Accéder directement au contenu Accéder directement à la navigation
Article dans une revue

Pharmacologically active microcarriers associated with thermosensitive hydrogel as a growth factor releasing biomimetic 3D scaffold for cardiac tissue-engineering

Abstract : The challenge of tissue engineering of the infarcted heart is how to improve stem cell engraftment, survival, homing, and differentiation for myocardial repair. We here propose to integrate human adipose-derived stem cells (ADSCs) and pharmacologically active microcarriers (PAMs), a three-dimensional (3D) carrier of cells and growth factors, into an injectable hydrogel (HG), to obtain a system that stimulates the survival and/or differentiation of the grafted cells toward a cardiac phenotype. PAMs are biodegradable and non-cytotoxic poly(lactic-co-glycolic acid) (PLGA) microspheres conveying cells on their 3D surface that deliver continuously and in a controlled manner a growth factor (GF) acting on the transported cells and on the microenvironment to improve engraftment. The choice of the appropriate GF and its protection during the formulation process and delivery are essential. In this study two GFs, hepatocyte growth factor (HGF) and insulin-like growth factor (IGF-1), have been encapsulated under a solid state in order to limit their interaction with the polymer and conserve their integrity. GF precipitation conditions and release profile from PAMs have been first investigated before combining them to ADSCs. The released IGF-1 and HGF induced the protein synthesis of cardiac differentiation markers GATA4, Nkx2.5, cTnI and CX43 after 1 week in vitro. Moreover, the GFs accelerated cell cycle progression, as suggested by the increased expression of Cyclin D1 mRNA and the widespread distribution of Ki67 protein. Integrating PAMs within the thermosensitive P407 hydrogel increased their elastic properties but decreased the transcription of most cardiac markers. In contrast, CX43 expression increased in ADSC–PAM–GF complexes embedded within the hydrogel compared to the ADSCs cultured alone in the absence of P407. These results suggest that particulate scaffolds releasing HGF and IGF-1 may be beneficial for applications in tissue-engineering strategies for myocardial repair and the association with a P407 hydrogel can increase substrate elasticity and junction connections in ADSCs.
Type de document :
Article dans une revue
Liste complète des métadonnées

https://hal.univ-angers.fr/hal-03173134
Contributeur : Okina Université d'Angers Connectez-vous pour contacter le contributeur
Soumis le : jeudi 18 mars 2021 - 11:35:39
Dernière modification le : mardi 30 mars 2021 - 08:19:41
Archivage à long terme le : : lundi 21 juin 2021 - 08:54:47

Fichier

2014_karam_et_al_j_control_rel...
Accord explicite pour ce dépôt

Identifiants

Collections

Citation

Jean-Pierre Karam, Claudio Muscari, Laurence Sindji, Guillaume Bastiat, Francesca Bonafè, et al.. Pharmacologically active microcarriers associated with thermosensitive hydrogel as a growth factor releasing biomimetic 3D scaffold for cardiac tissue-engineering. Journal of Controlled Release, Elsevier, 2014, 192, pp.82-94. ⟨10.1016/j.jconrel.2014.06.052⟩. ⟨hal-03173134⟩

Partager

Métriques

Consultations de la notice

25

Téléchargements de fichiers

65