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Abstract. In this paper we construct the quantum spectral curve for the quantum dynami-
cal elliptic gln Gaudin model. We realize it considering a commutative family corresponding
to the Felder’s elliptic quantum group Eτ,~(gln) and taking the appropriate limit. The
approach of Manin matrices here suits well to the problem of constructing the generation
function of commuting elements which plays an important role in SoV and Langlands con-
cept.
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1 Introduction

The Gaudin model plays intriguingly important role in the modern mathematical physics as
like as in purely mathematical subjects as the Geometric Langlands correspondence. In fact, it
is shown that the separation of variables of the quantum rational Gaudin model is equivalent
to the categorical part of the geometric Langlands correspondence over the rational curve with
punctures over C. Its physical importance lies in the condense matter field, this system pro-
vides an example of the spin interacting magnetic chain. This paper deals with a new useful
formalism applicable to the dynamical elliptic case of the Gaudin model. This case provides an
interpretation for the Langlands correspondence over an elliptic curve. From the physical point
of view this case is responsible for the periodic spin chains.

The main strategy of the paper goes throw the classical ideas of [1, 2]. We start with the
formalism of L-operators corresponding to the Felder “elliptic quantum groups” Eτ,~(gln) [3, 4].
Using the RLL-relations we construct the Bethe elliptic commutative subalgebra from these
L-operators. To make the proof of commutativity more apparent we use technique of Manin
matrices developed in [5, 6]. For some particular cases this commutative subalgebra can be
found in [7] in a slightly different form. It is worth to mention the detailed work [8] described
the centre of Eτ,~(sln). We refer also to the rational version in [9, 10], to the trigonometric

?This paper is a contribution to the Proceedings of the Workshop “Elliptic Integrable Systems, Isomonodromy
Problems, and Hypergeometric Functions” (July 21–25, 2008, MPIM, Bonn, Germany). The full collection is
available at http://www.emis.de/journals/SIGMA/Elliptic-Integrable-Systems.html
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dynamical case in [11, 12]. Then we degenerate these families to obtain a commutative family
for the elliptic gln Gaudin model1. To do it we consider a quantum characteristic polynomial,
which has a suitable form for the degeneration. This approach extends the method applied in
the rational case in [13].

The article is organized as follows: in Subsection 2.1 we consider the dynamical elliptic L-
operators defined by the RLL relation with the Felder elliptic R-matrix. Then in Subsection 2.2
we define Manin matrices following [5, 6] and demonstrate that the L-operator multiplied by
some shift operator is a Manin matrix. In Subsection 2.3 we consider a fusion procedure of the
L-operators and construct a commutative family as traces of the “fused” L-operators. In Subsec-
tion 2.4 we show that a characteristic polynomial of the considered Manin matrix generates the
obtained commutative family. Subsection 2.5 is devoted to commutative families corresponding
to the traces of powers of Manin matrices related to the families constructed in 2.3 via Newton
identities. In Subsection 2.6 we consider briefly a trigonometric degeneration of the characte-
ristic polynomial and of the commutative families. We discuss their connection with the Hopf
algebra Uq(ĝln).

In Subsection 3.1 we obtain a characteristic polynomial which generates a commutative family
by passing to the limit ~→ 0. In Subsection 3.2 we consider L-operators that gives commutative
families for the elliptic gln Gaudin model. Subsection 3.3 is devoted to a twist relating these
L-operators with standard L-operators for the elliptic gln Gaudin model. We consider sl2 case
as an example in Subsection 3.4. In Subsection 3.5 we present the result of application of the
Newton identities to the elliptic gln Gaudin model.

2 Elliptic quantum groups and commutative families

Here we use the gln dynamical RLL relation to construct the commutative families for dynamical
L-operators. We consider an arbitrary L-operator that defines representation of the “elliptic
quantum group” Eτ,~(gln) introduced in [3, 4]. The commutativity in the dynamical case is
understood modulo Cartan elements. Restricting these “commutative” families to the space
annihilating by Cartan elements one obtains a corresponding integrable system.

We start with a definition of the odd Riemann theta-function related with an elliptic curve
defining the corresponding R-matrix. Let τ ∈ C, Im τ > 0 be a module of the elliptic curve C/Γ,
where Γ = Z + τZ is a period lattice. The odd theta function θ(u) = −θ(−u) is defined as
a holomorphic function on C with the properties

θ(u + 1) = −θ(u), θ(u + τ) = −e−2πiu−πiτθ(u), θ′(0) = 1.

We use the matrix (or “Leningrad”) notations. Let T =
∑

j tj · a1,j ⊗ · · · ⊗ aN,j be a tensor
over a ring R (a complex algebra or the field C), where tj ∈ R and ai,j belong to a space End Cn.
Then the tensor T (k1,...,kN ) is the following element of R⊗ (EndCn)⊗M for some M > N :

T (k1,...,kN ) =
∑

j

tj · 1⊗ · · · ⊗ a1,j ⊗ · · · ⊗ aN,j ⊗ · · · ⊗ 1,

where each element ai,j is placed to the ki-th tensor factor, the numbers ki are pairwise different
and 1 6 ki 6 M . (The condition k1 < · · · < kN is not implied.)

We also use the following notation. Let F (λ) = F (λ1, . . . , λn) be a function of n parame-
ters λk taking values in an algebra A: that is F : Cn → A. Then we define

F (λ + P ) = F (λ1 + P1, . . . , λn + Pn)

1Sometimes we omit the word “dynamical” for briefness.
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=
∞∑

i1,...,in=0

1
i1! · · · in!

∂i1+···+inF (λ1, . . . , λn)
∂λi1

1 · · · ∂λin
n

P i1
1 · · ·P

in
n (2.1)

for some P = (P1, . . . , Pn), Pk ∈ A. We omit here the convergence question considering only
such situations where this is the case.

2.1 Elliptic dynamic RLL-relations

First of all we introduce a notion of a dynamical elliptic L-operator corresponding to the Felder
R-matrix. Using a lemma about the products of these L-operators and the particular choice of
the L-operator we prove the commutativity of the family of operators under consideration.

Let {ei} be a standard basis of Cn and {Eij} be a standard basis of End Cn, that is
Eijek = δj

kei. In [3, 4] Felder introduce the following element of End Cn ⊗ End Cn depending
meromorphically on the spectral parameter u and n dynamic parameters λ1, . . . , λn:

R(u;λ) = R(u;λ1, . . . , λn) =
θ(u + ~)

θ(u)

n∑
i=1

Eii ⊗ Eii

+
∑
i6=j

(
θ(λij + ~)

θ(λij)
Eii ⊗ Ejj +

θ(u− λij)θ(~)
θ(u)θ(−λij)

Eij ⊗ Eji

)
, (2.2)

where λij = λi − λj . It is called the Felder’s dynamical R-matrix. It satisfies the dynamical
Yang–Baxter equation (DYBE)

R(12)(u1 − u2;λ)R(13)(u1 − u3;λ + ~E(2))R(23)(u2 − u3;λ)

= R(23)(u2 − u3;λ + ~E(1))R(13)(u1 − u3;λ)R(12)
(
u1 − u2;λ + ~E(3)

)
(2.3)

and the relations

R(21)(−u;λ)R(12)(u;λ) =
θ(u + ~)θ(u− ~)

θ(u)2
, (2.4)(

E
(1)
ii + E

(2)
ii

)
R(u;λ) = R(u;λ)

(
E

(1)
ii + E

(2)
ii

)
, (2.5)(

D̂
(1)
λ + D̂

(2)
λ

)
R(u;λ) = R(u;λ)

(
D̂

(1)
λ + D̂

(2)
λ

)
, (2.6)

where D̂λ =
n∑

k=1

Ekk
∂

∂λk
, D̂

(i)
λ =

n∑
k=1

E
(i)
kk

∂
∂λk

. We also should comment that we always mean by

λ the vector λ1, . . . , λn and the expression of the type λ + ~E(s) as the argument of (2.1) with
Pi = ~E

(s)
ii . The relation (2.5) is obvious. The relation (2.6) follows from (2.5).

Let R be a C[[~]]-algebra, L(u;λ) be an invertible n × n matrix over R depending on the
spectral parameter u and n dynamical parameters λ1, . . . , λn. Let h1, . . . , hn be a set of some
pairwise commuting elements of R . If the matrix L(u;λ) satisfies dynamical RLL-relation

R(12)(u− v;λ)L(1)(u;λ + ~E(2))L(2)(v;λ)

= L(2)(v;λ + ~E(1))L(1)(u;λ)R(12)(u− v;λ + ~h), (2.7)
(Eii + hi)L(u;λ) = L(u;λ)(Eii + hi), (2.8)

then it is called a dynamical elliptic L-operator with Cartan elements hk. The argument λ + ~h
is always meant in the sense of (2.1) with Pi = ~hi.

Let us introduce an equivalent but more symmetric form of RLL relations. For each L-
operator we introduce the following operator (similar to an operator introduced in [11]):

LD(u) = e−~D̂λL(u;λ). (2.9)
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The equation (2.7) can be rewritten in terms of this operator:

R(12)(u− v;λ)L(1)
D (u)L(2)

D (v) = L
(2)
D (v)L(1)

D (u)R(12)(u− v;λ + ~h). (2.10)

Lemma 1. If L1(u;λ) ∈ End(Cn)⊗R1 and L2(u;λ) ∈ End(Cn)⊗R2 are two dynamical elliptic
L-operators subject to the two sets of Cartan elements: h1 = (h1

1, . . . , h
1
n) and h2 = (h2

1, . . . , h
2
n)

then their matrix product L2(u;λ)L1(u;λ+~h2) ∈ End(Cn)⊗R1⊗R2 is also a dynamical elliptic
L-operator with Cartan elements h = h1 + h2 = (h1

1 + h2
1, . . . , h

1
n + h2

n). Thus, if L1(u;λ), . . . ,
Lm(u;λ) are dynamical elliptic L-operators with Cartan elements h1, . . . , hm then the matrix

←−∏
m>j>1

Lj

u;λ + ~
m∑

l=j+1

hl


is a dynamical elliptic L-operator with Cartan elements h =

m∑
i=1

hi.

Remark 1. The arrow in the product means the order of the factors with respect to the growing
index value: the expression

←−∏
3>i>1

Ai means A3A2A1.

The basic example of the dynamical elliptic L-operator is the dynamical Felder R-matrix:
L(u) = R(u − v;λ). In this case the second space End(Cn) plays the role of the algebra R.
Here v is a fixed complex number and the Cartan elements are hk = E

(2)
kk . Lemma 1 allows to

generalize this example: let v1, . . . , vm be fixed numbers, then the matrix

R(0)(u; {vj};λ) =
←−∏

m>j>1

R(0j)

u− vj ;λ + ~
m∑

l=j+1

E(l)


is a dynamical elliptic L-operator with Cartan elements hk =

m∑
l=1

E
(l)
kk .

The relation (2.4) gives another important example of the dynamical elliptic L-operator – the
matrix L(u) = R(21)(v − u)−1 with the second space End Cn considering as R (the number v is
fixed), or equivalently, the matrix L(v) = R(12)(u−v)−1 with the first space End Cn considering
as R. Let us introduce the notation

R(0)({ui}; v;λ) =
−→∏

16i6m

R(i0)

(
ui − v;λ + ~

m∑
l=i+1

E(l)

)
,

where u1, . . . , um are fixed numbers. Then the matrix R(0)({ui}; v;λ)−1 is a dynamical elliptic

L-operator with the spectral parameter v and the Cartan elements hk =
m∑

l=1

E
(l)
kk .

A more general class of the dynamical elliptic L-operators associated with small elliptic
quantum group eτ,~(gln) was constructed in the work [14]. This is an C[[~]]((λ1, . . . , λn))-algebra
generated by the elements t̃ij and hk satisfying the commutation relations

t̃ijhk = (hk − δik + δjk)t̃ij ,

~−1
(
tijλk − (λk − ~δik)tij

)
= 0,

~−2
(
tijtik − tiktij

)
= 0,

~−2

(
tiktjk −

θ(λ{1}ij + ~)

θ(λ{1}ij − ~)
tjktik

)
= 0, i 6= j,
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~−2

θ(λ{2}jl + ~)

θ(λ{2}jl )
tijtkl −

θ(λ{1}ik + ~)

θ(λ{1}ik )
tkltij −

θ(λ{1}ik + λ
{2}
jl )θ(~)

θ(λ{1}ik )θ(λ{2}jl )
tiltkj

 = 0, i 6= k, j 6= l,

where tij = δij+~t̃ij , λ
{1}
ij = λi−λj , λ

{2}
ij = λi−λj−~hi+~hj and the elements h1, . . . , hk, λ1, . . .,

λk commute with each other. The authors of [14] consider the matrix T (−u) with the entries

Tij(−u) = θ(−u + λij − ~hi)tji,

Representing this matrix in the form

T (−u) = θ(−u)e
−~

n∑
k=0

(hk+Ekk)∂λk
L0(u;λ)e

~
n∑

k=0
hk∂λk (2.11)

we obtain a dynamical elliptic L-operator L0(u;λ) over the algebra T = eτ,~(gln)[[∂λ]] with
Cartan elements h = (h1, . . . , hn), where C[[∂λ]] = C[[∂λ1 , . . . , ∂λn ]], the elements ∂λk

= ∂
∂λk

commute with hi and do not commute with t̃ij .

2.2 Manin matrices and L-operators

The RLL relations allow to construct the Manin matrices and q-Manin matrices investigated
in [5, 6, 15] starting from the L-operators. In particular, the dynamical RLL relation with
Felder R matrix leads to the Manin matrices (here q = 1). We use the properties of these
matrices to prove the commutativity of some function family t̂m(u) which will be constructed
in the next subsection. We shall suppose in what follows that all matrix entries belong to some
non-commutative ring which satisfies basically the conditions described precisely in [5, 6, 15].

Definition 1. An n×n matrix M over some (in general, non-commutative) ring is called Manin
matrix if the elements a, b, c, d of its any 2× 2 submatrix, where

M =


. . . . . . . . . . . . . . .
. . . a . . . b . . .
. . . . . . . . . . . . . . .
. . . c . . . d . . .
. . . . . . . . . . . . . . .

 ,

satisfy the relation ad − da = cb − bc and their elements from the same column commute with
each other: ac = ca, bd = db.

Let Sm be the symmetric group and π : Sn → End(Cn)⊗m be its standard representation:
π(σ)(v1 ⊗ · · · ⊗ vm) = vσ−1(1) ⊗ · · · ⊗ vσ−1(m). Let us introduce the operator

Am =
1
m!

∑
σ∈Sm

(−1)σπ(σ),

where (−1)σ is a sign of the permutation σ. We also use the notations A[k,m] ≡ A(k+1,...,m) ≡
(Am−k)(k+1,...,m). For example,

A(12) = A2 =
1
2

∑
i6=j

(
Eii ⊗ Ejj − Eij ⊗ Eji

)
. (2.12)

In terms of the matrix (2.12) Definition 1 can be reformulated as follows. The matrix M is
a Manin matrix if and only if it satisfies the relation

A(12)M (1)M (2) = A(12)M (1)M (2)A(12). (2.13)
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Proposition 1. If L(u;λ) is a dynamical L-operator then the matrix

M = e−~D̂λL(u;λ)e~ ∂
∂u = LD(u)e~ ∂

∂u , (2.14)

where D̂λ =
n∑

k=1

Ekk
∂

∂λk
, is a Manin matrix.

Proof. Substituting u = −~ to (2.2) we obtain the formula

R(−~;λ) =
∑
i6=j

θ(λij + ~)
θ(λij)

(
Eii ⊗ Ejj − Eij ⊗ Eji

)
, (2.15)

from which we see R(−~;λ) = R(−~;λ)A(12). Consider the relation (2.10) at u− v = −~. The
multiplication of this relation by A(12) from the right does not change its right hand side, hence
this does not change its left hand side:

R(12)(−~;λ)L(1)
D (u)L(2)

D (u + ~) = R(12)(−~;λ)L(1)
D (u)L(2)

D (u + ~)A(12). (2.16)

Multiplying (2.16) by e2~ ∂
∂u from the right we obtain

R(12)(−~;λ)M (1)M (2) = R(12)(−~;λ)M (1)M (2)A(12). (2.17)

Let us note that the matrix (2.15) is related to A(12) by the formula B(λ)R(−~;λ) = A(12),
where

B(λ) =
1
2

∑
i6=j

θ(λij)
θ(λij + ~)

Eii ⊗ Ejj .

So, multiplying (2.17) by B(λ) from the left one obtains (2.13). �

Lemma 2 ([5, 6]). If M is a Manin matrix invertible from the left and from the right then its
inverse M−1 is also a Manin matrix.

In particular, the matrix inverse to (2.14) having the form(
e−~D̂λL(u;λ)e~ ∂

∂u
)−1 = e−~ ∂

∂u L(u;λ)−1e~D̂λ (2.18)

is a Manin matrix.

Lemma 3. If M is a Manin matrix then it satisfies the relations

A[m,N ]M (m+1) · · ·M (N) = A[m,N ]M (m+1) · · ·M (N)A[m,N ], (2.19)

A[m,N ]M (N) · · ·M (m+1) = A[m,N ]M (N) · · ·M (m+1)A[m,N ], (2.20)

where m < N .

Proof. The idea of the proof of (2.19) is the following. It is sufficient to prove that the left
hand side does not change if we multiply it by (−1)σi,i+1π(σi,i+1) from the right, where σi,i+1 is
an elementary permutation. But the last fact follows from (2.13). (See details in [15].)

Multiplying (2.19) by (−1)σlstπ(σlst) from the both sides, where σlst is a longest permutation,
one yields the relation (2.20). �
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Corollary 1. If L(u;λ) is a dynamical elliptic L-operator then it satisfies

A[m,N ]
−→∏

m+16i6N

L(i)

(
u + ~(i−m− 1);λ + ~

N∑
l=i+1

E(l)

)

= A[m,N ]
−→∏

m+16i6N

L(i)

(
u + ~(i−m− 1);λ + ~

N∑
l=i+1

E(l)

)
A[m,N ], (2.21)

A[m,N ]
←−∏

N>j>m+1

L(j)

v + ~(j −m− 1);λ + ~
N∑

l=j+1

E(l)

−1

= A[m,N ]
←−∏

N>j>m+1

L(j)

v + ~(j −m− 1);λ + ~
N∑

l=j+1

E(l)

−1

A[m,N ]. (2.22)

Proof. The relations (2.21) follows from the formula (2.19) for Manin matrix (2.14): M =
e−~D̂λL(u;λ)e~ ∂

∂u . The relations (2.22) follows from (2.20) for Manin matrix (2.18): M =
e−~ ∂

∂u L(u;λ)−1e~D̂λ . �

Let us consider the following matrix

R[m,N ]({ui}; {vj};λ) =
−→∏

16i6m

R(i)

(
ui; {vj};λ + ~

m∑
l=i+1

E(l)

)
=
−→∏

16i6m

←−∏
N>j>m+1

R(ij), (2.23)

where

R(ij) = R(ij)

ui − vj ;λ + ~
m∑

l=i+1

E(l) + ~
N∑

l=j+1

E(l)

 .

Taking into account (2.5) we obtain the relations R(ij)R(ab) = R(ab)R(ij), where 1 6 i < a 6 m,
m + 1 6 j < b 6 N . Using it we derive the formula

R[m,N ]({ui}; {vj};λ) =
←−∏

N>j>m+1

R(j)

{ui}; vj ;λ + ~
N∑

l=j+1

E(l)


=

←−∏
N>j>m+1

−→∏
16i6m

R(ij). (2.24)

Let us set ui = u + ~(i − 1), vj = v + ~(j − m − 1). Then, substituting R(0)(u; {vj};λ) and
R(0)({ui}; v;λ)−1 as L-operators to the formulae (2.21) (with m = 0, N = m) and (2.22)
respectively, taking into account the equalities (2.23) and (2.24) we obtain

A[0,m]R[m,N ](u; v;λ) = A[0,m]R[m,N ](u; v;λ)A[0,m], (2.25)

A[m,N ]R[m,N ](u; v;λ) = A[m,N ]R[m,N ](u; v;λ)A[m,N ], (2.26)

where R[m,N ](u; v;λ) = R[m,N ]({ui = u + ~(i − 1)}; {vj = v + ~(j − m − 1)};λ). Similarly,
substituting R(0)({ui}; v;λ)−1 and R(0)(u; {vj};λ) to the formulae (2.21) and (2.22) (with m = 0,
N = m) respectively, we obtain

A[0,m]R[m,N ](u; v;λ)−1 = A[0,m]R[m,N ](u; v;λ)−1A[0,m], (2.27)

A[m,N ]R[m,N ](u; v;λ)−1 = A[m,N ]R[m,N ](u; v;λ)−1A[m,N ]. (2.28)
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2.3 Commutative families

The integrals of motion for an integrable system related with an L-operator are obtained often as
coefficients of a decomposition for some operator functions. These functions are constructed as
traces of tensor products of L-operators multiplied by the “alternator” A[0,m]. In the dynamical
case one should consider the tensor product of the operators (2.9). Now we use the facts proved
below to establish the commutativity of these operator functions.

Let us first fix the dynamical elliptic L-operator with Cartan elements hk and assign the
notation L(u;λ) to this L-operator. Its values at points u belong to the algebra End Cn ⊗R.

Introduce the following operators

L[m,N ]({ui};λ) = e−~D̂
(m+1)
λ L(m+1)(um+1;λ) · · · e−~D̂

(N)
λ L(N)(uN ;λ),

where m < N . Using the dynamical RLL relations (2.7) and taking into account (2.6) we derive
the commutation relations for them:

R[m,N ]

(
{ui}; {vj};λ− ~

N∑
l=1

E(l)

)
L[0,m]({ui};λ)L[m,N ]({vj};λ)

= L[m,N ]({vj};λ)L[0,m]({ui};λ)R[m,N ]({ui}; {vj};λ + ~h). (2.29)

Setting ui = u + ~(i − 1), vj = v + ~(j −m − 1) in this relation we obtain the main relation
which we need to construct a commutative family:

R[m,N ]

(
u; v;λ− ~

N∑
l=1

E(l)

)
L[0,m](u;λ)L[m,N ](v;λ)

= L[m,N ](v;λ)L[0,m](u;λ)R[m,N ](u; v;λ + ~h),

where we set L[a,b](u;λ) = L[a,b]({ui = u + ~(i− a− 1)};λ) for a < b.
Let An = C((λ1, . . . , λn)) be a completed space of functions. The operators D̂λ acts on

the space An ⊗ Cn, so that the operators L[a,b](u;λ) act from the space An ⊗ (Cn)⊗(b−a) to
An ⊗ (Cn)⊗(b−a) ⊗ R: if u is a fixed point then L[a,b](u;λ) ∈ End(Cn)⊗(b−a) ⊗ An, where
An = An[e±~∂λ ] ⊗ R. Consider the subalgebra h ⊂ R ⊂ An generated by elements hk and its
normalizer in An:

Nn = NAn(h) = {x ∈ An | hx ⊂ Anh}.

Let us note that Anh is a two-side ideal in Nn.

Theorem 1. Let us define the An-valued functions

tm(u) = tr
(
A[0,m]L[0,m](u;λ)

)
,

where the trace is implied over all m spaces Cn. They commute with Cartan elements hk:

hktm(u) = tm(u)hk. (2.30)

Hence they take values in the subalgebra Nn. And they pair-wise commute modulo the ideal
Anh ⊂ Nn:

tm(u)ts(v) = ts(v)tm(u) mod Anh. (2.31)
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Proof. The relation (2.30) follows from the formulae

[hj , L[0,m](u;λ)] = −
m∑

l=1

[E(l)
jj , L[0,m](u;λ)],

m∑
l=1

E
(l)
jj A[0,m] = A[0,m]

m∑
l=1

E
(l)
jj (2.32)

and from the trace periodicity.
Let us stress that the commutativity (2.31) modulo Anh is a corollary of the formula

tr
(
A[0,m]A[m,N ]L[0,m](u;λ)L[m,N ](v;λ)

)
= tr

(
A[0,m]A[m,N ]L[m,N ](v;λ)L[0,m](u;λ)R[m,N ](u; v;λ + ~h)R[m,N ](u; v;λ)−1

)
, (2.33)

where N = m+s and the trace is considered over all N spaces Cn. This formula can be deduced
as follows. Consider the left hand side of (2.33). Applying the relation (2.29) we can rewrite it
in the form

tr

(
A[0,m]A[m,N ]R[m,N ]

(
u; v;λ− ~

N∑
l=1

E(l)

)−1

L[m,N ](v;λ)

× L[0,m](u;λ)R[m,N ](u; v;λ + ~h)

)
. (2.34)

Note that by virtue of the formula (2.32) the relations (2.27), (2.28) with the shifted dynamical

parameters λ→ λ−~
N∑

l=1

E(l) are still valid. Therefore, we can insert the idempotent A[0,m]A[m,N ]

after R[m,N ]
(
u; v;λ− ~

N∑
l=1

E(l)
)−1

to the expression (2.34):

tr

(
A[0,m]A[m,N ]R[m,N ]

(
u; v;λ− ~

N∑
l=1

E(l)

)−1

A[0,m]A[m,N ]L[m,N ](v;λ)

× L[0,m](u;λ)R[m,N ](u; v;λ + ~h)

)
.

Similarly, taking into account (2.21) we can insert A[0,m]A[m,N ] after L[0,m](u;λ) and, then, using
(2.25), (2.26) and the trace periodicity we can eliminate A[0,m]A[m,N ] before R[m,N ]

(
u; v;λ −

~
N∑

l=1

E(l)
)−1

. Thus we obtain

tr

(
R[m,N ]

(
u; v;λ− ~

N∑
l=1

E(l)

)−1

A[0,m]A[m,N ]L[m,N ](v;λ)

× L[0,m](u;λ)A[0,m]A[m,N ]R[m,N ](u; v;λ + ~h)

)
, (2.35)

where one can delete A[0,m]A[m,N ] after L[0,m](u;λ). By virtue of (2.32) we can present the part

after R[m,N ]
(
u; v;λ − ~

N∑
l=1

E(l)
)−1

as e
−~

N∑
l=1

D̂
(l)
λ

Y (λ), where the matrix Y (λ) does not contain
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the shift operators. Using the formula

tr

(
X(λ)e

−~
N∑

l=1
D̂

(l)
λ

Y (λ)

)
= tr

e
−~

N∑
l=1

D̂
(l)
λ

Y (λ)X

(
λ + ~

N∑
l=1

E(l)

) ,

where the matrix X(λ) does not contain the shift operators and elements of the ring R, one can
rewrite (2.35) as the right hand side of (2.33). �

Thus we obtain the family of functions tm(u) with values in the algebra Nn. Their images
by the canonical homomorphism Nn → Nn/Anh commute and we obtain the commutative
family of functions in the algebra Nn/Anh. Decomposing these functions in some basis functions
φm,j(u) one yields a commutative family of elements Îm,j of this algebra: tm(u) =

∑
j Îm,jφk,j(u)

mod Anh. In this way one can construct an integrable system corresponding to a given L-
operator.

2.4 Characteristic polynomial

The functions tm(u) can be gathered to a generating function called the quantum characteristic
polynomial. This polynomial is defined in terms of determinants of Manin matrices. Considering
the Gaudin degeneration we shall calculate the degeneration of the characteristic polynomial,
although the degeneration of the functions tm(u) can not be obtained explicitly.

Introduce the following notion of a determinant for a matrix with non-commutative entries.
Let M be an arbitrary n× n matrix, define its determinant by the formula

det M =
∑
σ∈Sn

(−1)σMσ(1),1Mσ(2),2 · · ·Mσ(n),n.

Usually this determinant is called the column determinant. One can show [15] that for a Manin
matrix M its column determinant coincides with the completely symmetrized determinant and
can be represented in the form

det M = tr
(
A[0,n]M (1)M (2) · · ·M (n)

)
. (2.36)

Proposition 2. Let us consider the Manin matrix M = e−~D̂λL(u;λ)e~ ∂
∂u . The matrix 1−M

is also a Manin matrix and its determinant generates tm(u) as follows:

P (u, e~∂u) = det
(
1− e−~D̂λL(u;λ)e~ ∂

∂u
)

=
n∑

m=0

(−1)mtm(u)em~ ∂
∂u , (2.37)

where t0(u) = 1. This implies that the determinant (2.37) commutes with hk as well as that it
commutes modulo Anh with itself for different values of the spectral parameter:

[P (u, e~∂u), hk] = 0, [P (u, e~∂u), P (v, e~∂v)] = 0 mod Anh.

Proof. First we note that the functions tm(u) are related to the principal minors of the mat-
rix M as follows∑

16i1<···<im6n

det M i1...im
i1...im

= tr1,...,m

(
A[0,m]M (1) · · ·M (m)

)
= tm(u)em~ ∂

∂u , (2.38)

where M i1...im
i1...im

is the corresponding submatrix. Due to the formula (2.36) the left hand side
of (2.37) decomposes as follows

det(1−M) =
n∑

m=0

(−1)m
∑

16k1<···<km6n

tr1,...,n

(
A[0,n]M (k1)M (k2) · · ·M (km)

)
. (2.39)
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Using the recursive relation A[0,n] = 1
n(A[0,n−1] − (n− 1)A[0,n−1]π(σn−1,n)A[0,n−1]) one yields

tr1,...,n

(
A[0,n]M (k1)M (k2) · · ·M (km)

)
= tr1,...,n

(
A[0,n]M (1)M (2) · · ·M (m)

)
(2.40)

=
m!(n−m)!

n!
tr1,...,m

(
A[0,m]M (1)M (2) · · ·M (m)

)
.

The formulae (2.38), (2.39), (2.40) imply (2.37). �

2.5 Newton identities and quantum powers

In the theory of classical integrable systems commutative families are usually provided by traces
of powers of a classical L-operator. Their quantization can be presented as traces of deformed
powers of the corresponding quantum L-operators. These deformed powers are called quantum
powers of L-operator. For rational L-operators these quantum powers were described in details
in [5]. The main tool to obtain the quantum powers are Newton identities for Manin matri-
ces. They allow to express the quantum powers of L-operators through the coefficients of the
characteristic polynomial.

Lemma 4 ([5, 6]). Let M be a Manin matrix. Introduce the elements

qm = tr1,...,m

(
A[0,m]M (1) · · ·M (m)

)
=

∑
16i1<···<im6n

det M i1...im
i1...im

, (2.41)

q0 = 1 and qm = 0 for m > n. Then for any m > 0 the following identities hold

mqm =
m−1∑
k=0

(−1)m+k+1qk tr
(
Mm−k

)
.

They called Newton identities for the Manin matrix M .

Consider the Manin matrix M = LD(u)e~ ∂
∂u = e−~D̂λL(u;λ)e~ ∂

∂u . The elements (2.41) for
this matrix have the form qm = tm(u)em~ ∂

∂u : see the formula (2.38). The powers of M are

Mk = L
[k]
D (u)ek~ ∂

∂u , where L
[k]
D (u) = LD(u)LD(u + ~) · · ·LD(u + (k − 1)~).

The matrices L
[k]
D (u) are called quantum powers of the L-operator LD(u). The Newton identities

allow recursively express the traces of the quantum powers tr
(
L

[k]
D (u)

)
via the functions tm(u)

and vice versa. Thus we obtain another commutative family of functions generating the same
commutative subalgebra in Nn/Anh:[

tr
(
L

[k]
D (u)

)
, tr
(
L

[m]
D (v)

)]
= 0 mod Anh.

2.6 Trigonometric limit

Up to now we have considered L-operators satisfying dynamical RLL-relations with a certain
dynamical elliptic R-matrix. But the presented technique is sufficiently universal to be applied
to many other cases. This approach is directly generalized to the case of arbitrary dynamical
R-matrix such that R(−~;λ) = B(λ)A(12) for some invertible matrix B(λ). The corresponding
L-operators give us a family tm(u) commuting modulo Anh. In particular, it works for the
trigonometric and rational degenerations of the Felder R-matrix. Using the same scheme for
their non-dynamical limits we obtain commuting functions tm(u) (modulo 0).
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Here we briefly discuss the dynamical and non-dynamical trigonometric limits. The Felder
R-matrix in the limit τ → i∞ takes the form

Rtrig(u, v;λ) =
zq − wq−1

z − w

n∑
i=1

Eii ⊗ Eii

+
∑
i6=j

(
µijq − q−1

µij − 1
Eii ⊗ Ejj +

(q − q−1)(z − wµij)
(z − w)(1− µij)

Eij ⊗ Eji

)
, (2.42)

where z = e2πiu, w = e2πiv, q = eπi~, µkj = e2πiλkj . An L-operator satisfying the relations (2.7)
and (2.8) with this R-matrix – a dynamical trigonometric L-operator – defines the commutative
family tm(u) (modulo corresponding Anh) by means of the formula (2.37), for instance. One can
also consider the commuting traces of quantum powers in the same way as in the Subsection 2.5.

Consider the limit λk − λk+1 → −i∞, that is µij →∞ for i < j and µij → 0 for i > j. The
limit of the matrix (2.42) is a non-dynamical trigonometric R-matrix

Rtrig(u− v) = Rtrig(z, w) =
zq − wq−1

z − w

n∑
i=1

Eii ⊗ Eii +
∑
i<j

(
qEii ⊗ Ejj + q−1Ejj ⊗ Eii

+
(q − q−1)w

(z − w)
Eij ⊗ Eji +

(q − q−1)z
(z − w)

Eji ⊗ Eij

)
. (2.43)

Let L(z) be an L-operator satisfying the usual RLL-relations with this matrix:

Rtrig(z, w)L(1)(z)L(2)(w) = L(2)(w)L(1)(z)Rtrig(z, w).

The matrix M = L(z)q2z ∂
∂z is a Manin matrix. The corresponding characteristic polynomial

det(1 − L(u)q2z ∂
∂z ) =

n∑
m=0

(−1)tm(z)q2mz ∂
∂z defines a commutative family: [tm(z), tm(w)] = 0.

Then, the quantum powers in this case have the form L[k](z) = L(z)L(zq2) · · ·L(zq2(k−1)),
[tr
(
L[k](z)

)
, tr
(
L[m](w)

)
] = 0.

Let us consider the tensor

R̃trig(z, w) = F (21)Rtrig(z, w)F−1 =
zq − wq−1

z − w

n∑
i=1

Eii ⊗ Eii +
∑
i<j

(
Eii ⊗ Ejj

+ Ejj ⊗ Eii +
(q − q−1)w

(z − w)
Eij ⊗ Eji +

(q − q−1)z
(z − w)

Eji ⊗ Eij

)
, (2.44)

where

F = q

1
2

∑
i<j

(Eii⊗Ejj−Ejj⊗Eii)

=
n∑

i=1

Eii ⊗ Eii +
∑
i<j

(
q

1
2 Eii ⊗ Ejj + q−

1
2 Ejj ⊗ Eii

)
.

This is a standard R-matrix for the quasi-triangular Hopf algebra Uq(ĝln). This algebra can
be described by two L-operators L̃±(z) ∈ End Cn ⊗ Uq(ĝln) satisfying RLL-relation with the
R-matrix (2.44). Each L-operator L̃(z) ∈ End Cn ⊗ R satisfying RLL-relation with this R-
matrix defines a homomorphism from the certain Hopf subalgebra B ⊂ Uq(ĝln) to R.2 The
R-matrix (2.44) considered as an L-operator defines a representation πw : B → End Cn. The

2The algebra B is the algebra described by one of those L-operators, for example, by L̃+(z). In this case the

homomorphism is defined by the formula L̃+
ij(z) 7→ L̃ij(z).
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subalgebra B contains elements ĥ1, . . . , ĥn such that πv(ĥk) = Ekk, ε(ĥk) = 0, ∆(ĥk) = ĥk ⊗
1 + 1⊗ ĥk, where ε and ∆ are co-unity and co-multiplication of Uq(ĝln). The element

F = q

1
2

∑
i<j

(ĥi⊗ĥj−ĥj⊗ĥi)

satisfies the cocycle condition (the Drinfeld equation) F (12)(∆⊗ id)(F) = F (23)(id⊗∆)(F), the
condition (ε⊗id)F = (id⊗ε)F = 1 and, therefore, defines a twist between two co-multiplications
of the algebra Uq(ĝln), the standard one ∆ and twisted one ∆F defined as ∆F(x) = F∆(x)F−1.
Let φ : B→ R is the homomorphism defined by a given L-operator L̃(z). Define the matrix

G = q

1
2

∑
i<j

(Eii⊗hj−Ejj⊗hi)

=
n∑

i=1

q

1
2

(
n∑

j=i+1
hj−

i−1∑
j=1

hj

)
Eii.

where hk = φ(ĥk). From the theory of quasi-triangular Hopf algebras it follows that the twisted
L-operator L(z) = GL̃(z)G satisfies RLL-relations with the matrix (2.43). This means that each
L-operator L̃(z) defines the commutative family tm(u) by means of the characteristic polynomial
for the Manin matrix M = GL̃(z)Gq2z ∂

∂z .
Let us also remark that the commutative families for L̃(z) can be constructed without twist-

ing. In this case one should use some generalization of the notion of Manin matrices. The
matrix M = L̃(z)q2z ∂

∂z belongs to such kind of generalization called q-Manin matrices (see [15]
for details). Nevertheless the approach of q-Manin matrices is a little more complicated. Let
us also remark that the same situation occurs for the Uq,p(ĝln) L-operators considered in [16],
there exist a dynamical elliptic analogue of the twist F relating the Uq,p(ĝln) R-matrix with
the Felder R-matrix. So we expect that there exists a generalization of the q-Manin matrices
corresponding to the dynamical elliptic quantum group Uq,p(ĝln).3

3 Characteristic polynomial for elliptic Gaudin model

We consider a degeneration of the dynamical elliptic RLL relations: ~ → 0. In particular, this
degeneration describes the dynamical elliptic gln Gaudin model. To relate this degenerated L-
operator with the elliptic Gaudin L-operator in the standard formulation we introduce a twist of
this L-operator. Degenerating the commutative family obtained in the previous section we yield
a commutative family for the elliptic Gaudin model. We see that the obtained results generalize
the elliptic sl2 Gaudin model case investigated in [18, 19].

3.1 ~ → 0 degeneration

Here we consider the degeneration of the previous section formulae obtained in the limit ~→ 0:
we compare the coefficients at the minimal degree of ~ that does not lead to a trivial identity.
In the degeneration of the dynamical RLL-relation, for example, we consider ~2. And the
determinant (2.37) is proportional to the n-th power of ~. We avoid using the term the classical
degeneration because we don’t want to mismatch the considering degeneration with the classical
mechanics degeneration.

Suppose that L(u;λ) is a dynamical elliptic L-operator of the form

L(u;λ) = 1 + ~L(u;λ) + o(~). (3.1)

3In some formulation Uq,p(ĝln) should be interpreted as a Hopf algebroid [17].
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where the entries of L(u;λ) belongs to the algebra R0 = R/~R. The matrix L(u;λ) is called
dynamical classical elliptic L-operator. It satisfies the dynamical classical rLL-relations

[
L(1)(u;λ)− D̂

(1)
λ ,L(2)(v;λ)− D̂

(2)
λ

]
−

n∑
k=1

hk
∂

∂λ
r(u− v;λ)

=
[
L(1)(u;λ) + L(2)(v;λ), r(u− v;λ)

]
(3.2)

with the dynamical classical elliptic r-matrix

r(u;λ) =
θ′(u)
θ(u)

n∑
i=1

Eii ⊗ Eii +
∑
i6=j

(
θ′(λij)
θ(λij)

Eii ⊗ Ejj +
θ(u− λij)

θ(u)θ(−λij)
Eij ⊗ Eji

)
. (3.3)

The matrix (3.3) is related with the Felder R-matrix (2.2) via the formula

R(u;λ) = 1 + ~r(u;λ~) + o(~).

The relation (3.2) follows directly from the relation (2.7). In turn, the relation (2.8) implies

(Eii + hi)L(u;λ) = L(u;λ)(Eii + hi). (3.4)

Let us remark that two different Lie bialgebras described by the relations (3.2) and (3.4) are
considered in great details for the sl2-case in [20].

Lemma 5. If a Manin matrix has a form M = 1+ ~M+ o(~) thenM is also a Manin matrix.

Proof. Substituting the decomposition of M to (2.13) we obtain the equation (2.13) forM at
second power of ~. �

Applying this lemma to the Manin matrix M = e−~D̂λL(u;λ)e~ ∂
∂u we conclude that the

matrix M = ∂
∂u − D̂λ + L(u;λ) is a Manin matrix. Theorem 1 and Proposition 2 give us the

following theorem.

Theorem 2. Let An = R0 ⊗ An[∂λ] and Nn = NAn(h) = {x ∈ An | hx ⊂ Anh}, where
An = C((λ1, . . . , λn)). Define the Nn-valued functions sm(u) by the formula

Q(u, ∂u) = det
(

∂

∂u
− D̂λ + L(u;λ)

)
=

n∑
m=0

sm(u)
(

∂

∂u

)n−m

, (3.5)

where s0(u) = 1. They commute with Cartan elements hk:

hksm(u) = sm(u)hk (3.6)

and they pair-wise commute modulo Anh:

sm(u)sl(v) = sl(v)sm(u) mod Anh. (3.7)

The decomposition coefficients of the functions s1(u), s2(u), . . . , sn(u) form a commutative
family in the algebra Nn at the level hk = 0. This means that their images by the canonical
homomorphism Nn → Nn/Anh commute with each other. Below we consider some special class
of L-operators L(u;λ).
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3.2 Elliptic Gaudin model

Theorem 2 provides the functions sm(u) generating the quantum integrals of motion for the el-
liptic Gaudin model. This model is defined by a representation of the loop Lie algebra gln[z, z−1].
Let us first consider a homomorphism ρ : U(gln[z, z−1]) → R0 from U(gln[z, z−1]) to some al-
gebra R0. To this homomorphism we associate the elliptic half-currents

e+
ii (u) = ρ

(
θ′(u− z)
θ(u− z)

eii

)
=
∑
m>0

(−1)m

m!

(
θ′(u)
θ(u)

)(m)

ρ(eiiz
m), (3.8)

e+
ij(u;λ) = ρ

(
θ(u− z + λij)
θ(u− z)θ(λij)

eij

)
=
∑
m>0

(−1)m

m!

(
θ(u + λij)
θ(u)θ(λij)

)(m)

ρ(eijz
m), (3.9)

where i 6= j, {eij} is a basis in gln for which eij 7→ Eij is a faithful representation. The set
{eiiz

m} is a basis in gln[z, z−1]. The matrix L(u;λ) with the elements

Lij(u;λ) = e+
ji(u;λ), Lii(u;λ) = e+

ii (u;λ) +
∑
k 6=i

θ′(λik)
θ(λik)

hk, (3.10)

where hk = ρ(ekk), satisfies the relations (3.2) and (3.4).
Consider an important example of the homomorphism ρ. The evaluation homomorphism

ρv : U(gln[z, z−1])→ U(gln) defined as

ρv(eijz
m) = vmeij ,

where i, j = 1, . . . , n and v ∈ C is a fixed complex number. Using the standard co-multiplication
of the universal enveloping algebra U(gln[z, z−1]) one can construct the more general evaluation
homomorphism ρ{v} : U(gln[z, z−1])→ U(gln)⊗N in N fixed points v1, . . . , vN ∈ C:

ρ{v}(eijz
m) =

N∑
k=1

vm
k e

(k)
ij .

where e
(k)
ij = 1⊗(k−1) ⊗ eij ⊗ 1⊗(N−k) is the basis element corresponding to the k-th tensor

component of U(gln). For the N given representations Πk : U(gln)→ EndVk one can construct
the representation Π{v} : U(gln[z, z−1]) → EndV , where Π{v} = (Π1 ⊗ · · · ⊗ ΠN ) ◦ ρ{v} and
V = V1 ⊗ · · · ⊗ VN . In the representation Π{v} the half currents (3.8), (3.9) take the forms

e+
ii (u;λ) = e+

ii (u) =
N∑

k=1

θ′(u− vk)
θ(u− vk)

Πk(eii)(k), (3.11)

e+
ij(u;λ) =

N∑
k=1

θ(u− vk + λij)
θ(u− vk)θ(λij)

Πk(eij)(k), (3.12)

where Πk(eij)(k) = 1⊗(k−1) ⊗ Πk(eij) ⊗ 1⊗(N−k) (the k-th tensor component). The matrix
L(u;λ) defined by (3.10) with the currents (3.11), (3.12) is called the elliptic Gaudin L-operator
corresponding to the representation Π{v}.

In the case of homomorphism ρ = ρ{v} the corresponding commutative family can be ob-
tained as follows. Let L0(u;λ) be the dynamical elliptic L-operator defined by (2.11). Shifting
the argument we again get a dynamical elliptic L-operator L0(u − v;λ). This is also a ma-
trix over T = eτ,~(gln)[[∂λ]]. Let Ân = An[[~]][[∂λ]] ⊂ T. Let Lk(u− vk;λ) be the matrices over
R = T⊗Ân

· · · ⊗Ân
T︸ ︷︷ ︸

N

with the entries
(
Lk(u−vk;λ)

)
ij

= 1⊗(k−1)⊗
(
L0(u−vk;λ)

)
ij
⊗1⊗(N−k) and
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hk = (hk
1, . . . , h

k
n) with hk

i = 1⊗(k−1)⊗hi⊗1⊗(N−k). Then applying Lemma 1 we obtain a dynam-

ical elliptic L-operator L[N ](u;λ) =
←−∏

N>k>1

Lk

(
u−vk;λ+~

N∑
l=k+1

hl
)

over R with the Cartan ele-

ments h =
N∑

k=1

hk. Representing L[N ](u;λ) in the form (3.1) we obtain an L-operator L[N ](u;λ).

This is a matrix over R0 = T0 ⊗Ãn
· · · ⊗Ãn

T0︸ ︷︷ ︸
N

, where T0 = T/~T and Ãn = An[[∂λ]] ⊂ T0. Due

to Theorem 2 the functions s
[N ]
m (u) defined by (3.5) with this L-operator L[N ](u;λ) satisfy (3.6)

and (3.7). Let ϕ : R0 → S0 be a homomorphism to an algebra S0. Applying it to the equa-
tions (3.5), (3.6) and (3.7) we conclude that the functions sϕ

m(u) = ϕ(s[N ]
m (u)) coincide with

the functions defined by (3.5) with the L-operator Lϕ(u;λ) = ϕ
(
L[N ](u;λ)

)
and satisfy (3.6)

and (3.7).
Consider the homomorphism ϕ0 : T0 → U(gln)⊗ Ãn defined by the formulae

ϕ0(t̃ii) =
∑
k 6=i

θ′(λik)
θ(λik)

ekk −
∂

∂λi
, ϕ0(t̃ij) =

1
θ(λij)

eij for i 6= j,

ϕ0(hk) = ekk and ϕ0(∂λk
) = ∂λk

. Let ϕ[N ] : R0 → U(gln)⊗N ⊗ Ãn be a homomorphism defined
as ϕ[N ] = ϕ0 ⊗Ãn

· · · ⊗Ãn
ϕ0︸ ︷︷ ︸

N

. Then the operator Lϕ[N ]
(u;λ) = ϕ[N ]

(
L[N ](u;λ)

)
coincides with

the L-operator (3.10) corresponding to the homomorphism ρ = ρ{v}. The functions s
ρ{v}
m (u)

defined by (3.5) with Lϕ[N ]
(u;λ) satisfy (3.6) and (3.7). Analogously, considering ϕ = (Π1 ⊗

· · · ⊗ ΠN ) ◦ ϕ[N ] we obtain the Gaudin L-operator corresponding to the representation Π{v} =
(Π1 ⊗ · · · ⊗ΠN ) ◦ ρ{v}. Thus we derive the following proposition.

Proposition 3. Let Πk : U(gln)→ EndVk be representations and L(u;λ) be the elliptic Gaudin
L-operator corresponding to the homomorphism Π{v} = (Π1 ⊗ · · · ⊗ ΠN ) ◦ ρ{v}. Then sm(u)
defined by the formula (3.5) with this L(u;λ) satisfy (3.6) and (3.7). These are integrals of
motion for the dynamical elliptic gln Gaudin model.

So we have shown that the L-operator (3.10) corresponding to the certain representation
ρ : U(gln[z, z−1]) → R0 = EndV defines a commutative family sm(u). We conjecture that this
is true for any homomorphism ρ.

Conjecture 1. For any homomorphism ρ the corresponding L-operator (3.10) defines a com-
mutative family sm(u) by the formula (3.5), that is sm(u) satisfy (3.6) and (3.7).

For the case n = 2 this conjecture can be proved using a certain dynamical elliptic L-operator
constructed in [21]. In notations of that paper this is the L-operator L̄(u, λ) constructed from
the L-operator L+

λ (u). The entries of L̄(u, λ) belong to the certain algebra R = U~g (via some
embedding) and the degeneration of this L-operator gives the L-operator (3.10) for ρ = id.4

Thus the L-operator for ρ = id defines functions sid
m(u) satisfying (3.6) and (3.7). The L-

operator for the arbitrary homomorphism ρ defines function sρ
m(u) = ρ

(
sm(u)

)
, applying ρ to

the relations (3.6) and (3.7) for sid
m(u) we conclude that sρ

m(u) satisfy the same relations.
For the general n this conjecture can be proved in the same way. For example, it follows from

the Conjecture 5.1 of the paper [16]. There the authors present an analogue of the L-operator
L+

λ (u) for the quantum group Uq,p(ŝln). The existence of a twist relating this L-operator with
an analogue of L̄(u, λ) can be easily proved.

4The degeneration of this algebra R = U~g with zero central charge K = 0 and without co-central charge is
R0 = R/~R = U(gln[z, z−1]).
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Theorem 2 with Proposition 3 provide us a method to construct the quantum elliptic Gaudin
model for general n in analogy to the rational case treated in [13]. Let us firstly note that the
connection whose determinant Q(u, ∂u) provides a generating function for quantum Hamilto-
nians is the KZB connection. Moreover this construction allows to establish important relations
of the elliptic Gaudin model with the Langlands correspondence program. The construction of
the characteristic polynomial Q(u, ∂u) called the Universal G-oper in this case provides us

• a universal construction of the commutative family;

• a universal description of the eigenvalue problem;

• a relation between the solutions of the KZB equation and the wave-functions of the Gaudin
model;

• a relation with the centre of the affine algebra at the critical level

analogously to the results of [22, 23] in the rational case.
Usually the elliptic Gaudin model defined by the L-operator

L̃(u;λ) =
n∑

ij=1

Eij ⊗ e+
ji(u;λ) (3.13)

with the currents (3.11), (3.12) or, more generally, with the currents (3.8), (3.9). In the next
subsection we describe the relation of the L-operator (3.13) with the L-operator L(u;λ).

3.3 Twisting of a classical dynamical L-operator

First we consider the twists of dynamical r-matrices for arbitrary Lie algebras. Let g be a (in
general, infinite-dimensional) Lie algebra, g⊗g be a tensor product completed in some way and
h ⊂ g be an n-dimensional commutative subalgebra called Cartan subalgebra. Let us fix a basis
{ĥ1, . . . , ĥn} of h. An element r(λ) ∈ g⊗ g depending on n dynamical parameters λ1, . . . , λn is
called a dynamical classical r-matrix if r(12)(λ) + r(21)(λ) ∈

(
g⊗ g

)g and it satisfies the classical
dynamical Yang–Baxter equation

[[r(λ), r(λ)]] +Dλ

(
r(λ)

)
= 0 (3.14)

where

[[a(λ), b(λ)]] =
[
a(12)(λ), b(13)(λ)

]
+
[
a(12)(λ), b(23)(λ)

]
+
[
a(13)(λ), b(23)(λ)

]
, (3.15)

Dλ

(
a(λ)

)
= −

n∑
i=1

ĥ
(1)
i

∂a(23)(λ)
∂λi

+
n∑

i=1

ĥ
(2)
i

∂a(13)(λ)
∂λi

−
n∑

i=1

ĥ
(3)
i

∂a(12)(λ)
∂λi

.

The space
(
g⊗g

)g consists of the elements x ∈ g⊗g such that [x, y⊗1+1⊗y] = 0 for all y ∈ g.
The brackets in the right hand side of (3.15) mean the commutators in U(g)⊗ U(g)⊗ U(g).

Lemma 6. Let r̃(λ) and f(λ) be elements of g ⊗ g. Suppose that f(12)(λ) + f(21)(λ) ∈
(
g ⊗ g

)g
and

[[f(λ), f(λ)]] + [[̃r(λ), f(λ)]] + [[f(λ), r̃(λ)]] +Dλ

(
f(λ)

)
= 0.

Then, r̃(λ) is a dynamical classical r-matrix if and only if the matrix r(λ) = r̃(λ) + f(λ) is
a dynamical classical r-matrix. The element f(λ) is called classical dynamical twist.
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Consider the loop algebra g = gln[z, z−1] with Cartan subalgebra h spanned by the elements
ĥk = ekk. This is the Lie algebra of constant diagonal matrices. Let r(λ) be a dynamical
classical r-matrix and let πu : gln[z, z−1] → End Cn be the standard evaluation representation
defined as πu : eijz

k 7→ Eiju
k. Since πu is faithful the matrix r can be represented by the matrix

r(u, v;λ) = (πu ⊗ πv)r(λ) ∈ End Cn ⊗End Cn[[u, u−1, v, v−1]], where the dependency of u and v
is understood in the formal way. Each homomorphism ρ : U(gln[z, z−1]) → R0 defines the L-
operator L(u;λ) = (πu ⊗ ρ)r(λ) satisfying the dynamical rLL-relations (3.2) with the r-matrix
r(u, v;λ).

Let r(u, v;λ) ∈ End Cn ⊗ End Cn[[v]]((u)) be the r-matrix r(u− v;λ) (formula (3.3)) under-
stood as a formal series with coefficients in End Cn⊗End Cn. Relation (2.3) implies that the cor-
responding element r(λ) is a dynamical classical r-matrix. The matrix L(u;λ) = (πu⊗ρ)r(λ) co-
incides with the L-operator (3.10) corresponding to the homomorphism ρ : U(gln[z, z−1])→ R0.

Consider the following twist

f(λ) =
∑
i6=j

θ′(λij)
θ(λij)

eii ⊗ ejj . (3.16)

It satisfies the conditions of the Lemma 6. Indeed, the twisted r-matrix r̃(λ) = r(λ) − f(λ) is
represented by the matrix

r̃(u, v;λ) = r(u, vλ)− (πu ⊗ πv)f(λ) =
θ′(u)
θ(u)

n∑
i=1

Eii ⊗ Eii +
∑
i6=j

θ(u− λij)
θ(u)θ(−λij)

Eij ⊗ Eji,

where (πu⊗πv)f(λ) =
∑
i6=j

θ′(λij)
θ(λij)

Eii⊗Ejj is the representation of the twist (3.16). One can check

the equalities [[f(λ), f(λ)]] = [[̃r(λ), f(λ)]] + [[f(λ), r̃(λ)]] = Dλ

(
f(λ)

)
= 0 applying homomorphism

(πu ⊗ πv). So that the matrix r̃(λ) also satisfies (3.14).
The twisted L-operator L̃(u;λ) = (πu ⊗ ρ)r̃(λ) satisfies the rLL-relations (3.2) with r-

matrix r̃(u, v;λ) and the relation (3.4) with hk = ρ(ĥk) = ρ(ekk). It coincides with the L-
operator (3.13) related with the L-operator L(u;λ) via the formulae

Lij(u;λ) = L̃ij(u;λ), Lii(u;λ) = L̃ii(u;λ) +
∑
k 6=i

θ′(λik)
θ(λik)

hk,

where j 6= i. The characteristic polynomial from Theorem 2 in these terms takes the form

Q(u, ∂u) = det

 ∂

∂u
− D̂λ + L̃(u;λ) +

∑
i6=j

Eii
θ′(λij)
θ(λij)

hj

 . (3.17)

Remark 2. Calculating determinant (3.17) modulo Anh[[u−1, u]][∂u] in the n = 1 and n = 2
cases we can omit the sum

∑
i6=j

Eii
θ′(λij)
θ(λij)

hj in the determinant. However for n > 3 one can not

simplify it in this way, because even in the case n = 3 omitting this sum we lose the following
term of Q(u, ∂u) (mod Anh[[u−1, u]][∂u]):

−2
(

θ′(λ12)
θ(λ12)

+
θ′(λ23)
θ(λ23)

)
L̃13(u;λ)L̃31(u;λ).

3.4 The sl2 elliptic Gaudin model

Let us relate the generating function Q(u, ∂u) in n = 2 case with the generating function
describing the sl2 elliptic Gaudin model [18, 19, 24]. The latter one corresponds to the gl2 elliptic



Manin Matrices, Quantum Elliptic Commutative Families and Elliptic Gaudin Model 19

Gaudin model defined by a representation ρ : U(gl2[z, z−1])→ R0 such that ρ : e+
11(u)+e+

22(u) 7→
0. For example, ρ = (p⊗· · ·⊗p)◦ρ{v}, where p(e11+e22) = 0, p(e11−e22) = e11−e22, p(e12) = e12,
p(e21) = e21. Then the L-operator takes the form

L̃(u;λ) =
(

h+(u)/2 f+
λ (u)

e+
λ (u) −h+(u)/2

)
,

where λ = λ12 = λ1 − λ2 and the half-currents are

h+(u) = e+
11(u)− e+

22(u) =
N∑

s=1

θ′(u− vs)
θ(u− vs)

(
e
(s)
11 − e

(s)
22

)
,

e+
λ (u) = e+

12(u;λ) =
N∑

s=1

θ(u− vs + λ)
θ(u− vs)θ(λ)

e
(s)
12 ,

f+
λ (u) = e+

21(u;λ) =
N∑

s=1

θ(u− vs − λ)
θ(u− vs)θ(−λ)

e
(s)
21 .

Since the L-operator depends only on the difference λ = λ1− λ2 we can restrict Q(u, ∂u) to the
space A = {a ∈ A2 | (∂λ1 + ∂λ1)a = 0} ⊂ A2 coinciding with C((λ12)). Let A = R0 ⊗ A[∂λ]
then the values of the functions sm(u) belong to N = NA(h) = {x ∈ A | hx ∈ Ah}. Since
ρ : h1 + h2 → 0 the operator D̂λ in this representation has the form H∂λ, where H = E11−E22.

Now we calculate the column determinant (3.17):

Q(u, ∂u) = det
(

∂

∂u
− D̂λ + L̃(u;λ)− θ′(λ)

θ(λ)
h

2

)
= det

(
∂
∂u − ∂λ + h+(u)/2− θ′(λ)

θ(λ) h/2 f+
λ (u)

e+
λ (u) ∂

∂u + ∂λ − h+(u)/2− θ′(λ)
θ(λ) h/2

)

=
(

∂

∂u

)2

− θ′(λ)
θ(λ)

h
∂

∂u
− Sλ(u),

where h = h1 − h2 and Sλ(u) is the following N -valued function

Sλ(u) =
(
∂λ − h+(u)/2

)2 + ∂uh+(u)/2 + e+
λ (u)f+

λ (u) mod Ah,

which commutes with itself: [Sλ(u), Sλ(v)] = 0 mod Ah. Using the commutation relation
[e+

λ (u), f+
λ (u)] = − ∂

∂uh+(u) +
( θ′(λ)

θ(λ)

)′
h one obtains the generating function for the sl2 elliptic

Gaudin Hamiltonians:

Sλ(u) =
(
∂λ − h+(u)/2

)2 +
(
e+
λ (u)f+

λ (u) + f+
λ (u)e+

λ (u)
)
/2 mod Ah.

This generating function was considered and used in [18, 19] to find the eigenfunctions of this
model.

3.5 Quantum powers for the Gaudin model

The quantum powers for the elliptic Gaudin models are defined in terms of the operator LD(u) =
L(u;λ)− D̂λ. The first two quantum powers of this operator coincide with its ordinary powers:
L[0]

D (u) = 1, L[1]
D (u) = LD(u). The others are defined by the following recursive formula

L[k+1]
D (u) = LD(u)L[k]

D (u) +
∂L[k]

D (u)
∂u

.
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Considering the Newton identities for the Manin matrixM = ∂
∂u +LD(u) = ∂

∂u +L(u;λ)− D̂λ

we conclude that the traces of the quantum powers form an alternative commuting family of
functions for the elliptic Gaudin model:[

tr
(
L[k]

D (u)
)
, tr
(
L[m]

D (v)
)]

= 0 mod Anh.

The proof of this formula is the same as for the rational Gaudin model. See details in [5].
Instead of the quantum powers of LD(u) one can consider “simplified” quantum powers

LD(u)L[m−1]
D (u). Their traces also form the commuting family of functions defining the same

integrable system:[
tr
(
LD(u)L[k−1]

D (u)
)
, tr
(
LD(v)L[m−1]

D (v)
)]

= 0 mod Anh.

In particular, this family includes the trace of the ordinary second power

tr
(
LD(u)2

)
= tr

(
(L(u;λ)− D̂λ)2

)
.

4 Conclusion

In Section 2 we have constructed a commutative family starting with the Felder R-matrix. All
results of that section are valid if we would start with another dynamical R-matrix satisfying
R(−~;λ) = B(λ)A(12) for some invertible matrix B(λ). The universality of this method also
implies that one can consider an arbitrary L-operator satisfying dynamical RLL-relations. In
other words, it can be applied to a wide class of models which are described by using a dynamical
R-matrix. Moreover, the integrals of motion for the models corresponding to a non-dynamical
R-matrix can be obtained in the same way, or more precisely as it was done in [13] for the
rational case. In particular, it should work for the XY Z-model or other models described by
the Belavin R-matrix.

The use of the Manin matrices is important to provide the universality of our method due to
the universality of that notion. First, the characteristic polynomials of Manin matrices are key
objects to obtain the commutative family of the (elliptic) gln Gaudin model by the degeneration.
Then the Manin matrices are used to relate the constructed commutative families with another
important class of commutative families – the traces of the quantum powers. The Manin matrices
and their characteristic polynomials find their applications to many important problems in the
theory of integrable systems. It is also convenient to use the properties of Manin matrices to
prove commutativity of the constructed families.

Analysing the trigonometric limit we have noticed that L-operators related with the Hopf
algebra Uq(ĝln), such as the L-operator of the XXZ-model, gives also a Manin matrix after
some simple twisting. This means that the corresponding quantum determinants, characteristic
polynomials, quantum powers and Newton identities can be written in terms of the ordinary
anti-symmetrizers A(1,...,m) by using the theory of Manin matrices, while consideration of the
non-twisted L-operators leads to the using of q-deformations of these anti-symmetrizers and of
a q-analogue of the Manin matrices.

In Section 3 we showed that the degeneration of each dynamical elliptic operator L(u;λ)
gives a commutative family for the corresponding degenerated L-operator L(u;λ). To justify the
obtained results for a given L(u;λ) one have to prove the existence of the corresponding L(u;λ).
We considered the L-operators L(u;λ) defined by some homomorphism ρ : U(gln[z, z−1])→ R0

or a representation ρ : U(gln[z, z−1]) → EndV . We discuss the existence of the corresponding
L-operators L(u;λ) presenting them explicitly or referring to other works.

For the representations ρ = Π{v} we present the corresponding L(u;λ) using the notion of
the small elliptic quantum group suggested in [14]. To obtain the commutative family in the



Manin Matrices, Quantum Elliptic Commutative Families and Elliptic Gaudin Model 21

case of arbitrary homomorphism ρ : U(gln[z, z−1]) → R0 it is sufficient to construct L(u;λ)
corresponding to ρ = id. In the gl2 (technically sl2) case the L-operator L(u;λ) corresponding
to ρ = id in fact constructed in [21]. For the general gln (technically sln) case the (non-
twisted) L-operator L(u;λ) corresponding to ρ = id is written in [16] as a conjecture. One
also need to relate the R-matrix using in [16] with the Felder R-matrix by some twist as in
Subsection 2.3. The existence this twist can be quite easily established using the ansatz F =
exp

(
~
2

∑
i6=j ϕij(λ)ĥi ⊗ ĥj

)
, where ϕij(λ) = −ϕji(λ) are C[[~]]-valued functions. Let us finally

remark that the degeneration of this twist gives the classical twist considered in Subsection 3.3:
F = 1 + ~

2 f + o(~).
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