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2 Département de Matématiques, Université d’Angers, LAREMA UMR 6093 du CNRS, 2,
bd. Lavoisier, 49045, Angers, Cedex 01, France
3 Theory Division, ITEP, 25, B. Tcheremushkinskaya, 117259, Moscow, Russia

E-mail: vretakh@math.rutgers.edu and Volodya.Roubtsov@univ-angers.fr

Received 12 September 2010, in final form 27 October 2010
Published 24 November 2010
Online at stacks.iop.org/JPhysA/43/505204

Abstract
We construct solutions of an infinite Toda system and an analog of the
Painlevé II equation over noncommutative differential division rings in terms
of quasideterminants of Hankel matrices.
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Mathematics Subject Classification: 37K10, 16B99, 16W25

Introduction

Let R be an associative algebra over a field with a derivation D. Set Df = f ′ for any f ∈ R.
Assume that R is a division ring. In this paper we construct solutions for the system of
equations (0.1) over algebra R(

θ ′
nθ

−1
n

)′ = θn+1θ
−1
n − θnθ

−1
n−1, n � 1 (0.1 − n)

assuming that θ1 = φ, θ0 = ψ−1, φ,ψ ∈ R and its ‘negative’ counterpart (0.1′)(
η−1

−mη′
−m)′ = η−1

−mη−m−1 − η−1
−m+1η−m, m � 1 (0.1′ − m)

where η0 = φ−1, η−1 = ψ .
Note that θ ′θ−1 and θ−1θ ′ are noncommutative analogs of the logarithmic derivative

(log θ)′.
We then use the solutions of the Toda equations under a certain ansatz for constructing

solutions of the noncommutative Painlevé II equation

PII (u, β) : u′′ = 2u3 − 2xu − 2ux + 4

(
β +

1

2

)
,

where u, x ∈ R, x ′ = 1 and β is a scalar parameter, β ′ = 0.
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Unlike papers [NGR] and [N] we consider here a ‘pure noncommutative’ version of the
Painlevé equation without any additional assumption for our algebra R.

In fact a noncommutative (‘matrix’) version of Painlevé II

PII (u, β) : u′′ = 2u3 + xu + βI

was considered for the first time in the papers by Sokolov with different co-authors: we
mention here for example [BS]. But their form of this equation, satisfying the Painlevé test, at
the same time cannot be obtained as a reduction of some matrix analog of the mKDV system.

Our equation is similar to this noncommutative Painlevé II but there is an essential
difference: we write the second term on the RHS in the symmetric or ‘anticommutator’ form.
This splitting form is much more adaptable to some generalizations of the usual commutative
Painlevé II.

Our motivation is the following. In the commutative case one can consider an infinite
Toda system (see for example [KMNOY, JKM]):

τ ′′
n τn − (τ ′

n)
2 = τn+1τn−1 − φψτ 2

n (0.2 − n)

with the conditions τ1 = φ, τ0 = 1, τ−1 = ψ .
Let n � 1. By setting θn = τn/τn−1 the system can be written as

(log τn)
′′ = θn+1θ

−1
n − φψ.

For n = 1 we have equation (0.1-1) with θ1 = φ, θ0 = ψ−1. By subtracting
equation (2.2-n) from (2.2-(n+1)) and replacing the difference log τn+1 − log τn by log τn+1

τn

one can get (0.1–n).
Similarly, the system (0.2-m) for positive m implies the system (0.1′–m) for θ−m =

τ−m/τ−m+1.
By going from τn’s to their consecutive relations we are cutting the system of equations

parametrized by −∞ < n < ∞ to its ‘positive’ and ‘negative’ part.
A special case of the semi-infinite system (0.1) over noncommutative algebra with θ−1

0
formally equal to zero was treated in [GR2]. In this paper, solutions of the Toda system
(0.1) with θ−1

0 = 0 were constructed as quasideterminants of certain Hankel matrices. It was
the first application of quasideterminants introduced in [GR1] to noncommutative integrable
systems. This line was continued by several researchers, see, for example, [EGR2, EGR1],
papers by Glasgow school [GNS, GN, GNO] and a recent paper [DFK].

In this paper we generalize the result of [GR2] for θ0 = ψ−1 and extend it to the infinite
Toda system. The solutions are also given in terms of quasideterminants of Hankel matrices
but the computations are much harder. We follow here the commutative approach developed
in [KMNOY, JKM] with some adjustments but our proofs are far from a straightforward
generalization. In particular, for our proof we have to introduce and investigate almost Hankel
matrices (see section 2.2).

From solutions of the systems (0.1) and (0.1′) under certain ansatz we deduce solutions
for the noncommutative equation PII (u, β) for various parameters β (theorem 3.2). This is a
noncommutative development of an idea from [KM].

We start this paper by a reminder of the basic properties of quasideterminants, then
construct solutions of the systems (0.1) and (0.1′) and then apply our results to noncommutative
Painlevé II equations following the approach by [KM].

Our paper shows that a theory of ‘pure’ noncommutative Painlevé equations and the
related τ -functions can be rather rich and interesting. The Painlevé II type was chosen as a
model and we will investigate other types of Painlevé equations.
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1. Quasideterminants

The notion of quasideterminants was introduced in [GR1], see also [GGRW, GR2, GR3].
Let A = ||aij ||, i, j = 1, 2, . . . , n, be a matrix over an associative unital ring. Denote

by Apq the (n − 1) × (n − 1) submatrix of A obtained by deleting the pth row and the qth
column. Let ri be the row matrix (ai1, ai2, . . . âij , . . . , ain) and cj be the column matrix with
entries (a1j , a2j , . . . âij , . . . , anj ).

For n = 1, |A|11 = a11. For n > 1 the quasideterminant |A|ij is defined if the matrix Aij

is invertible. In this case

|A|ij = aij − ri(A
ij )−1cj .

If the inverse matrix A−1 = ||bpq || exists, then bpq = |A|−1
qp provided that the

quasideterminant is invertible.
If R is commutative, then |A|ij = (−1)i+j det A/ det Aij for any i and j .

Examples.

(a) For the generic (2 × 2)-matrix A = (aij ), i, j = 1, 2, there are four quasideterminants:

|A|11 = a11 − a12a
−1
22 a21, |A|12 = a12 − a11a

−1
21 a22,

|A|21 = a21 − a22a
−1
12 a11, |A|22 = a22 − a21a

−1
11 a12.

(b) For the generic (3 × 3)-matrix A = (aij ), i, j = 1, 2, 3, there are nine quasideterminants.
One of them is

|A|11 = a11 − a12
(
a22 − a23a

−1
33 a32

)−1
a21 − a12

(
a32 − a33a

−1
23 a22

)−1
a31

−a13
(
a23 − a22a

−1
32 a33

)−1
a21 − a13

(
a33 − a32 · a−1

22 a23
)−1

a31.

Here are the transformation properties of quasideterminants. Let A = ||aij || be a square
matrix of order n over a ring R.

(i) The quasideterminant |A|pq does not depend on permutations of rows and columns in the
matrix A that do not involve the pth row and the qth column.

(ii) The multiplication of rows and columns. Let the matrix B = ||bij || be obtained from the
matrix A by multiplying the ith row by λ ∈ R from the left, i.e. bij = λaij and bkj = akj

for k �= i. Then

|B|kj =
{
λ|A|ij if k = i,

|A|kj if k �= i and λ is invertible.

Let the matrix C = ||cij || be obtained from the matrix A by multiplying the j th column
by μ ∈ R from the right, i.e. cij = aijμ and cil = ail for all i and l �= j . Then

|C|i	 =
{|A|ijμ if l = j,

|A|i	 if l �= j and μ is invertible.

(iii) The addition of rows and columns. Let the matrix B be obtained from A by replacing the
kth row of A with the sum of the kth and lth rows, i.e. bkj = akj + alj , bij = aij for i �= k.
Then

|A|ij = |B|ij , i = 1, . . . k − 1, k + 1, . . . n, j = 1, . . . , n.

We will sometimes need the following property of quasideterminants called the
noncommutative Lewis Carroll identity. It is a special case of the noncommutative Sylvester
identity from [GR1, GR2] or heredity principle formulated in [GR3].

Let A = ||aij ||, i, j = 1, 2, . . . , n. Consider the following (n− 1)× (n− 1)-submatrices
X = ||xpq ||, p, q = 1, 2, . . . , n−1, of A: matrix A0 = ||apq || obtained from A by deleting its

3



J. Phys. A: Math. Theor. 43 (2010) 505204 V Retakh and V Rubtsov

nth row and nth column; matrix B = ||bpq || obtained from A by deleting its (n− 1)st row and
nth column; matrix C = ||cpq || obtained from A by deleting its nth row and (n− 1)st column;
matrix D = ||dpq || obtained from A by deleting its (n − 1)st row and (n − 1)st column. Then

|A|nn = |D|n−1,n−1 − |B|n−1,n−1|A0|−1
n−1,n−1|C|n−1,n−1. (1.1)

2. Quasideterminant solutions of noncommutative Toda equations

2.1. Noncommutative Toda equations in bilinear form

Let F be a commutative field and R be an associative ring containing F-algebra. Let
D : R → R be a derivation over F, i.e. an F-linear map satisfying the Leibniz rule
D(ab) = D(a) · b + a · D(b) for any a, b ∈ R. Also, D(α) = 0 for any α ∈ F . As
usual, we set u′ = D(u), u′′ = D(D(u)), . . .. Recall that D(v−1) = −v−1v′v−1 for any
invertible v ∈ R.

Let φ,ψ ∈ R and R be a division ring. We now construct solutions for the noncommutative
Toda equations (0.1) and (0.1′) assuming that θ0 = ψ−1, θ1 = φ and η0 = φ−1, η−1 = ψ .

Set (cf [KMNOY, JKM] for the commutative case) a0 = φ, b0 = ψ and

an = a′
n−1 +

∑
i+j=n−2,i,j�0

aiψaj , bn = b′
n−1 +

∑
i+j=n−2,i,j�0

biφbj , n � 1. (2.1)

Construct Hankel matrices An = ||ai+j ||, Bn = ||bi+j ||, i, j = 0, 1, 2 . . . , n.

Theorem 2.1. Set θp+1 = |Ap|p,p, η−q−1 = |Bq |q,q . The elements θn for n � 1 satisfy the
system (0.1) and the elements η−m,m � 1, satisfy the system (0.1′).

This theorem can be viewed as a noncommutative generalization of theorem 2.1 from
[KMNOY]. In [KMNOY] it was proved that in the commutative case the Hankel determinants
τn+1 = det An, n � 0, τ0 = 1, τ−n−1 = det Bn, n � 0, satisfy the system (0.2).

Example. The (noncommutative) logarithmic derivative θ ′
1θ

−1
1 satisfies the noncommutative

Toda equation (0.1-1):(
θ ′

1θ
−1
1

)′ = θ2θ
−1
1 − φψ.

In fact, (
θ ′

1θ
−1
1

)′ = (
a1a

−1
0

)′ = (a2 − a0ψa0)a
−1
0 − (

a1a
−1
0

)2

= (
a2 − a1a

−1
0 a1

)
a−1

0 − a0ψ = θ2θ
−1
1 − φψ.

Our proof of theorem 2.1 in the general case is based on the properties of quasideterminants
of almost Hankel matrices.

2.2. Almost Hankel matrices and their quasideterminants

We define almost Hankel matrices Hn(i, j) = ||ast ||, s, t = 0, 1, . . . , n, i, j � 0, for a
sequence a0, a1, a2, . . . as follows. Set ann = ai+j and for s, t < n

as,t = as+t , an,t = ai+t , as,n = as+j

and ann = ai+j .
Note that Hn(n, n) is a Hankel matrix.
Denote by hn(i, j) the quasideterminant |Hn(i, j)|nn. Then hn(i, j) = 0 if at least one of

the inequalities i < n, j < n holds.

4
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Lemma 2.2.

hn(i, j)′ = κn(i, j) −
i∑

p=1

ap−1ψhn(i − p, j) −
j∑

q=1

hn(i, j − q)ψaq−1 (2.2)

where

κn(i, j) = hn(i + 1, j) − hn−1(i, n − 1)h−1
n−1(n − 1, n − 1)hn(n, j). (2.3a)

Also,

= hn(i, j + 1) − hn(i, n)h−1
n−1(n − 1, n − 1)hn−1(n − 1, j). (2.3b)

Note that some summands hn(i −p, j), hn(i, j −q) in formula (2.2) can be equal to zero.
Since hn(i, j) = 0 when i < n or j < n we have the following corollary.

Corollary 2.3.

hn(n, n)′ = κn(n, n),

hn(i, n)′ = κn(i, n) −
i∑

s=1

as−1ψhn(i − s, n),

hn(n, j)′ = κn(n, j) −
j∑

v=1

hn(n, j − v)ψav−1.

Proof of lemma 2.2. We prove lemma 2.2 by induction. By definition,

h1(i, j)′ = ai+j+1 −
i+j−1∑
k=0

akψai+j−1−k −
(

ai+1 −
i−1∑
s=0

asψai−1−s

)
a−1

0 aj

+ aia
−1
0 a1a

−1
0 aj − aia

−1
0

(
aj+1 −

j−1∑
t=0

aj−1−tψat

)
.

Set

κ1(i, j) = ai+j+1 − ai+1a
−1
0 aj + aia

−1
0 a1a

−1
0 aj − aia

−1
0 aj+1;

we can check formulas (2.3a) and (2.3b). The rest of the proof for n = 1 is easy.
Assume now that formula (2.2) is true for n � 1 and prove it for n + 1. By the

noncommutative Sylvester identity (1.1)

hn+1(i, j) = hn(i, j) − hn(i, n)h−1
n (n, n)hn(n, j). (2.4)

Set hn+1(i, j)′ = κn+1(i, j) + rn+1(i, j) where κn+1 contains all terms without ψ . Then

κn+1(i, j) = κn(i, j) − κn(i, n)h−1
n (n, n)hn(n, j)

+ hn(i, n)h−1
n (n, n)κn(n, n)h−1

n (n, n)hn(n, j) − hn(i, n)h−1
n (n, n)κn(n, j).

By induction, the first two terms can be written as

hn(i + 1, j) − hn−1(i, n − 1)h−1
n−1(n − 1, n − 1)hn(n, j)

+ [hn(i + 1, n) − hn−1(i, n − 1)h−1
n−1(n − 1, n − 1)hn(n, n)]h−1

n (n, n)hn(n, j)

= hn(i + 1, j) − hn(i + 1, n)h−1
n (n, n)hn(n, j).

This expression equals to hn+1(i + 1, j) by the Sylvester identity.

5
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The last two terms in κn+1(i, j) can be written as

hn(i, n)h−1
n (n, n)[hn(n + 1, n) − hn−1(n, n − 1)h−1

n−1(n − 1, n − 1)hn(n, n)]h−1
n

× (n, n)hn(n, j) − hn(i, n)h−1
n (n, n)[hn(n + 1, j)

−hn−1(n, n − 1)h−1
n−1(n − 1, n − 1)hn(n, j)]

= hn(i, n)h−1
n (n, n)[−hn(n + 1, n) + hn(i, n)h−1

n (n, n)hn(n + 1, j)]

= − hn(i, n)h−1
n (n, n)hn+1(n + 1, j)

also by the Sylvester identity.
Therefore, κn+1(i, j) satisfies formula (2.3a). Formula (2.3b) can be obtained in a similar

way.
Let us look at the terms containing ψ . According to the inductive assumption

hn(i, j)′ = κn(i, j) −
i∑

k=1

ak−1ψhn(i − k, j) −
j∑

	=1

hn(i, j − 	)ψa	−1.

Using corollary 2.3 and formula (2.2) for n one can write rn+1(i, j) as

−
i∑

k=1

ak−1ψhn(i − k, j) −
j∑

	=1

hn(i, j − 	)ψa	−1

+
i∑

k=1

ak−1ψhn(i − k, n)]h−1
n (n, n)hn(n, j)

+ hn(i, n)h−1
n (n, n)

j∑
	=1

hn(n, j − 	)ψa	−1

= −
i∑

k=1

ak−1ψ[hn(i − k, j) − hn(i − k, n)h−1
n (n, n)hn(n, j)]

−
j∑

	=1

[hn(i, j − 	) − hn(i, n)h−1
n (n, n)hn(n, j − 	)]ψa	−1.

Our lemma now follows from the Sylvester identity applied to each expression in square
brackets. �

Corollary 2.3 and formula (2.3a) immediately imply

Corollary 2.4. For n > 1

hn(n, n)′h−1
n (n, n) = hn(n + 1, n)h−1

n (n, n) − hn−1(n, n − 1)h−1
n−1(n − 1, n − 1).

Note on the right-hand side we have a difference of left quasi-Plücker coordinates (see
[GR3]).

2.3. Proof of theorem 2.1

Our solution of the Toda system (0.1) follows from corollary 2.4 and the following lemma.

Lemma 2.5. For k > 0

[hk(k + 1, k)h−1
k (k, k)]′ = hk+1(k + 1, k + 1)h−1

k (k, k) − a0ψ.

6
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Proof. Corollary 2.3 and formula (2.3b) imply

hk(k + 1, k)′ = hk(k + 1, k + 1) − hk(k + 1, k)h−1
k−1(k − 1, k − 1)hk−1(k − 1, k) − a0ψhk(k, k)

because hk(k + 1 − s, k) = 0 for s > 1.
Then, using again formula (2.3b) one has

[hk(k + 1, k)′h−1
k (k, k)]′ = [hk(k + 1, k + 1) − hk(k + 1, k)h−1

k−1

× (k − 1, k − 1)hk−1(k − 1, k) − a0ψhk(k, k)]h−1
k (k, k)

−hk(k + 1, k)h−1
k (k, k)][hk(k, k + 1) − hk(k, k)h−1

k−1

× (k − 1, k − 1)hk−1(k − 1, k)]h−1
k (k, k)

= [hk(k + 1, k + 1) − hk(k + 1, k)h−1
k (k, k)hk(k, k + 1)]h−1

k (k, k) − a0ψ

= hk+1(k + 1, k + 1)h−1
k (k, k) − a0ψ

by the Sylvester formula. �

Theorem 2.1 now follows from corollary 2.4 and lemma 2.5. The statement for η−m,
m � 1 can be proved in a similar way.

3. Noncommutative Painlevè II

3.1. Commutative Painlevè II and Hankel determinants: motivation

The Painlevè II (PII) equation (with commutative variables)

u′′ = 2u3 − 4xu + 4

(
β +

1

2

)
admits unique rational solution for a half-integer value of the parameter β. These solutions
can be expressed in terms of logarithmic derivatives of ratios of Hankel-type determinants.
Namely, if β = N + 1

2 , then

u = d

dx
log

det AN+1(x)

det AN(x)
,

where AN(x) = ||ai+j || where i, j = 0, 1, . . . , n−1. The entries of the matrix are polynomials
an(x) subjected to the recurrence relations:

a0 = x, a1 = 1, an = a′
n−1 +

n−2∑
i=0

aian−2−i

(see [KO], [JKM]).

3.2. Noncommutative and ‘quantum’ Painlevè II

We will consider here a noncommutative version of PII which we will denote nc − PII (x, β):

u′′ = 2u3 − 2xu − 2ux + 4

(
β +

1

2

)
,

where x, u ∈ R, x ′ = 1 and β is a central scalar parameter (β ∈ F, β ′ = 0).
This equation is a specialization of a general noncommutative Painlevé II system with

respect to three dependent noncommutative variables u0, u1, u2:

u′
0 = u0u2 + u2u0 + α0

u′
1 = −u1u2 − u2u1 + α1

u′
2 = u1 − u0.

7



J. Phys. A: Math. Theor. 43 (2010) 505204 V Retakh and V Rubtsov

Indeed, taking the derivative of the third and using the first and second, we get

u′′
2 = −(u0 + u1)u2 − u2(u0 + u1) + α1 − α0.

Then we have

(u0 + u1)
′ = −u′

2u2 − u2u
′
2 + α0 + α1

and immediately

−(u0 + u1) = u2
2 − (α0 + α1)x − γ, γ ∈ F.

Comparing with u′′
2 we obtain the following nc − PII :

u′′
2 = 2u3

2 − (α0 + α1)xu2 − (α0 + α1)u2x − 2γ u2 + α1 − α0.

Our equation corresponds the choice γ = 0, α1 = 2(β + 1), α0 = −2β.

Remark. The noncommutative Painlevé II system above is the straightforward generalization
of the analog system in [NGR] when the variables ui, i = 0, 1, 2, are subordinated to some
commutation relations. Here we do not assume that the ‘independent’ variable x commutes
with ui.

Going further with this analogy we will write a ‘fully noncommutative’ Hamiltonian of
the system

H = 1
2 (u0u1 + u1u0) + α1u2

and introduce the ‘canonical’ variables

p := u2, q := u1, x := 1
2

(
u0 + u1 + u2

2

)
.

Proposition 3.1. Let a triple (x, p, q) be a ‘solution’ of the ‘Hamiltonian system’ with the
Hamiltonian H and α1 = 2(β + 1):

px = −Hq

qx = Hp.

Then p satisfies the nc − PII :

pxx = 2p3 − 2px − 2xp + 4

(
β +

1

2

)
.

Proof. Straightforward computation gives that

px = p2 + 2q − 2x

qx = α1 − (qp + pq).

Taking pxx = pxp + ppx + 2qx − 2 and substituting px and qx we obtain the result. �

We give (for the sake of completeness) the explicit expression of the Painlevé Hamiltonian
H in the ‘canonical’ coordinates:

H(x, p, q) = qx + xq − q2 − 1
2 (qp2 + p2q) + 2(β + 1)p.

8
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3.3. Solutions of the noncommutative Painlevé and the Toda system

Theorem 3.2. Let φ and ψ satisfy the following identities:

ψ−1ψ ′′ = φ′′φ−1 = 2x − 2φψ, (3.1)

ψφ′ − ψ ′φ = 2β. (3.2)

Then for n ∈ N

(1) un = θ ′
nθ

−1
n satisfies nc − PII (x, β + n − 1);

(2) u−n = η′
−nη

−1
−n satisfies nc − PII (x, β − n).

Let us start with the following useful (though slightly technical) lemma.

Lemma 3.3. Under the conditions of theorem 2.1 we have the chain of identities (n � 0):

(1) θ ′
nθ

−1
n + θ ′

n−1θ
−1
n−1 = 2(β + n − 1)θn−1θ

−1
n

(2) θ ′′
n θ−1

n = 2
(
x − θnθ

−1
n−1

)
and also, for n � 1

(3) η−1
−nη

′
−n + η−n+1η

′
−n+1 = −2(β − n + 1)η−1

−nη
−1
−nη−n+1

(4) η−1
−nη

′′
−n = 2(x − η−1

−n+1η−n.

Proof. Remark that the first step in the chain (n = 1) directly follows from our assumption:
θ1 = φ, θ0 = ψ−1:

φ′φ−1 + (ψ−1)′ψ = 2βψ−1φ−1.

Indeed, we have

φ′φ−1 − ψ−1ψ ′ = 2βψ−1φ−1,

where the result

ψφ′ − ψ ′φ = 2β.

The second step (n = 2) is a little bit tricky.
We consider the Toda equation (φ′φ−1)′ = θ2φ

−1 − φψ and easily find θ2 (using
φ′′φ−1 = 2x − 2φψ):

θ2 = 2xφ − φψφ − (φ′φ−1)φ′.

Taking the derivation and using the same Toda and the first step identity, we get

θ ′
2 = 2φ(β + 1) − φ′φ−1θ2.

The second (n = 2) identity is rather straightforward:

θ ′′
2 +

(
θ ′

1θ
−1
1

)′
θ2 +

(
θ ′

1θ
−1
1

)
θ ′

2 = 2(β + 1)θ ′
1.

Again using the Toda and the first identity we finally obtain

θ ′′
2 θ−1

2 + θ2φ
−1 − φψ − (φ′φ−1)2 = 0

and then

θ ′′
2 θ−1

2 + 2x − 2(φψ + (φ′φ−1)2) = θ ′′
2 θ−1

2 − 2(x − θ2φ
−1) = 0.

We will discuss one more step, namely the passage from n = 2 to n = 3 (then the
recurrence will be clear). We want to show that

(1) θ ′
3θ

−1
3 + θ ′

2θ
−1
2 = 2(β + 2)θ2θ

−1
3 ;

(2) θ ′′
3 θ−1

3 = 2
(
x − θ3θ

−1
2

)
.

9
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From the second Toda and second identity we get

θ3 = 2xθ2 − θ2θ
−1
1 θ2 − θ ′

2θ
−1
2 θ ′

2.

It implies

θ ′
3 = 2θ2 + 2xθ ′

2 − θ ′
2θ

−1
1 θ2 + θ2θ

−1
1 θ ′

1θ
−1
1 θ2 − θ2θ

−1
1 θ ′

2

− 2
(
x − θ2θ

−1
1

)
θ ′

2 +
(
θ ′

2θ
−1
2

)2
θ ′

2 − θ ′
2θ

−1
2

(
2x − 2θ2θ

−1
1

)
θ2.

We simplify and obtain from this

θ ′
3 = 2θ2 + θ2θ

−1
1

(
θ ′

2 + θ ′
1θ

−1
1 θ2

)
+ θ ′

2θ
−1
1 θ2 +

(
θ ′

2θ
−1
2

)2
θ ′

2 − 2θ ′
2θ

−1
2 xθ2.

By the identity for θ ′
2 we have

θ ′
3 = 2θ2 + θ2θ

−1
1 · 2(1 + β)θ1 + θ ′

2θ
−1
1 θ2 + θ ′

2θ
−1
2

(−θ3 − θ2θ
−1
1 θ2

)
,

which assure the first identity for n = 3.
Now we prove the second.
Set a = 2(β + 2). We have

θ ′
3 = aθ2 − (

θ ′
2θ

−1
2

)
θ3.

Take the second derivation:

θ ′′
3 = aθ ′

2 − (
θ ′

2θ
−1
2

)′
θ3 − θ ′

2θ
−1
2 θ ′

3.

By using the formula for θ ′
3 we have

θ ′′
3 = aθ ′

2 − (
θ ′

2θ
−1
2

)′
θ3 − θ ′

2θ
−1
2

(
aθ2 − θ ′

2θ
−1
2 θ3

)
.

The terms with a are canceled and we have

θ ′′
3 = −(

θ ′
2θ

−1
2

)′
θ3 +

(
θ ′

2θ
−1
2

)2
θ3.

Note that

−(
θ ′

2θ
−1
2

)′
+

(
θ ′

2θ
−1
2

)2 = θ ′′
2 θ−1

2 − 2
(
θ ′

2θ
−1
2

)′
.

We already know that the first summand on the right-hand side equals 2
(
x − θ2θ

−1
1

)
and

by our Toda system(
θ ′

2θ
−1
2

)′ = θ3θ
−1
2 − θ2θ

−1
1

we obtain the second identity for θ3.
The nth step of the recurrence goes as follows: from the nth Toda and recurrence conjecture

we have

θn+1 = 2xθn − θnθ
−1
n−1θn − θ ′

nθ
−1
n θ ′

n.

It implies

θ ′
n+1 = 2θn + 2xθ ′

n − θ ′
nθ

−1
n−1θn + θnθ

−1
n−1θ

′
n−1θ

−1
n−1θn − θnθ

−1
n−1θ

′
n

− 2
(
x − θnθ

−1
n−1

)
θ ′
n +

(
θ ′
nθ

−1
n

)2
θ ′
n − θ ′

nθ
−1
n

(
2x − 2θnθ

−1
n−1

)
θn.

Then, after some simplifications we get

θ ′
n+1 = 2θn + θnθ

−1
n−1

(
θ ′
n + θ ′

n−1θ
−1
n−1θn

)
+ θ ′

nθ
−1
n−1θn +

(
θ ′
nθ

−1
n

)2
θ ′
n − 2θ ′

nθ
−1
n xθn.

By the recurrent formula for θ ′
n, we have

θ ′
n + θ ′

n−1θ
−1
n−1θn = 2(β + 1 − n)θn−1

10
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and

θ ′
n+1 = 2θn + 2(β + n − 1)θn + θ ′

nθ
−1
n−1θn +

(
θ ′
nθ

−1
n

)2
θ ′
n − 2θ ′

nθ
−1
n xθn

= 2(β + n)θn + θ ′
nθ

−1
n−1θn + θ ′

nθ
−1
n

(
θ ′
nθ

−1
n−1θ

′
n − 2xθn

)
= 2(β + n)θn + θ ′

nθ
−1
n−1θn + θ ′

nθ
−1
n

(−θn+1 − θnθ
−1
n−1θn

)
= 2(β + n)θn + θ ′

nθ
−1
n−1θn − θ ′

nθ
−1
n θn+1 − θ ′

nθ
−1
n−1θn.

which assure the first identity for n + 1.
We leave the proof of the second identity for any n as an easy (though a bit lengthy)

exercise similar to the case n = 3 above.
Identities (3) and (4) can be proved in a similar way. �

Lemma 3.4. For n = 1 the left logarithmic derivative φ′φ−1 =: u1 satisfies to nc−PII (x, β).

Proof. From the previous lemma we have from the first Toda equation

(φ′φ−1)′ = θ2φ
−1 − φψ = φ′′φ−1 − (φ′φ−1)2 = 2(x − φψ) − u2

1

and hence

θ2φ
−1 = 2x − φψ − u2

1.

On the other hand, taking the derivative of the first Toda, we get

u′′
1 = (θ2φ

−1 − φψ)′ = θ ′
2φ

−1 − θ2φ
−1u1 − (φ′ψ + φψ ′).

We replace θ ′
2φ

−1 by

2(β + 1) − u1θ2φ
−1 = 2(β + 1) − u1

(
2x − φψ − u2

1

)
.

Finally we obtain

u′′
1 = 2u3

1 − 2u1x − 2xu1 + 2(β + 1) + u1φψ + φψu1 − (φ′ψ + φψ ′),

but

u1φψ + φψu1 − (φ′ψ + φψ ′) = φψφ′φ−1 − φψ ′ = 2β

which gives the desired result. �

Our proof of theorem 3.2 in the general case almost verbatim repeats the proof of
lemma 3.4

Proof of theorem 3.2. Let un := θ ′
nθ

−1
n . Now the same arguments, from the

lemma 3.4, show that

(a) θn+1θ
−1
n = 2x − θnθ

−1
n−1 − u2

n;
(b) θ ′

n+1θ
−1
n = 2(β + n) − θ ′

nθ
−1
n θn+1θ

−1
n ;

(c) u′′
n = 2u3

n − 2xun − 2unx + 2(β + n) + θnθ
−1
n−1

(
θ ′
nθ

−1
n + θ ′

n−1θ
−1
n−1

)
. This implies that

u′′
n = 2u3

n − 2xun − 2unx + 4
(
β + n − 1

2

)
. �

Remark. Using identities (3) and (4) from lemma 3.3 we can prove the second statement of
theorem 3.2.
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4. Discussion and perspectives

We have developed an approach to integrability of a fully noncommutative analog of
the Painlevé equation. We construct solutions of this equation related to the ‘fully
noncommutative’ Toda chain, generalizing the results of [EGR1, GR2]. This solutions admit
an explicit description in terms of Hankel quasideterminants.

We consider here only the noncommutative generalization of Painlevé II but it is not
difficult to write down some noncommutative analogs of other Painlevé transcendants. It
is interesting to study their solutions, noncommutative τ -functions, etc. We hope that our
equation (like its ‘commutative’ prototype) is a part of a whole noncommutative Painlevé
hierarchy which relates (via a noncommutative Miura transform) to the noncommutative
m-KdV and m-KP hierarchies (see i.e. [GNS, GN, EGR2, EGR1]). Another interesting
problem is to study a noncommutative version of isomonodromic transformation problem
for our Painlevé equation. The natural approach to this problem is a noncommutative
generalization of generating functions, constructed in [JKM]. The noncommutative ‘non-
autonomous’ Hamiltonian should be studied more extensively. It would be interesting to
find noncommutative analogs of Okamoto differential equations [OK] and to generalize the
description of Darboux–Bäcklund transformations for their solutions.

We address these and other open questions in the forthcoming papers.
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Painlevé II equation J. Phys. A: Math. Gen. 32 3763–78

[KO] Kajiwara K and Ohta Y 1996 Determinant structure of the rational solutions for the Painlevé II equation
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