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LiDAR-Only Crop Navigation for Symmetrical Robot

Gabriel FREITAS OLIVEIRA, Franck MERCIER, Remy GUYONNEAU

LARIS - System Engineering Research Laboratory of Angers - University of Angers, FRANCE

Abstract

This paper presents a robust navigation approach for autonomous agricultural robots based on LiDAR data. This navigation ap-

proach is divided into two parts: a find lines algorithm and a control algorithm. The paper proposes several find lines algorithms

(based on PEARL/Ruby approach) that extract lines from a LiDAR data set. Once the lines have been processed from the data set,

a control algorithm filters those lines and, using a fuzzy controller, generates the wheel speed commands to move the robot among

the crop rows. This navigation approach was tested using a simulator based on ROS middle-ware and Gazebo (the source codes of

that simulation are available on github). The results of the simulated experiments show that the proposed approach performs well

for a large range of crop configurations (with or without considering weeds, with or without holes in the crop rows...).

Keywords: Crop Navigation, LiDAR Measurements, Line extraction, Fuzzy Controller, ROS/Gazebo

1. Introduction

1.1. Context

The development of robotic tools for agriculture is a grow-

ing field. Developments are exploring a variety of tasks ranging

from weeding robots [1, 2] to harvesting robots [3, 4]. Most of5

the platforms being developed aim to be autonomous.

In order for a mobile robot, agricultural or not, to be au-

tonomous it must be able to move in its environment. For an

agricultural application, in market gardening for instance, the

robot must be able to follow the crop rows, regardless of the10

weather conditions, the surrounding luminosity or the configu-

ration of the field.

Most recent work considers GPS or camera data for navi-

gation [5, 6]. But those sensors do not work in all conditions.

Indeed, at the edge of a forest or in a greenhouse, the GPS re-15

ceiver is degraded. Depending on the position of the sun, cam-

era images may not allow robust navigation. In this context, we
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hypothesize that only the use of data from several sensor tech-

nologies can provide robust autonomy. This is why, without

aiming to compete with the previously mentioned approaches,20

this paper proposes an approach based on LiDAR1 data. This

sensor technology has the advantage of being less dependent

to ambient light (as opposed to a camera) and does not require

satellite communication (as opposed to a GPS). Thus it can be

used when camera or GPS fail to provide workable data. The25

work presented in this paper can be seen as a navigation brick

which will be fused with others in future work.

A mentioned just above, the work presented in this paper

aims to propose a robust approach for the navigation of a sym-

metrical robot based on LiDAR sensor data only. This work is30

a direct continuation of the work presented in [7]. The original-

ities presented here are mainly:

• The improvement of the existing find lines algorithm (Fig-

ure 2 introduces the find lines end). As we were adapt-

ing the find lines algorithm named Ruby in [7] we sig-35

nificantly improved the approach by offering new refine-
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ments (detailed in Section 2). The interested reader can

got to Section 4 for the algorithm behavior comparison;

• The setup of filters and a fuzzy controller to have a full

navigation workflow. The previous work mainly focused40

on the find line algorithm. At the end, the robot were

only able to move straight forward between two rows.

The control algorithm presented in this paper (Section 3)

allows the simulated robot robot to move autonomously

in the entire field. Note that considering a symmetrical45

robot eases the row changing step;

• The development of a new simulation based on ROS and

Gazebo. It has been noticed that the work presented in

[7], mainly the simulator, was not easily reusable, as it

was a proprietary software developed by the Naio Tech-50

nology french company. Furthermore, as this simulator

was not designed for academic experiments, the algo-

rithm comparisons were done by processing screenshots

of the simulated trajectory results. To overcome those

limitations, it was decided to implement a new simula-55

tion (the ones presented in this paper) based on ROS2

middle-ware and Gazebo (Section 4). Note that all the

new simulator source codes and documentation are avail-

able in [8].

1.2. Overview of the approach60

Using LiDAR data, without prior knowledge of the field, the

objective is for the robot to be able to autonomously navigate

between the rows. The considered robot is a symmetrical two

wheeled differential robot. The navigation approach presented

in this paper can be divided into two parts: a find lines algorithm65

and a control algorithm, as depicted in Figure 1.

To be able to navigate among the crops, it is needed to iden-

tify the crop rows from the LiDAR data. This step correspond

to the find lines process of the approach and is depicted in Fig-

ure 2. The reader should note that it is assumed that the robot70

is equipped with 2D LiDAR sensor(s) and that the sensor(s)
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Figure 1: Overview of the approach: the LiDAR sensor provides points, from

those points lines (models) are extracted and from those lines the motor speeds

are deduced.

can detect the crop plants and the weeds (i.e. the LiDAR is low

enough or the plants are high enough). In other words the plants

have to be detected by the sensors otherwise this approach can

not be applied...75

The find lines algorithm thus provides a set of models (i.e.

a set of lines) that best fit the points detected by the sensor(s).

Those models (lines) are then filtered in order to hopefully cor-

respond to actual rows in the crop. This filtering is done by

the control algorithm, which also provides a fuzzy controller to80

maintain the robot in the middle of the rows.

Section 2 presents several find lines algorithms while Sec-

tion 3 presents the considered control algorithm. Section 4

presents the designed simulation and the results obtained when

testing the algorithms. Finally Section 5 concludes this paper.85

1.3. Notations

To ease the reading of this paper, Table 1 resumes the con-

sidered notations.

2. Find lines algorithms

As explained in the introduction, this paper is based on the90

work depicted in [7] and more precisely on the Ruby algorithm.

For a better understanding, this so called Ruby algorithm is

again presented here (Section 2.1). Then, the novelties brought

to this algorithm are presented in Section 2.2.

2.1. The Ruby algorithm95

The Ruby algorithm is based on the Pearl method presented

in [9]. Pearl, thus Ruby, is a method that aims at minimizing
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Figure 2: The find lines problem: The objective is to identify the crop rows

from LiDAR data. The left part of the figure depicts a top view of the scene (a

robot moving between two crop rows), the middle part depicts the data from the

sensors (i.e. points corresponding to plants) and the right part shows an ideal

result from the find lines algorithm (that is the left and right crop rows have

been identified from the LiDARs data set).

p ∈ R2 A 2D point (provided by the LiDAR sensor for

instance), p = (xp, yp)

L j A model (a line for the crop navigation case), L j :

f j(x) = a jx + b j

Li = {L j} A set of models

L−1 A set of models from the previous call of find lines

Ln A set of filtered models, Ln = {L1, L2, ..., Ln}

n The number of filtered models

L(p) The model associated to the point p

E(Li) The total energy of the model set L

EN (Li) The penalty energy of associating close points to

different models

E∅(Li) The outlier energy of the model set L

EL(L j) The energy of the model L j

P(L j) The set of points that are associated to the model

L j, P(L j) = {p ∈ Z|L(p) = L j}

Z = {p} the set of all the points

Z∗ a set of points based on Z, such that all the points

that are close enough in Z are fused together

||X|| The euclidean distance of the X expression

ψ j Number of models parallel to model L j

ρ, λ, ζ, τ Constants, heuristically chosen

δ(X) A function that equals 1 if the X expression is true,

0 otherwise

N The set of neighbor points

ϕ j Fitness criteria for Ruby Genetic

xr The position of the robot between two rows

θr The orientation of the robot in the crop

d The distance between the rows (constant over the

all crop)

Table 1: Notations

a function, called energy. In the later, a model L j : f j(x) =

a jx +b j corresponds to a line, and Li depicts a set of models. A

point p (an obstacle detected by the LiDARs) is associated to a100

model L(p). Note that L(p) could be the empty model L∅ (if p

is an outliers for instance). All those notations are resumed in

3



Table 1.

2.1.1. The energy function

The considered energy function is described in Equation 1.105

E(Li) = E∅(Li) + EN (Li) +
∑

L j∈Li\{L∅}

EL(L j). (1)

For a set of models Li, the energy E(Li) is divided into

three terms: the outlier energy E∅(Li), Equation 2, the penalty

energy EN (Li), Equation 3 and the sum of all the model ener-

gies EL(L j), Equation 6. Those terms are detailed in the later.

The outlier energy E∅(Li) aims at taking into account the

points that are not associated to a model (i.e. those that are

associated to the empty model L∅). It is defined as

E∅(Li) = ρ ·
∑

p∈P(L∅)

, (2)

with
∑

p∈P(L∅)

the number of points in the current empty model110

L∅ ∈ Li and ρ a constant value chosen heuristically. As it is

assumed that the LiDAR will detect more crops than weeds, it

is appropriate to penalize the points that are not attached to any

model (i.e. outliers, i.e. weeds).

The penalty energy aims at limited the fact that two close115

points (according to the euclidean distance) are associated to

two different models. This energy is defined as

EN (Li) = λ ·
∑

(p,q)∈N

wpq · δ(L(p) , L(q)), (3)

with N the set of neighbor points such that an element (p, q) ∈

N corresponds to two points p and q in the same neighborhood,

with p associated to the model L(p) and q associated to the

model L(q). λ is a constant chosen heuristically. δ(L(p) , L(q))

is defined as

δ(L(p) , L(q))

 1 if L(p) , L(q)

0 otherwise
, (4)

and

wpq = exp
−||p − q||2

ζ2 , (5)

with ||p − q|| the euclidean distance between the points p and q

and ζ a constant chosen heuristically.

Search models
- step 1 -

Merge and
delete

- step 2 -

Initialize
- step 0 -

End

Test
conditions

energy
increased?

Recover last
models

- step 4 -

alpha-
expansion
- step 3 -

maximum
iterations
met?

energy
decreased?

Figure 3: Overview of the Ruby method.

Finally, the energy of a model L j is defined as

EL(L j) =
∑

p∈P(L j)

||p − L j||, (6)

with ||p− L j|| the euclidean distance between a point p attached120

to the model L j and that model.

2.1.2. The Ruby algorithm

The Ruby algorithm is presented in Figure 3 and detailed in

Algorithm 1. The different steps are explained in the later.

step 0: Line 1 of the algorithm. It corresponds to the initial-125

ization. The initial set of models L0 is initialized with

the one found at the previous find line computation L−1
i .

Note that if it is the first call ever of find lines, the initial

set of models is initialized with only an empty model:

L−1
i = {L∅} with P(L∅) = Z. This is relevant because130

in a crop navigation context, it is assumed that between

two LiDAR scans, the robot will sense mostly the same

crops and weeds: the rows will not be completely differ-

ent from two consecutive find line calls...

step 1: Lines 3 to 7 of the algorithm. It picks 3 random points135

(p, q, z) in L∅ and computes the best model (linear regres-

sion) that fits those points. This creates a new model that

is added to the model set. This process is then repeated
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Data: Z, L−1
i

Result: Li

1 L0 = L−1
i , E(L0) = +∞;

2 for i = 1, ..., max iteration do

3 while
∑

p∈P(L∅)

< threshold do

4 (p, q, z) ∈ P(L∅); P(L∅) = P(L∅) \ {p, q, z};

5 L j = arg min
L j
||p − L j|| + ||q − L j|| + ||z − L j||;

6 P(L j) = {p, q, z}; Li = Li
⋃

L j;

7 end

8 for ∀L j ∈ Li \ {L∅} do

9 for ∀L′j ∈ Li \ {L∅, L j} do

10 if ||L j − L′j|| < threshold then

11 P(L j) = P(L j)
⋃

P(L′j); Li = Li \ {L′j};

12 end

13 end

14 L j = arg min
L j

∑
p∈P(L j)

||p − L j||;

15 end

16 for ∀L j ∈ Li \ {L∅} do

17 if EL(L j)∑
p∈P(L j)

·ψ j
< threshold then

18 ∀p ∈ P(L j), L(p) = L∅; Li = Li \ {L j};

19 end

20 end

21 for ∀p ∈ Z do

22 L(p) = L j|∀L′j ∈ Li \ {L∅}, ||p − L j|| < ||p − L′j||;

23 if ||p − L(p)|| > threshold then

24 L(p) = L∅;

25 end

26 end

27 E(Li) = E∅(Li) + EN (Li) +
∑

L j∈Li\{L∅}

EL(L j);

28 if E(Li) > E(Li−1) then

29 Li = Li−1;

30 end

31 end
Algorithm 1: Ruby algorithm

until half of the outliers are attached to a model (or below

a threshold).140

step 2.1: Lines 8 to 15 of the algorithm, the merge part. It merges

all the models that are too close to each other.

step 2.2: Lines 16 to 20 of the algorithm, the delete part. It re-

moves all the models that do not met the constraint

EL(L j)∑
p∈P(L j)

·ψ j

< threshold, (7)

where EL(L j) is the energy of the model L j as described

in Equation 6 and ψ j is the number of models parallel to

the model L j. ψ j is defined as

ψ j =
∑

Lk∈Li\{L j,L∅}

δ(L j//Lk), (8)

with

δ(L j//Lk)

 1 if |a j − ak | < threshold

0 otherwise
, (9)

a j and ak being the slopes of the models L j and Lk.

step 3: Lines 21 to 27 of the algorithm. All the points are de-

tached from their models and reattached to the closest145

model. Then the new energy is computed for the com-

plete set of models.

step 4: Lines 28 to 30 of the algorithm. If the energy of the new

set of models is worst (bigger) than the previous itera-

tion, the previous set of models is kept instead of the new150

computed one.

2.2. Ruby suggested refinements

In the later are presented refinements for the Ruby algo-

rithm. Those refinements are part of the originality of the work

presented in this paper. They lead to an improvement of the155

robot navigation results as shown in Section 4.

2.2.1. Ruby Genetic

The Pearl and Ruby algorithms are very similar to genetic

algorithms. To enhance this resemblance, the Ruby genetic re-

finement proposes to modify the delete part of the step 2 (Figure

5



3). In the classical Ruby approach a threshold is used (Equation

7) to decide if a model has to be deleted or not. Ruby genetic

proposes a fitness criteria instead, named ϕ j and defined as

ϕ j =
b2

j + τ · EL(L j)

ψ j ·
∑

p∈P(L j)

, (10)

with EL(L j) defined in Equation 6, ψ j defined in Equation 8 and

τ an heuristically chosen constant. This criteria allows to sort

all the models, and only the best ones are kept, the others are160

deleted.

2.2.2. Ruby Genetic One Point

The idea of this refinement is based on to assumption that

one plant of the crop will generate several LiDAR readings.

Thus, the data that are close to each other can be resumed into165

one merged point as they may belong to the same plant. This

leads to the computation of a new point set named Z∗. Algo-

rithm 2 describes how it is done.

Data: Z

Result: Z∗

1 Z∗ = ∅;

2 for ∀p ∈ Z do

3 if first iteration then

4 p∗ = p;

5 end

6 else

7 if ||p∗ − p|| < threshold then

8 p∗ =
p∗+p

2 ;

9 end

10 else

11 Z∗ = Z∗
⋃
{p∗};

12 end

13 end

14 end
Algorithm 2: The computation of Z∗

For this Ruby Genetic One Point refinement, the input data

is not longer Z as defined in Algorithm 1, but Z∗. The rest of170

the algorithm remains the same as for the Ruby genetic.

2.2.3. Ruby Genetic One Point Positive / Negative

This refinement proposes to change the way of searching

models (step 1 in Figure 3). For the classical Ruby approach,

three points are randomly taken from the empty model L∅. But175

assuming that the robot will most of time be parallel to the crop

rows, and not perpendicular to them, the points can be separated

into to sets Ple f t(L∅) and Pright(L∅), defined as

Ple f t(L∅) = {p ∈ P(L∅)}|yp < 0 (11)

Pright(L∅) = {p ∈ P(L∅)}|yp > 0 (12)

Then the research for models is done into those two subsets.

Thus, the step 1 of the Ruby algorithm (Figure3), i.e. lines 3 to180

7 of Algorithm 1, becomes what is detailed in Algorithm 3.

An example of this new model research approach is depicted in

Figure 4.

Data: Li

Result: Li

1 while
∑

p∈Ple f t(L∅)

< threshold do

2 (p, q, z) ∈ Ple f t(L∅); Ple f t(L∅) = Ple f t(L∅) \ {p, q, z};

3 L j = arg min
L j
||p − L j|| + ||q − L j|| + ||z − L j||;

4 P(L j) = {p, q, z}; Li = Li
⋃

L j;

5 end

6 while
∑

p∈Pright(L∅)

< threshold do

7 (p, q, z) ∈ Pright(L∅);

Pright(L∅) = Pright(L∅) \ {p, q, z};

8 L j = arg min
L j
||p − L j|| + ||q − L j|| + ||z − L j||;

9 P(L j) = {p, q, z}; Li = Li
⋃

L j;

10 end
Algorithm 3: Ruby Genetic One Point Positive / Negative

- Search models - step 1

2.2.4. Ruby Genetic One Point Positive / Negative Infinity

The last considered refinement was proposed after noticing185

that as a point can only be associated to one model, a ”bad

model” can consume a point of a potentially ”good model”, as

it can be noticed in the middle part of Figure 4. To handle this

6
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Figure 4: The idea behind considering Ple f t(L∅) and Pright(L∅). Without do-

ing so, there is a chance that the model research considers improbable models

regarding the orientation of the robot (middle part of the illustration) reducing

the chance of finding the ”best models”. On the other hand, while dividing the

model research into left and right points, as the rows should be on the left or on

the right, the chances of finding the correct models is increased (right section

of the illustration).

limitation this new refinement proposes to allows a point to be

attached to several models at the same time.190

The main drawback of this approach is that it is time con-

suming: all the points have to be checked all the time.

3. The control algorithm

Once models (lines) have been extracted from the points

(data set from the LiDAR), a control can to be processed based195

on those models. The control algorithm presented here can be

divided into three main steps: an initialization step, a filtering

step and a controller. Those steps are depicted in Figure 5.

3.1. Initialization

The idea of the overall approach is to allow the robot to au-200

tonomously navigation into a crop without any prior knowledge

of the field. To overcome the lack of prior information (width

and lenght of the rows), it is assumed that:

• The field is organized in straight lines, as it is the case

most of the time [10, 11];205

Find Lines

Control

Filtering

Initialization

Fuzzy
Controller

Wheel speeds

Figure 5: Details of the control approach.

• The distance between two rows does not change inside a

crop;

• The initial position of the robot is somewhere between

two crop rows;

• The initial orientation of the robot is parallel with the210

crop rows.

Based on those assumptions, an initialization step has been

developed. The idea is to compute the distance between the

rows from the models given by the find lines algorithm before

starting to move the robot.215

To that aim, the initialization process extracts from the mod-

els the closest pair of models that are equidistant to the robot

(the robot should be in the middle of two rows for its initial po-

sition) and have a slope close to 0 (the robot should be parallel

to the crop rows). Once a pair of models is found, the distance220

between the rows is computed as follow (Figure 6):

cos(θ) =
d

|b1 − b2|

d = cos(θ) · |b1 − b2|

d = cos(arctan(a1)) · |b1 − b2|

d = cos(arctan(a2)) · |b1 − b2|

with

cos(arctan(a)) =
1

√
a2 + 1

(13)

7



d

L1 : y = a1x+b1

L2 : y = a2x+b2

θ

θ

b1

b2

y

x

Figure 6: Computing the distance between two parallel models L1 and L2. Note

that a1 = a2 for the models to be parallel.

it can be concluded that

d =
|b1 − b2|√

a2
1 + 1

=
|b1 − b2|√

a2
2 + 1

(14)

To be more robust, this distance computation is done several

times (according to several results of the find lines algorithm)

and an average of all the computed distances is done to get an225

estimation of the distance between two rows. This estimation is

then stored and will be use for the robot’s navigation.

3.2. Filtering

The find lines algorithm, as detailed in Section 2, provide

models (lines) according to a point set (LiDAR data). But most230

of time some returned models do not correspond to effective

rows in the field (Figure 7). It is then needed to filter the pro-

vided models in order to only keep the ones that are consistent

with what it is known of the field (previously computed models

and the distance between the rows). This filter is presented in235

Algorithm 4 and detailed in the later.

The required data are:

L: the set of models provided by the find lines algorithm;

Ln,−1: the filtered model set of the previous iteration.

Note that Ln,−1 = {L1,−1, L2,−1, ..., Ln,−1} with n a defined240

number of models that is constant during the robot nav-

igation. The i index represents the position of the row

identified by the model (from left to right);

L0

L1

L2

Figure 7: Assuming that from the top configuration, the find lines algorithm

returns the models L0, L1 and L2 (bottom part of the figure). The expected

behavior of the filter is to keep the models L0 and L1 (removing the model L2)

and knowing the distance d between the rows, to compute the missing models

(doted lines).

L1 L2

L3

L4

d d d

Figure 8: The filtered models Ln, with n = 4, resulting of the configuration

depicted in Figure 7. The models L2 and L4 are computed according to L0, L1

and d.

8



Data: L, Ln,−1, d

Result: Ln

1 Ln = ∅;

2 for ∀L j ∈ L do

3 for i = 1, ..., n do

4 if ||L j − Li,−1|| < threshold then

5 Li = L j;

6 Ln = Ln
⋃
{Li};

7 end

8 end

9 end

10 for i = 1, ..., n do

11 if Li < Ln then

12 Li : f (x) = ax + bibest + d(ibest − i)
√

a2
+ 1;

13 Ln = Ln⋃{Li};

14 end

15 end
Algorithm 4: Model filtering

d: the distance between the rows, computed during the

initialization step (Section 3.1).245

The result of the filtering is a filtered model setLn = {L1, ..., Ln},

with n a fixed number of models. Note that a filtered model Li

may be extracted from the models L provided by the find lines

algorithm or may be computed according to other filtered mod-

els L j and the row distance d. Figure 8 depicts an expected250

filtered result according to the situation described in Figure 7.

The filtering algorithm can be divided into two parts: search-

ing for expected models and computing missing models.

The search for expected models, lines 2 to 9 of Algorithm

4, is based on the assumption that between two iterations the255

robot will not move significantly, i.e. the rows are mostly at the

same place than they were for the previous iteration. It means

that the new models should be close to the previous ones. Thus,

from the new model set L provided by the find lines algorithm,

we search all the models that are close enough (according to260

a threshold) to the previous filtered ones Ln,−1. If a match is

found, this new model is added to the new filtered set Ln. Note

that if during this step, no match is found, the previous filtered

models is kept (Ln = Ln,−1). If this keep happening for several

iterations then the robot is considered lost and stops navigating.265

Once all the models from L have been tested, some ex-

pected filtered model Li may not have found a match in the

model set L (at most n − 1). That is, they have to be computed

regarding the found filtered models and the row distance d, lines

10 to 14 of Algorithm 4. The computation of a missing model

Li is done as

Li : f (x) = ax + bibest + d · (ibest − i) ·
√

a2
+ 1 (15)

with

a the average slope of the found filtered models

a =

∑
Li∈Ln

ai

∑
Li∈Ln

(16)

ibest the index of the best match

ibest = arg min
i
||Li − Li,−1|| (17)

At the end of this filter step we have n models that should

be representative of the crop and the robot configuration. Those

are the models that are considered by the controller presented

in the next section.270

3.3. Fuzzy controller

A fuzzy controller is a classical approach when dealing with

mobile robot control, and it can be considered when dealing

with agricultural robot [11, 12]. The objective of the controller

detailed in the later is, according to the filtered models Ln, to275

compute the needed wheel speeds for the robot to move be-

tween the rows. The fuzzy controller presented here has three

steps:

• Fuzzification: transforms the inputs into fuzzy inputs (Sec-

tion 3.3.1);280

• Rule evaluation: defines how the inputs impact the out-

puts (Section 3.3.2);

9



position

0
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very left left center right very right

-0.5 0 0.5 1
1

orientation

0

1
0°-30° +30°

very left left center right very right

-15° +15°

0-pi/6 pi/6-pi/12 pi/12

Figure 9: Input membership functions.

• Defuzzification: from the fuzzy outputs, generated by the

fuzzy inputs and the rules, defines a non fuzzy output

(Section 3.3.3).285

3.3.1. Inputs of the controller

From the filtered models Ln we are only interested into the

model Lle f t that is directly to the left of the robot and the model

Lright that is directly to the right of the robot. For instance, in

the example depicted in Figure 8, Lle f t = L2 and Lle f t = L3.290

The orientation of the robot in the field is computed as:

θr =

∑
Li∈Ln

arctan(ai)

n
(18)

The position of the robot between the models Lle f t and Lright

is defined as

xr =


|ble f t |

|bright |
− 1 if |ble f t | < |bright |

1 − |b
le f t |

|bright |
otherwise

, (19)

Those are the inputs of the fuzzy controller (xr and θr). To

proceed to the fuzzification, the membership functions depicted

in Figure 9 are considered. For instance a position of -0.25 will

be considered as 0.5 left and 0.5 center.

3.3.2. The rules295

Before defining the rules it is needed to define the fuzzy

output membership functions. Those functions are the same for

the left and the right wheels (note that the considered robot is a

two wheeled differential robot) and are depicted in Figure 10.

wheel speed

0

1

0

stopslow
backward

middle
backward

normal
backward

slow
forward

middle
forward

normal
forward

maxmax/3 2*max/3-max/3-2*max/3-max

Figure 10: Output membership functions. Note that the left wheel speed and the

right wheel speed have the same membership function, and that ”max” means

the maximal possible speed value.

centerleftvery left right very right

center

left

very left

right

very right

speed

normal forward
middle forward

slow forward
stop

slow backward
middle backward
normal backward

o
ri
e
n
ta
ti
o
n

position

Figure 11: Rule chart. Here are detailed the rules for the left and right wheel

speeds according to the position and orientation of the robot.

The last part of the fuzzy controller is to define its rules.300

Those rules aim to keep the robot at the center of two rows, and

parallel to them. Figure 11 shows a graphical representation of

the defined rules and Table 2 details them.

3.3.3. Operators summary

Here are listed the considered operators for the fuzzy con-305

troller:

AND operator: minimum

OR operator: maximum

Implication method: Algebraic product

Aggregation method: maximum310

Defuzzification method: the centroid method. This cor-

responds to the ”center of mass” of the results.

10



Left wheel speed

Position

VL L C R VR

Orientation

VL MF MF SF NF NF

L SF SF MF SF MF

C NF NF NF MF SF

R MF SF SF SB SB

VR MF SF SB MB MB

Right wheel speed

Position

VL L C R VR

Orientation

VL MB MB SB SF MF

L SB SB SF SF MF

C SF MF NF NF NF

R MF SF MF SF SF

VR NF NF SF MF MF

Table 2: Here is depicted a more classical representation of the controller rules.

L: left, R: right, V: very, C: center, M: middle, S: slow, N: normal, F: forward,

B: backward

Front LiDAR Back LiDAR Left wheel Right wheel

Differential drive
controller

Find Lines Find Lines

Control

Gazebo

Physical simulation

ROS nodes

sensor_msgs
LaserScan

sensor_msgs
LaserScan

visualization_msgs
Marker

visualization_msgs
Marker std_msgs

Float64 std_msgs
Float64

Figure 12: The simulator overview

4. Simulation and results

To test the algorithms in several controlled environments, a

simulation has been designed based on ROS middle-ware and315

Gazebo robot simulation. Those tools are widely used in robotic

community, and thus in agricultural robot [13, 14, 15]. It can

be noticed that all the source code of this simulation can be

download on github [8]. This section presents the developed

simulation but also the methodology considered while testing320

the algorithms and the results of the conducted tests.

4.1. The simulation

Figure 15 presents an overview of the simulation. Gazebo is

used to simulate the physics of the system: it generates the Li-

DAR measurements from the environment and the robot’s pose,325

and moves the simulated robot according to the wheel speed.

ROS nodes (i.e. programs) were developed to implement

the find lines algorithms and the control algorithm.

To handle the fuzzy controller, the open source FuzzyLite

C++ library was used [16].330

4.1.1. The robot

The simulated robot is a two wheeled differential robot,

with two caster wheels for stability reasons. Figure 13 depicts

the considered robot.

11



(a) General view (b) Side view

(c) Top view

Figure 13: The simulated robot: the white wheels are the differential wheels,

the black balls are the caster wheels and the blue/red boxes are the LiDARs.

Note that the blue rays depict the LiDAR measurements.

The robot is equipped with two LiDAR sensors, one in the335

front and one is the back of the robot. Both LiDAR character-

istics are:

• update rate: 40 Hz

• number of measurements: 360

• minimum angle: − π2340

• maximum angle: π
2

• minimum range: 0.1 m

• maximum range : 4 m

• resolution : 0.01 m

• measurement noise: a Gaussian noise with a 0 mean and

a 0.01 standard deviation is considered

fnoise(x) =
1

0.01
√

2π
e−

1
0.0002 x2

(20)

Two LiDARs are used so that the robot will have the same345

amount of information from its front than from its back. This

symmetry helps to handle the change of row: indeed, the robot

(a) Crop 1 (b) Crop 2

(c) Crop 3 (d) Crop 4

Figure 14: Simulated test crops.

still detects the crops when going out of a row as the ”back”

LiDAR still detects the plants behind it. Furthermore, the robot

does not have to turn around when changing row, it just has to350

go ”backward”.

4.1.2. The Simulated Environments

Four fields were designed to test the algorithms. From the

easiest to the hardest, the set ups are:

• Crop 1, Figure 14(a). This corresponds to the easiest con-355

figuration: that is a five row crop, with equal rows, perfect

plant positioning and without any weed.

• Crop 2, Figure 14(b). In this configuration weeds are still

not considered. Nevertheless, the plants are randomly

spaced among the rows.360

• Crop 3, Figure 14(c). This is the first configuration with

weeds (depicted as 50 red dots on the Figure).

• Crop 4, Figure 14(d). This corresponds to the hardest

configuration: that is a five uneven rows with holes and

weeds (100 in this case).365

It can be noticed that the distances between the rows are not

the same for all the simulated crops (but remain the same inside

a crop).

12



4.2. Methodology

The following experiments were designed to test two things:370

• How the presented refinements affect the find lines results

• Considering the presented controller, if the robot is able

to autonomously navigate in the crops and how robust is

this navigation

To do that, the same control approach (described in Section375

3) has been tested with 6 different find lines algorithms: The

two already published algorithms Pearl [9] and Ruby [7], and

the 4 proposed Ruby refinements (Section 2.2) that are Ruby

Genetic (RG), Ruby Genetic One Point (RGOP), Ruby Genetic

One Point Positive/Negative (RGOPPN) and Ruby Genetic One380

Point Positive Negative Infinity (RGOPPNI).

Those 6 navigation algorithms (a navigation algorithm is the

association of a find lines algorithm with the control approach)

were tested in the four previously described environments (Fig-

ure 14).385

A test run is done as follow: given a crop and a navigation

algorithm, the robot is initially placed at the (0,0) position of the

environment and oriented according to the rows (as shown in

Figure 15). Then the robot has to autonomously move through

the rows until it reaches the end of the fifth row. Figure 15390

presents an example of successful trajectory in the crop 3 envi-

ronment. Before each run, the robot has only three information:

• It is at the beginning of the first row between two plant

rows;

• It has to navigate into five rows;395

• The first new row will be on the left.

Aside from that, it does not know the number of outliers, the

distance between the rows, neither the length of the rows...

It can be noticed that for all the runs, the algorithms con-

stants and thresholds do not changed, even when changing of400

crop environment. Furthermore, when starting a new run all the

information gathered during the previous run (e.g. the distance

d) are removed.

0 5 10
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0

1

2

3

4

5

6
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trajectory

X-coorditate (m)

Y
-
c
o
o
r
d
i
t
a
t
e
 
(
m
)

Figure 15: Example of trajectory: the robot starts at the position (0,0), parallel

to the crops, as depicted in the figure. Then it has to reach the end of the

fifth row without running over the plants. This figure depicts an example of

successful trajectory.

The full experiment is presented in Algorithm 5: all the al-

gorithms are tested 5 times over all the crops.405

Data: control algo, constants

1 find lines algos = {Ruby, RG, RGOP, RGOPPN,

RGOPPNI}constants;

2 crops = {crop 1, crop 2, crop 3, crop 4};

3 for ∀ find lines ∈ find lines algos do

4 for ∀ crop ∈ crops do

5 for i = 1, .., 5 do

6 Run a test with find lines and control algo

in crop;

7 Save the results ;

8 end

9 end

10 end
Algorithm 5: Test plan

4.3. Experiment results

Several criteria were considered to compare those algorithms.

• The ratio of successful runs. It is computed as the num-

ber of successful runs divided by the total number of runs

(i.e. 5). A run is considered as successful when the robot410

managed to reach the end of the fifth row without running

over the ”green” plants, i.e. the crop. Figure 15 presents
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Figure 16: Example of a failed trajectory: the robot starts reached the end of

the fifth row but run over crop plants.

an example of successful run while Figure 16 presents an

example of failed run. Table 3 details the results accord-

ing to this criteria.415

• The mean squared error when the robot navigated be-

tween two rows (not considering the changing row ma-

neuver). In a perfect situation, the robot should be ex-

actly equidistant to the direct left and right rows at any

time (once again, not considering the changing row ma-420

neuver). Table 4 details the results according to this cri-

teria.

• At the end of a row, the LiDAR sensor will have fewer

points than it would have between two rows (because it

detects less plants due to the end of the crop). That is, in425

order to have a fair representation of the following crite-

ria, they were obtained over the 500 first iterations only

(that is before reaching the end of the first row).

– The average execution time of the find lines algo-

rithm. As the control algorithms are the same for430

all the tested navigation approaches, it is only rel-

evant to test the find lines execution time (the only

part that differs from one navigation algorithm to an

other). Table 5 details the results according to this

criteria.435

– The average number of points processed by the find

lines algorithms. Some find lines algorithms con-

Successful runs (%)

Crop 1 Crop 2 Crop 3 Crop 4 Mean

Ruby 0.8 0.8 1 0.2 0.75

RG 0.8 0.8 0.4 0 0.5

RGOP 1 1 1 1 1

RGOPPN 1 1 1 0.8 0.95

RGOPPNI 1 1 1 0 0.75

Table 3: The ratio of successful runs regarding the total number of tries (5 in

this case). A result of 1 means that the algorithm never failed, a result of 0

means that the robot never reached the end of the field without crushing crop

plants.

Mean squared error (mm2)

Crop 1 Crop 2 Crop 3 Crop 4 Mean

Ruby 2900 360 120 5500 2200

RG 8700 3100 89 9640 5300

RGOP 65 430 67 750 320

RGOPPN 300 700 140 2240 840

RGOPPNI 67 310 260 60000 15000

Table 4: The positioning error that the robot made when moving between two

crop rows. In a perfect situation, the robot should be exactly in the middle of

the two crop rows, and thus should have a 0 error.

sider the raw point data set Z when some consider

the filtered one Z∗ (Section 2.2.2). That is, the aver-

age number of points, presented in Table 6, allows440

to verify that for the 500 first iterations the find lines

algorithms considered the same amount of points

(all the Z and all the Z∗ have consistent sizes).

– The average execution time per 100 points. As the

find lines algorithm do not consider the same amount445

of points (Z versus Z∗), the execution time presented

in Table 5 may be considered as not comparable re-

garding only the find lines processes. That is, Table

7 presents an execution time normalized on the pro-

cessing of 100 points.450
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Average execution time (ms)

Crop 1 Crop 2 Crop 3 Crop 4 Mean

Ruby 4.14 21.15 9.39 9.61 11.07

RG 5.25 8.12 6.56 6.11 6.51

RGOP 2.35 3.44 2.9 2.7 2.84

RGOPPN 1.58 3.57 2.8 2.37 2.58

RGOPPNI 3.3 6.37 4.42 4.05 4.5

Table 5: The average execution time for the find lines algorithms (LiDAR data

to models) during the 500 first iterations of each run.

Average number of points

Crop 1 Crop 2 Crop 3 Crop 4 Mean

Ruby 91 179.3 122.54 120.36 128.3

RG 91.16 178.1 124.53 120 128.4

RGOP 40.1 73.12 54.18 47.16 53.64

RGOPPN 40 73.15 54.19 47.12 53.61

RGOPPNI 40.08 73.96 54.19 47.17 53.85

Table 6: The average number of points considered by the find lines algorithms

during the 500 first iterations of each run.

5. Conclusion

5.1. Result interpretations

Regarding the data presented before, it appears that filter-

ing the input data with a genetic approach (Ruby Genetic One

Point) increases the robustness and improves the precision and455

the computation time. As a mater of fact, combining the Ruby

Genetic One Point find lines algorithm with the control algo-

rithm provides a 100% success rate over the five experimental

crops (Table 3). It also appears to be the most stable approach

(Table 4). However, adding the positive/negative filtering and460

allowing a point to be associated to several models at the same

time seem to perform worse than RGOP (Table 3).

The number of processed points is consistent with what is

expected: the first algorithms named Ruby and RG are consid-

ering the same amount of points, when the algorithms RGOP,465

RGOPPN and RGOPPNI are using less points (due to the filter

point set Z∗). This can be noticed in Table 6.

Execution Time /100 Points (ms)

Crop 1 Crop 2 Crop 3 Crop 4 Mean

Ruby 4.54 11.79 7.66 7.98 7.99

RG 5.75 4.55 5.26 5.09 5.11

RGOP 5.86 4.7 5.35 5.7 5.4

RGOPPN 3.95 4.88 5.16 5.02 4.75

RGOPPNI 8.2 8.61 8.15 8.58 8.38

Table 7: The average execution time per 100 points for the find lines algorithms

(LiDAR data to models) during the 500 first iterations of each run.

The considered sensors have a rate of 40 Hz (Section 4.1.1),

thus they provide a data set every 25ms. According to Table 5,

the RGOP approach needs less then 3ms to process a data set.470

That is, it can be used in real time with this sensor, as can all

the other algorithms.

It must be stressed out that the crops (more precisely the

weed positions) were randomly generated (the source code for

the generation of the simulated crops are available here [8]).475

Which suggests that this navigation approach will provide good

results in a fair range of crop configurations. Even if the ap-

proach has still to be tested in real conditions, the simulation

results are more than encouraging.

5.2. Discussion and future work480

The presented find lines algorithm named Ruby Genetic

One Point associated to the control algorithm described in this

paper appears to be quite robust. Regarding the previous work,

the find lines algorithm has been improved and a complete con-

trol algorithm has been detailed and validated using a ROS/Gazebo485

simulation.

Currently, we are developing an experimental platform (Fig-

ure 17). This robot will be a symmetrical straddle robot equipped

with several LiDAR sensors. The navigation approach pre-

sented in this paper will then be adapted to this robot in order to490

do experiments in actual fields. This adaptation will especially

have to manage the fact that the robot moves in two different

rows at the same time (while the left wheels are in a row the

right ones are in the next row). Furthermore, after some tries
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Figure 17: The currently developed platform.

designing a differential straddle robot, it has been decided to495

use steering wheels instead. That is, the fuzzy controller will

have to be modified to fit a steering wheel robot model.

Finally, even if the results are encouraging, it seems that

we are reaching the limits of LiDAR data only navigation. To

have a fully robust navigation approach fusing data from several500

types of sensors seems to be needed. The LiDAR data can not,

for instance, differentiate a weed from an animal...

That is why we will next focus our work on adding new

sensors to the robot (camera, global positioning system...) and

developing a framework to add those sensors into our naviga-505

tion algorithm.
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