations for theta-functions when the definition in [11] works with the
multiplicative ones. The same description is used in [10] where the identification is also
achieved. We hope that the advantage of the projection method we have used here is its
universality.

5. Trigonometric limit

In this section, we investigate the trigonometric degenerations of the formulae obtained in the
elliptic case. In particular, taking the corresponding trigonometric limit in the expression for
the SOS model partition function (59) we reproduce the expression for the six-vertex partition
function (5).

First we consider the degeneration of R-matrix—the matrix of the Boltzmann weights,
which defines the model. To do it we need the formula of the trigonometric degeneration
(τ → i∞) of the odd theta function defined by the conditions t

◦
heta:

lim
τ→i∞ θ(u) = sin πu

π
.

In terms of the multiplicative variables z = e2π iu, w = e2π iv this formula can be rewritten as
follows:

2π i eπ i(u+v) lim
τ→i∞ θ(u − v) = z − w.

Multiplying the R-matrix (10) by 2π i eπ i(u+v) and taking the limit we obtain the following
matrix depending rationally on the multiplicative variables z,w and multiplicative parameters
q = eπ ih̄, µ = e2π iλ:
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R(z,w;µ) = 2π i eπ i(u+v) lim
τ→i∞ R(u − v; λ)

=

⎛⎜⎜⎜⎝
zq − wq−1 0 0 0

0 (z−w)(µq−q−1)

(µ−1)

(z−wµ)(q−q−1)

(1−µ)
0

0 (zµ−w)(q−q−1)

(µ−1)

(z−w)(µq−1−q)

(µ−1)
0

0 0 0 (zq − wq−1)

⎞⎟⎟⎟⎠ . (60)

The matrix (60) inherits the property to satisfy the dynamical Yang–Baxter equation and it
defines the statistical model which is called the trigonometric SOS model.

To obtain the non-dynamical trigonometric case we need to implement the additional limit
λ → −i∞ implying µ → ∞ (or λ → i∞ implying µ → 0):

R̃(z, w) = lim
µ→∞ R(z,w;µ) =

⎛⎜⎜⎝
zq − wq−1 0 0 0

0 q(z − w) (q − q−1)w 0
0 (q − q−1)z q−1(z − w) 0
0 0 0 zq − wq−1

⎞⎟⎟⎠ .

(61)

The matrix (61) differs from the matrix of six-vertex Boltzmann weights (2) by the
transformation (21). Taking into account the remark 4 (from section 3.2) we conclude that
both matrices (2) and (61) define the same partition function Z({z}, {w}) with DWBC9.

To obtain the partition function with DWBC for the trigonometric SOS model one should
multiply the partition function with DWBC for the elliptic SOS model by a certain factor and
take the trigonometric limit:

Z+−
−+({z}, {w};µ) =

n∏
k,j=1

(2π i eπ i(uk+vj )) lim
τ→i∞ Z+−

−+({u}, {v}; λ)

=
∏

n�k>m�1

wkq
−1 − wmq

wk − wm

∑
σ∈Sn

∏
l<l′

σ(l)>σ(l′)

wσ(l)q − wσ(l′)q
−1

wσ(l)q−1 − wσ(l′)q

×
∏

n�k>m�1

(zkq − wσ(m)q
−1)

∏
1�k<m�n

(zk − wσ(m))

×
n∏

m=1

(zm − wσ(m)µq2(m−1))(q − q−1)

(1 − µq2(m−1))
. (62)

It is easy to check that formula (5) is obtained from formula (62) by taking the limit:
Z({z}, {w}) = lim

µ→∞ Z+−
−+({z}, {w};µ).
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Appendix A. Interpolation formula for the elliptic polynomials

We will call by a character a group homomorphism χ : � → C
×, where � = Z + τZ and C

× is
a multiplicative group of nonzero complex numbers. Each character χ and an integer number
n define a space �n(χ) consisting of the holomorphic functions on C with the translation
properties

φ(u + 1) = χ(1)φ(u), φ(u + τ) = χ(τ) e−2π inu−π inτφ(u).

If n > 0 then dim �n(χ) = n (and dim �n(χ) = 0 if n < 0). The elements of the space
�n(χ) are called elliptic polynomials (or theta-functions) of degree n with the character χ

(see [13]).

Proposition 4. Let {φj }nj=1 be a basis of �n(χ), with the character χ(1) = (−1)n, χ(τ) =
(−1)n e2π iα , then the determinant of the matrix ||φj (ui)||1�i,j�n is equal to

det ||φj (ui)|| = C · θ

(
n∑

k=1

uk − α

) ∏
i<j

θ(ui − uj ), (A.1)

where C is a nonzero constant.

Consider the ratio
det ||φj (ui)||

θ(
∑n

k=1 uk − α)
∏

i<j θ(ui − uj )
. (A.2)

This is an elliptic function of each ui with only simple pole in any fundamental domain (the
points ui satisfying

∑n
k=1 uk−α ∈ �). Therefore, it is a constant function of each ui . Thus this

ratio does not depend on each ui and we have to prove that it does not vanish, that is to prove
that the determinant det ||φj (ui)|| is not identically zero. Let us denote by �

i1,...,ik
j1,...,jk

the minor
of this determinant corresponding to the i1th, . . . , ikth rows and the j1th, . . . , jkth columns.
Suppose that this determinant is identically zero and consider the following decomposition:

det ||φj (ui)|| =
n∑

k=1

(−1)k+1φk(y1)�
2,...,n
1,...,k−1,k+1,...,n. (A.3)

Since the functions φk(y1) are linearly independent the minors �
2,...,n
1,...,k−1,k+1,...,n are identically

zero. Decomposing the minor �
2,...,n
2,...,n we conclude that the minors �

3,...,n
2,...,k−1,k+1,...,n are

identically zero, and so on. Finally, we obtain that �n
n = φn(yn) is identically zero which

cannot be true.

Lemma 2. Let us consider two elliptic polynomials P1, P2 ∈ �n(χ), where χ(1) =
(−1)n, χ(τ) = (−1)n eα , and n points ui, i = 1, . . . , n, such that ui − uj 	∈ �, i 	= j , and∑n

k=1 uk −α 	∈ �. If the values of these polynomials coincide at these points, P1(ui) = P2(ui),
then these polynomials coincide identically: P1(u) = P2(u).

Decomposing the considering polynomials as Pa(u) = ∑n
i=1 pi

aφi(u), a = 1, 2, we have the
system of equations

n∑
i=1

pi
12φi(u) = 0,
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with respect to the variables pi
12 = pi

1 − pi
2. As we have proved, the determinant of this

system is equal to (A.1) and therefore is not zero. Hence, this system has only a trivial
solution pi

12 = 0, but this implies P1(u) = P2(u).
Let P ∈ �n(χ) be an elliptic polynomial, where χ(1) = (−1)n, χ(τ) = (−1)n e2π iα ,

and ui, i = 1, . . . , n, be n points such that ui − uj 	∈ �, i 	= j , and
∑n

k=1 uk − α 	∈ �. This
polynomial can be restored by the values at these points:

P(u) =
n∑

i=1

P(ui)
θ
(
ui − u + α − ∑n

m=1 um

)
θ
(
α − ∑n

m=1 um

) n∏
k=1
k 	=i

θ(uk − u)

θ(uk − ui)
. (A.4)

Indeed, the right-hand side belongs to �n(χ), this equality holds at points u = ui . Using
lemma 2 we conclude that (A.4) holds at all u ∈ C.

Consider the meromorphic functions

Qj(u) = θ(uj − u + λ − (n − 2j + 2)h̄)

θ(uj − u + h̄)

j−1∏
k=2

θ(uk − u − h̄)

θ(uk − u + h̄)
.

It is easy to check that the functions

Pj (u) =
n∏

k=2

θ(uk − u + h̄)Qj (u)

= θ(uj − u + λ − (n − 2j + 2)h̄)

j−1∏
k=2

θ(uk − u − h̄)

n∏
k=j+1

θ(uk − u + h̄)

belong to �n−1(χ), where χ(1) = (−1)n−1, χ(τ ) = (−1)n−1e2π iα, α = λ +
∑n

k=2 uk . Since
λ 	∈ �, the polynomials Pj (u) can be restored by their values Pj (ui) via the interpolation
formula (A.4). Taking into account the relation between Qj(u) and Pj (u) we obtain
formula (47).10

Appendix B. Proof of formula (36)

Let An
f be a subspace spanned by f̂ [sn] · · · f̂ [s1] (that is by (40), where sn, . . . , s1 ∈ K0. Note

first that due to the Hopf properties of the pairing (35) the current e(u) annihilates the spaces
Ak

f H + for k � 2. Indeed, using the formulae 〈xy, z〉 = 〈x ⊗ y,�(z)〉, 〈x, 1〉 = ε(x) and (32)

we obtain
〈
Ak

f H +, e(u)
〉 ⊂ 〈

A1
f ⊗Ak−1

f H +, e(u) ⊗ 1 + K−(u) ⊗ e(u)
〉 = {0}. It follows from

formula (33) that the opposite coproduct on An
f has the form

�op(f (tn) · · · f (t1)) ∈ H + ⊗ An
f +

n∑
k=2

Ak
f H + ⊗ An−k

f +

+
n∑

j=1

n∏
i=j+1

K+(ti)f (tj )

j−1∏
i=1

K+(ti) ⊗ f (tn) · · · f (tj+1)f (tj−1) · · · f (t1).

Now let us prove formula (36) by induction. For n = 1 it coincides with the definition
of the pairing. Suppose that it holds for n − 1. Then using the formulae 〈x, yz〉 =
〈�op(x), y ⊗ z〉, 〈1, x〉 = ε(x) and the commutation relation (27) we obtain

10 We can suppose the condition ui − uj 	∈ �, because ui in formula (47) are formal variables.
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〈f (tn) · · · f (t1), e(vn) · · · e(v1)〉 = 〈�op(f (tn) · · · f (t1)), e(vn) ⊗ e(vn−1) · · · e(v1)〉

= h̄−n

n∑
j=1

n∏
l′=j+1

θ(vn − vσ(l′−1) + h̄)

θ(vn − vσ(l′−1) − h̄)
δ(tj , vn)

×
∑

σ∈Sn−1

∏
1�l<l′�n−1

σ(l)>σ(l′)

θ(vσ(l) − vσ(l′) + h̄)

θ(vσ(l) − vσ(l′) − h̄)

j−1∏
m=1

δ(tm, vσ(m))

n∏
m=j+1

δ(tm, vσ(m−1)).

Taking into account the identity∑
σ∈Sn

X(σ) =
n∑

j=1

∑
σ∈Sn−1

X

(
1 . . . j − 1 j j + 1 . . . n

σ (1) . . . σ (j − 1) n σ(j) . . . σ (n − 1)

)
one yields formula (36).
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