Accéder directement au contenu Accéder directement à la navigation
Article dans une revue

Module structures and the derived functors of iterated loop functors on unstable modules over the Steenrod algebra

Abstract :

The calculation of the iterated loop functors and their left derived functors on the category of unstable modules over the Steenrod algebra is a non-trivial problem; Singer constructed an explicit and functorial chain complex to calculate these functors. The results of Singer are analysed to give information on the behaviour of these functors with respect to the nilpotent filtration of the category of unstable modules.We show that, if an unstable module M supports an action of an unstable algebra K , then the derived functors of the iterated loop functors applied to M support actions of iterated doubles of K . This allows the finiteness results of Henn on unstable modules which support actions of unstable algebras to be applied to deduce structural results on the derived functors of iterated loops on such modules.

Type de document :
Article dans une revue
Liste complète des métadonnées

https://hal.univ-angers.fr/hal-03054046
Contributeur : Okina Université d'Angers <>
Soumis le : vendredi 11 décembre 2020 - 11:47:21
Dernière modification le : samedi 12 décembre 2020 - 03:29:53

Identifiants

Collections

Citation

Geoffrey Powell. Module structures and the derived functors of iterated loop functors on unstable modules over the Steenrod algebra. Journal of Pure and Applied Algebra, Elsevier, 2010, 214 (8), pp.1435 - 1449. ⟨10.1016/j.jpaa.2009.11.007⟩. ⟨hal-03054046⟩

Partager

Métriques

Consultations de la notice

18