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Abstract
By using a powerful reductive perturbation technique, or multiscale analysis, a
generalized modified Korteweg–de Vries partial differential equation is derived,
which describes the physics of few-optical-cycle dissipative solitons beyond
the slowly varying envelope approximation. Numerical simulations of the
formation of stable dissipative solitons from arbitrary breather-like few-cycle
pulses are also given.

PACS numbers: 42.65.Tg, 42.65.Re, 05.45.Yv

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Ultrafast nonlinear optics has led to the production, measurement and control of pulses with
duration down to a few optical cycles, see [1]. The study of these intense optical pulses has
opened the door to a bunch of applications in various fields such as light matter interaction,
high-order harmonic generation, extreme nonlinear optics [2] and attosecond physics, which
deals with both measurement and control of the subcycle field evolution of few-cycle light
pulses [3, 4]. The theoretical studies of the physics of few-cycle pulses (FCPs) concentrated
on three classes of governing dynamical models: (i) the quantum approach [5–8], (ii) the
refinements within the framework of the slowly varying envelope approximation (SVEA) of
the nonlinear Schrödinger-type envelope equations [9–11] and (iii) non-SVEA models [12–16].
In media with cubic optical nonlinearity (Kerr media) the physics of FCPs can be adequately
described beyond the SVEA by using different models, such as the modified Korteweg–de
Vries (mKdV) [12], sine-Gordon (sG) [13, 14] or mKdV-sG equations [15, 16]. It is worthy
to mention that the mKdV and sG equations are completely integrable by means of the inverse
scattering transform method, see, for example, [17, 18], whereas the mKdV-sG equation is
completely integrable only if a certain condition between its coefficients is fulfilled [19].
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The above-mentioned evolution equations admit breather solutions, which are suitable for
describing the physics of few-optical-cycle solitons. Moreover, a non-integrable generalized
Kadomtsev–Petviashvili equation (a two-dimensional version of the mKdV model) was also
put forward for describing the two-dimensional few-optical-cycle soliton propagation [20, 21].

Of particular interest for the physics of FCPs is the mKdV-sG equation; thus, by using
a system of two-level atoms, it has been shown in [15] that the propagation of ultrashort
pulses in Kerr optical media is fairly well described by a mKdV-sG equation. It is worthy
to mention that this quite general model was also derived and studied in [22, 23]. However,
another model equation for describing the physics of FCPs known as the short-pulse equation
(SPE) has been introduced, too [24–27], and some vectorial versions of the SPE have also
been investigated [28–30]. Another kind of SPE containing an additional dispersion term
has been introduced in [31]. A multi-dimensional version of the SPE was also put forward
[32] and self-focusing and pulse compression have been studied, too [33]. The SPE model
has been considered again in its vectorial version, and the pulse self-compression and FCP
soliton propagation have been investigated in detail [34]. Recently, we have revisited the main
dynamical models mentioned above, which describe the (1+1)-dimensional propagation of
few-optical-cycle pulses in transparent media [35]. We have thus proved that the dynamical
model based on the mKdV-sG partial differential equation was able to retrieve the results
reported so far in the literature, and so demonstrating its remarkable mathematical capabilities
in describing the physics of FCP optical solitons [35].

However, there are only a few works devoted to the study of few-optical-cycle dissipative
solitons. It is worthy to mention the works of Rosanov et al [6, 7], where both the formation
of few-optical-cycle dissipative solitons in active nonlinear optical fibres and the collisions
between them were investigated. The theory of mode-locked lasers essentially relies on mean
field models derived within the SVEA. One of the most important of such models is Haus’
master equation [36], which is in fact the stationary version of the complex Ginzburg–Landau
(CGL) equation (see [37, 38]). The short pulses are fairly well described by soliton solutions
to the CGL equation, which are unstable for the cubic CGL and stable for the cubic-quintic
one. Both the cubic and the quintic CGL models have been derived from a detailed description
of the laser cavity, in the case of fibre lasers mode locked by means of nonlinear polarization
rotation or figure 8 ones [39–41]. Note that, for such lasers, descriptions of the cavity by means
of full numerical resolution of propagation equations along it also have been used, see e.g. [42].
The Lorentz–Haken equations, commonly considered as a general model of a laser setup, have
been reduced to the Swift–Hohenberg equation [43], which can be considered as a perturbed
CGL equation [37]. It is commonly admitted that mode locking requires some saturable
absorber [44] or some setup having an equivalent effect; nonlinear polarization rotation and
nonlinear loop mirror have been mentioned above. An alternative technique is the Kerr lens
mode locking (KLM) [45–47], which combines self-focusing due to the Kerr effect and the
use of an aperture to select the highest intensities. KLM is not a mere effective amplitude-
dependent gain/loss effect, but a complex phenomenon which involves the spatiotemporal
intra-cavity pulse dynamics. The existing theory of KLM is based on nonlinear geometrical
optics for Gaussian beams, hence within the SVEA, and the initial approach of [45–47] was
not fundamentally modified in more recent studies (see e.g. [48, 49]). The technique is very
efficient even in the case of strong self-focusing and two-cycle pulses (see e.g. [50]), in which
the validity of the approximations used in the theoretical developments is not ensured.

The aim of this paper is to derive a generic partial differential equation describing the
dynamics of dissipative FCP solitons in a laser cavity filled with two-level atoms, beyond
SVEA model equations. Starting from the Maxwell–Bloch equations, by using a multiscale
perturbation approach [51] we derive a non-SVEA version of the Lorenz–Haken equations
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[52, 53]. We have obtained a generic equation describing dissipative few-optical-cycle solitons
in the form of a generalized mKdV equation containing additional terms accounting for gain
and losses. Thus in addition to the standard term accounting for linear losses (proportional
to the optical field) we get a term proportional to the second-order derivative of the optical
field with respect to the time variable, which accounts for gain and a second, regularizing term
proportional to the fourth-order derivative with respect to the time variable of the optical field,
which accounts for losses.

This paper is organized as follows. In section 2 we introduce a model based on the
Maxwell–Bloch equation for an ensemble of two-level atoms, which takes into account both
the losses due to the optical field reflection at the laser cavity boundaries and the ones occurring
in the medium itself, by means of two additional atomic levels. In section 3 we evaluate the
mirror losses and we get the corresponding modified Maxwell–Bloch equations. Section 4
is devoted to the multiscale approach up to the third order in a certain small perturbation
parameter ε so that the orders of magnitude of the various physical effects are determined by
means of their order in an expansion in a series of powers of ε. The outcome of this reductive
perturbation method (or multiscale analysis) is a generalized mKdV equation containing gain
and loss terms. In section 5 we discuss the necessity of introducing an additional, regularizing
term in the generalized mKdV equation obtained in section 4, which accounts for losses in the
system. Section 6 is devoted to the numerical resolution of the generalized mKdV equation
which fairly well describes the physics of few-optical-cycle dissipative solitons. Finally,
section 7 concludes the paper.

2. Maxwell–Bloch equations

More than three decades ago, Haken [53] used a single-mode unidirectional ring laser model
(with a homogeneously broadened line) described by the Maxwell–Bloch equations and after
some approximations showed its mathematical equivalence with an appropriate model of
the Lorenz oscillator [52]. The aim of this work is to derive a non-SVEA version of the
Lorenz–Haken equations. We start from the Maxwell–Bloch equations

∂2
z E = 1

c2
∂2
t (E + P̂), (1)

with

P̂ = NTr (ρ̂μ̂). (2)

Here N is the atomic density, μ̂ is the dipolar momentum operator and ρ̂ is the density matrix,
which obeys the Schrödinger equation

ih̄∂t ρ̂ = [Ĥ0 − μ̂ · Ê, ρ̂] + i�̂ − iR̂, (3)

where [·, ·] holds for the commutator operation, �̂ accounts for gain and R̂ for relaxation of
the components of the density matrix ρ̂. In the following we restrict ourselves to the case
of linear polarization, that is, we consider scalar fields only; thus, we next write E, P̂ , μ̂

instead of E, P̂, μ̂. In equation (3) Ĥ0 is the free Hamiltonian of the atomic system under
consideration. However, losses must also be taken into account. A phenomenological loss
term has to be introduced in such a way that it can be compensated by gain. It is necessary
that the time evolution of losses (or their spectral profile) be able to adjust to the gain. Hence
not only losses due to reflection at the cavity boundaries, but also the ones of the medium must
be taken into account. Therefore we need to introduce a second transition, independent of the
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former (pumped) one, which only produces absorption. The corresponding free Hamiltonian
is thus

Ĥ0 =
(

H0 0
0 H ′

0

)
= h̄

⎛
⎜⎜⎝

ωa 0 0 0
0 ωb 0 0
0 0 ω′

a 0
0 0 0 ω′

b

⎞
⎟⎟⎠ . (4)

Here, as we said before, we consider a set of four-level atoms with the Hamiltonian Ĥ0,
corresponding to two distinct two-level transitions with frequencies � = ωb − ωa and
�′ = ω′

b − ω′
a , respectively. The dipolar momentum is

μ̂ =
(

μ 0
0 μ′

)
=

⎛
⎜⎜⎝

0 μ 0 0
μ∗ 0 0 0
0 0 0 μ′

0 0 μ′∗ 0

⎞
⎟⎟⎠ , (5)

the gain is

�̂ =
(

� 0
0 0

)
=

⎛
⎜⎜⎝

λa 0 0 0
0 λb 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ (6)

and the relaxation term is

R̂ =
(

R 0
0 R′

)
=

⎛
⎜⎜⎜⎜⎝

γa(ρa − α) γtρt 0 0

γtρ
∗
t γaρb 0 0

0 0 γ ′
a(ρ

′
a − α) γtρ

′
t

0 0 γ ′
t ρ

′∗
t γ ′

aρ
′
b

⎞
⎟⎟⎟⎟⎠ , (7)

with α = 1 in standard normalization, and

ρ̂ =

⎛
⎜⎜⎝

ρa ρt ρ13 ρ14

ρ∗
t ρb ρ23 ρ24

ρ31 ρ32 ρ ′
a ρ ′

t

ρ41 ρ42 ρ ′∗
t ρ ′

b

⎞
⎟⎟⎠ . (8)

Next it can be easily shown that the matrix ρ̂ is diagonal:

ρ̂ =
(

ρ 0
0 ρ ′

)
, (9)

i.e. ρ13 = ρ14 = ρ23 = ρ24 = ρ31 = ρ32 = ρ41 = ρ42 = 0. Thus the Schrödinger
equation (3) splits into two equations of the same form for the two diagonal blocks. Each of
these equations describes a two-level transition.

3. Evaluation of mirror losses

In order to derive a differential term which can account for the losses due to the mirrors, we
consider a strongly simplified cavity model, in which only the mirrors are taken into account.
Consider thus a cavity with length L, and mirrors with amplitude reflection coefficients r. We
will describe it as a periodic medium with period L and periodically localized losses with a
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loss factor (1 − r2). Let z be the variable along the cavity axis and v the light velocity. During
a given round trip, between the two mirrors, the electric field is expressed as

E(z, t) = E+(z − vt) + E−(z + vt). (10)

Let us now consider the wave E+, which propagates towards positive z during the considered
round trip. For large times, its expression becomes complicated. More precisely, after the
propagation time T = nL/v, the wave has covered a distance Z = nL, and the wave has
crossed the mirror n times; hence,

E+(z + Z, t + T ) = rnE+(z − vt) = e(vT ln r)/LE+(z − vt). (11)

For large n, a continuous approximation is performed, assuming that (11) holds for any real
T. A change of variables then yields for large enough t ′

E+(z
′, t ′) = E+(z

′ − vt ′) e−β(t ′−t0), (12)

where we have the set β = −(v ln r)/L. We find in the same way

E−(z′, t ′) = E−(z′ + vt ′) e−β(t ′−t0). (13)

Dropping the primes and setting t0 = 0 without loss of generality, and within the above
continuous approximation for large t, which in nothing else but the mean field approximation,
we get

E(z, t) = E+(z − vt) e−βt + E−(z + vt) e−βt . (14)

Then taking twice the t-derivative of (14), and making use of the relation

v (−∂zE+ + ∂zE−) e−βt = ∂tE + βE, (15)

we find that E satisfies the differential equation

∂2
t E = v2∂2

z E − 2β∂tE − β2E, (16)

or

∂2
z E = 1

v2
(β + ∂t )

2 E. (17)

Equation (17) indicates us how the Maxwell–Bloch wave equation (1) should be modified in
order to take into account the mirror losses. Equation (1) is thus replaced with

∂2
z E = 1

c2
(β + ∂t )

2(E + P + P ′), (18)

where β is the mirror loss parameter and P and P ′ are the two polarization terms corresponding
to the two distinct transitions, see section 2.

4. Multiscale approach

It is well known that the reductive perturbation method is a very powerful way of deriving
simplified, generic models describing nonlinear wave propagation and interaction in various
physics settings [51]. We next introduce scaled variables corresponding to a long-wave
approximation of mKdV type, as

τ = ε

[
t − z

(
1

V
+ εW

)]
, (19)

ζ = ε3z. (20)

5
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With respect to the standard mKdV-type scaling, expression (19) involves an additional
correction of order ε to the speed. We expand the optical field E in a power series of a
small parameter ε as

E = εE1(ζ, τ ) + ε2E2(ζ, τ ) + · · · . (21)

The corresponding power series expansions of ρ and ρ ′ start with the order ε0 quantity ρ0.
The gain �, and R are also expanded in this way. In [13] was assumed a weak damping, in
order to account for propagation in a transparent medium. No approximation of this kind is
relevant here. We indeed consider a laser setup; hence, the characteristic frequency ω0 of the
wave must be close to the resonance line, say � = ωb −ωa , and especially fall within the gain
curve. Since we use a long wave approximation, we have (at least formally) ω0 � 0. Hence
the spectral line, which is expressed typically as

1

(ω − �)2 + γ 2
t

, (22)

must extend down to ω = ω0 � 0, which happens only if its width γt has the same order of
magnitude as the central line �. The second transition, with central line �′, has been introduced
to account for cavity losses. Further, losses must be compensated by gain. Therefore it is
necessary that the bandwidths of both gain and losses have the same order of magnitude. Thus
γ ′

t must have the same order of magnitude as γt .
In order to give the physical interpretation of the present scaling, let us consider the inverse

of the spectral width γt as a reference frequency of order ε0. The long-wave approximation
means that the characteristic frequency ω0 of the wave is small with respect to γt , or conversely,
that γt is large with respect to ω0. The long-wave approximation can thus be seen as an
approximation of large bandwidth. It is indeed well known that a very large bandwidth is
required to produce ultrashort pulses.

On the other hand, the mirror loss parameter β is expanded as β = εβ1 + ε2β2 + · · · .
Hence we assume that β is small (good cavity condition). However, the order of magnitude of
β which allows dissipative soliton propagation is not specified a priori; it will arise as a result
of the computation, see below.

We use the same normalization as in [13]. Thus setting

t̃ = ct, P̃ = 4πP, ρ̃ = 4πNh̄cρ, μ̃ = μ

h̄c
, (23)

H̃0 = H0

h̄c
, ω̃a,b = ωa,b

c
, (24)

and analogously for other operators and variables with the same physical dimension, allows
us to replace the constants c, N, h̄ and 4π in equations (1), (3) by 1. In what follows we drop
the tilde. Note that, according to the change of variables (23), the trace Tr (ρ) of the density
matrix is not 1 but α = 4πNh̄c. Now let us proceed with the order-by-order resolution of the
governing equations (1)–(3).

4.1. Order 0

The Schrödinger equation for the first transition (let us call it equation (S)), at order ε0, is

0 = [H0, ρ0] + i�0 − iR0. (25)

Using

[H0, ρ0] =
(

0 −�ρt

�ρ∗
t 0

)
, (26)
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we get ρ0t = 0, and

ρ0a = α +
λ0a

γa

, ρ0b = λ0b

γa

. (27)

Due to the condition Tr ρ = α, we see that λ0b = −λ0a . We define the population inversion
as wj = ρjb − ρja for all j ; then

w0 = 2λ0b

γa

− α. (28)

We will assume that w0 > 0; hence λ0b > αγa/2 and especially λ0b > 0.
For the Schrödinger equation for the second transition, which we call equation (S ′), we

get the same results, but without pumping, and with the corresponding ‘prime’ quantities, i.e.

ρ ′
0a = α, ρ ′

0b = 0, ρ ′
0t = 0, (29)

w′
0 = ρ ′

0b − ρ ′
0a = −α < 0. (30)

4.2. Order 1

Equation (S) at order ε is

i∂τρ0 = [H0, ρ1] − E1[μ, ρ0] + i�1 − iR1. (31)

Making use of

[μ, ρj ] =
(

μρ∗
j t − μ∗ρjt μwj

−μ∗wj μ∗ρjt − μρ∗
j t

)
, (32)

and taking into account that ρ0t = 0, we get

w1 = −2ρ1a = 2ρ1b = 2λ1b

γa

, (33)

ρ1t = −μw0E1

� + iγt

. (34)

The polarization term is deduced from equation (2), which is written explicitly as

Pj = μ∗ρjt + c.c., (35)

where c.c. stands for complex conjugate. Hence

P1 = −2�|μ|2w0E1

�2 + γ 2
t

. (36)

For equation (S ′), we get analogous formulae, with λ1b replaced by 0 and w′
0 = −α.

The wave equation (18) at leading order ε3 is

1

V 2
∂2
τ E1 = (

β2
1 + 2β1∂τ + ∂2

τ

)
(E1 + P1 + P ′

1). (37)

Since P1, P ′
1 ∝ E1, equation (37) admits a nonzero stationary solution only if β1 = 0 and

1

V 2
= 1 +

2�′|μ′|2α
�′2 + γ ′

t
2 − 2�|μ|2w0

�2 + γ 2
t

. (38)

It is worthy to mention that the velocity V2 has the same expression as in [13], except that (i)
there are two terms in the above equation, one term for each of the two transitions, (ii) the line
widths γt , γ ′

t are not neglected and (iii) w0 > 0, which accounts for gain.

7
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4.3. Order 2

Equation (S) at order ε2 is

i∂τρ1 = [H0, ρ2] − E2[μ, ρ0] − E1 [μ, ρ1] + i�2 − iR2. (39)

The a-component of equation (39) is

0 = −E1(μρ∗
1t − μ∗ρ1t ) + iλ2a − iγaρ

a
2 . (40)

Then using (34) we get

w2 = 2ρ2b = −2ρ2a = 2λ2b

γa

− 4γt |μ|2w0E
2
1

γa

(
�2 + γ 2

t

) . (41)

The t-component of equation (39) is

i∂τρ1t = −�ρ2t − E2μw0 − E1μw1 − iγtρ2t , (42)

and by using (34) it yields the expression of ρ2t and hence the polarization is

P2 = −2�|μ|2
�2 + γ 2

t

(E2w0 + E1w1) +
4�γt |μ|2w0(
�2 + γ 2

t

)2 ∂τE1. (43)

For equation (S ′), we get similar results, excepting that there is no pumping (λ2b is replaced
by zero and w′

0 = −α), and w′
1 = 0.

Since β1 = 0, the wave equation (18) at perturbation order ε4 is

1

V 2
∂2
τ E2 +

2W

V
∂2
τ E1 = ∂2

τ (E2 + P2 + P ′
2) + 2β2∂τ (E1 + P1 + P ′

1). (44)

Using equation (38), the terms involving E2 vanish, and equation (44) reduces to

2W

V
∂2
τ E1 = ∂2

τ

[
−2�|μ|2
�2 + γ 2

t

E1w1 +
4�γt |μ|2w0(
�2 + γ 2

t

)2 ∂τE1 − 4�′γ ′
t |μ′|2α(

�′2 + γ ′
t

2)2 ∂τE1

]
+

2β2

V 2
∂τE1,

(45)

for which we also used equation (43) and the expression of P ′
2. Equation (45) will not admit

localized stationary solutions, except if the coefficients of ∂τE1, ∂2
τ E1 and ∂3

τ E1 are all zero.
First, we get β2 = 0, which implies that mirror losses are even smaller as previously estimated.
Second, we obtain a relationship between W and w1

W = −V �|μ|2
�2 + γ 2

t

w1, (46)

i.e. a correction w1 of order ε to the population inversion induced a correction of the same
order to the velocity. Third we are left with the relationship

4�γt |μ|2w0(
�2 + γ 2

t

)2 = 4�′γ ′
t |μ′|2α(

�′2 + γ ′
t

2)2 , (47)

i.e. the gain induced by the pumped transition compensates the losses induced by the unpumped
one, at this perturbation order. Equation (47) determines the laser threshold. An essential
feature of laser pulse propagation is the excess of gain above the threshold. It is due to the
correction term w1 to the population inversion, and fixes the magnitude of the gain term in the
evolution equation (73) obtained here governing the dynamics of few-optical-cycle dissipative
solitons (see equation (55) below), as in SVEA models of Ginzburg–Landau type [54]. On
the other hand, due to equation (38), the velocity V depends on the population inversion, and
hence a correction to the velocity arises as a consequence of the existence of the excess of
gain w1, according to equation (46).
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4.4. Order 3

Equation (S) at order ε3 is

i∂τρ2 = [H0, ρ3] − E3[μ, ρ0] − E2 [μ, ρ1] − E1 [μ, ρ2] + i�3 − iR3. (48)

The t-component of equation (48) is written as

i∂τρ2t = −�ρ3t − E3μw0 − E2μw1 − E1μw2 − iγtρ3t . (49)

Using the expression of ρ2t and equation (41), we get ρ3t and consequently the polarization is

P3 = −2�|μ|2
�2 + γ 2

t

(E3w0 + E2w1) − 4λ2b�|μ|2
γa

(
�2 + γ 2

t

)E1 +
8�γt |μ|4w0E

3
1

γa

(
�2 + γ 2

t

)2

+
4�γt |μ|2(
�2 + γ 2

t

)2 (w0∂τE2 + w1∂τE1) +
2�

(
�2 − 3γ 2

t

) |μ|2w0(
�2 + γ 2

t

)3 ∂2
τ E1. (50)

For equation (S ′) we get analogous expressions (with w′
0 = −α, w′

1 = 0, and λ2b replaced
with 0, as above).

The wave equation (18) at perturbation order ε5 is, since β1 = β2 = 0,
1

V 2
∂2
τ E3 +

2W

V
∂2
τ E2 + W 2∂2

τ E1 − 2

V
∂ζ ∂τE1 = ∂2

τ (E3 + P3 + P ′
3) + 2β3∂τ (E1 + P1 + P ′

1).

(51)

The terms involving the field E3 cancel from equation (51) due to condition (38). The terms
involving the field E2 cancel due to conditions (46) (i.e. due to the correction to speed) and
(47) (i.e. the condition that gain compensates losses). It remains the following equation for
E1:

∂ζE1 = −A∂τE
3
1 − B∂3

τ E1 − C∂2
τ E1 + D∂τE1 − �E1, (52)

with

A = 4V �γt |μ|4w0

γa

(
�2 + γ 2

t

)2 − 4V �′γ ′
t |μ′|4α

γ ′
a

(
�′2 + γ ′

t
2)2 , (53)

B = V �
(
�2 − 3γ 2

t

) |μ|2w0(
�2 + γ 2

t

)3 − V �′(�′2 − 3γ ′
t

2)|μ′|2α(
�′2 + γ ′

t
2)3 , (54)

C = 2V �γt |μ|2w1(
�2 + γ 2

t

)2 , (55)

D = 2V λ2b�|μ|2
γa

(
�2 + γ 2

t

) +
V W 2

2
, (56)

and

� = β3

V
. (57)

It is worthy to mention that for C = D = � = 0, equation (52) reduces to the mKdV
equation. The term containing the second-order derivative with respect to the time variable τ

looks like a diffusion term in a partial differential equation of Burgers’ type (see, for example,
[17] and [18]). However, if we assume λ1b = γaw1/2 > 0, i.e. for a pumping slightly above
the threshold characterized by equation (47), then C > 0 and this term becomes a gain one.
The term proportional to first-order derivative with respect to the time variable τ corresponds
to a pumping term of lower order, but its concrete contribution here is a mere change in
velocity. Thus the parameter D can be changed to any value at our convenience by means of
adequate Galilean transform. The term (−�E1) corresponds to the losses due to the mirrors,
with β3 > 0 and � > 0.
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5. An additional regularizing term

The trouble is that equation (52) is highly unstable when C is positive. Indeed, if we make a
Fourier transform of the field

E1 =
∫

Ê(ω) eiωt dω, (58)

then the Fourier transform of the gain term is

F
(−C∂2

τ E1
) = Cω2Ê, (59)

representing a gain that increases indefinitely for high frequencies. This is unphysical and
therefore equation (52) becomes clearly unstable when C > 0. Within the long-wave
approximation, the large values of ω are disregarded. However, when we attempt to solve
the asymptotic dynamical equation (52), all real frequencies are reintroduced de facto. Due
to the instability, the high frequencies become large, which is inconsistent with the scaling.
That is the origin of this unphysical behaviour. In order to force the asymptotic model to
remain in the long-wave regime, this high-frequency instability must be removed. This can
be performed in an ad hoc way by introducing an additional regularizing term proportional to(−∂4

τ E1
)
. However, the introduction of this regularizing term in the dynamical equation (52)

can also be fully justified from the multiscale perturbation analysis as follows.
First we estimate w3 from equation (48). The a-component of equation (48) is

i∂τρ2a = −E1(μρ∗
2t − μ∗ρ2t ) − E2(μρ∗

1t − μ∗ρ1t ) + iλ3a − iγaρ
a
3 . (60)

From equations (34) and the expression of ρ2t we see that both ρ1t and ρ2t are O(Ej) (we
denote O(Ej) = O(E1)∩O(E2), O

(
E2

j

) = O
(
E2

1

)∩O
(
E2

2

)∩O(E1E2), and so on); hence,
from equation (41) we get

w3 = 2λb
3

γa

+ O
(
E2

j

)
. (61)

Equation (S) at order ε4 is then

i∂τρ3 = [H0, ρ4] − E4[μ, ρ0] − E3 [μ, ρ1] − E2 [μ, ρ2] − E1 [μ, ρ3] + i�4 − iR4. (62)

The t-component of equation (62) is written as

i∂τρ3t = −�ρ4t − E4μw0 − E3μw1 − E3μw2 − E1μw3 − iγtρ4t . (63)

From the expression of ρ3t , we see that

ρ3t = −2λ2bμ

γa (� + iγt )
E1 +

iμw0

(� + iγt )
2 ∂τE1 +

μw0

(� + iγt )
3 ∂2

τ E1 + F(Ej , j � 2) + O
(
E3

j

)
, (64)

in which F
(
Ej , j � 2

)
holds for any quantity which depends on the Ej (j � 2) but not on

E1. Then by using equations (41) and (61) we find that

ρ4t = −2λ3bμ

γa (� + iγt )
E1 +

i2λ2bμ

γa (� + iγt )
2 ∂τE1 +

μw1

(� + iγt )
3 ∂2

τ E1

− iμw0

(� + iγt )
4 ∂3

τ E1 + F(Ej , j � 2) + O
(
E3

j

)
. (65)

Hence

P4 = a0E1 + b0∂τE1 + c0∂
2
τ E1 + d0∂

3
τ E1 + F(Ej , j � 2) + O

(
E3

j

)
, (66)

where the coefficients a0, b0, c0 and d0 can be easily computed, and analogously for P ′
4. In the

evolution equation (51), the quantity (E3 + P3 + P ′
3) is replaced with

(E3 + P3 + P ′
3 + εP4 + εP ′

4), (67)

10



J. Phys. A: Math. Theor. 43 (2010) 375205 H Leblond and D Mihalache

and on the right-hand side of equation (52) appears a set of corrective terms of order ε. The
terms which come from F

(
Ej , j � 2

)
would be cancelled, at following order, by analogous

terms on the left-hand side of equation (52); hence, they must be dropped. The nonlinear terms
coming from O

(
E3

j

)
will be neglected, too. Regarding the terms linear in E1, the coefficients

B, C, D, should be replaced by

B ′ = B +
εV

2
(c0 + c′

0), (68)

C ′ = C +
εV

2
(b0 + b′

0), (69)

D′ = D − εV

2
(a0 + a′

0), (70)

respectively. However, these small corrections to the coefficients can be neglected. The last
term d0∂

3
τ E1 in equation (66) (and the analogous ‘prime’ one) yields the following term:

−εV

2
(d0 + d ′

0)∂
4
τ E1, (71)

to be added to the right-hand side of (52).
The quantity d0 can be evaluated as

d0 = 2γt

(
γ 2

t − 3�2
)|μ|2w0(

�2 + γ 2
t

)3 , (72)

and analogously for d ′
0. Finally, equation (52) is replaced with the regularized one

∂ζE1 = −A∂τE
3
1 − B∂3

τ E1 − C∂2
τ E1 + D∂τE1 − G∂4

τ E1 − �E1, (73)

where

G = εV

2

(
2γt

(
γ 2

t − 3�2
)|μ|2w0(

�2 + γ 2
t

)3 +
2γ ′

t

(
γ ′

t
2 − 3�′2)|μ′|2w′

0(
�′2 + γ ′

t
2)3

)
. (74)

The partial differential evolution equation (73), which is a non-SVEA version of Lorenz–Haken
laser equation, constitutes the central result of this work. It adequately describes the physics
of few-optical-cycle dissipative solitons beyond the SVEA. The nonlinear term −A∂τE

3
1

accounts for the Kerr effect, while the term −B∂3
τ E1 accounts for dispersion. These terms

and the corresponding coefficients A and B have the same expressions as in the conservative
counterpart of equation (73), which is the mKdV equation derived in [13]. The term D∂τE1

describes a change in the pulse (phase and group) velocity. Expression (56) of D shows that this
velocity change is due to a gain effect. The three other terms account for a frequency-dependent
gain–loss: the main term is −C∂2

τ E1, which accounts for a broadband gain. However, the
width of the gain spectrum must be finite, which is ensured by the term −G∂4

τ E1. On the other
hand, linear losses must be introduced to avoid excessive amplification they are accounted
for by the term −�E1. It is thus seen that equation (73) contains all terms involved by a
one-dimensional description of a laser setup, such as nonlinearity, dispersion and frequency-
dependent gain and losses, except one term: the nonlinear gain, or effective saturable absorber.
We will see below that this term is not necessary for stabilization of the FCP.

6. Numerical simulations

The dynamical equation (73) is solved numerically by means of an exponential time
differencing scheme, of second-order Runge–Kutta type [55] and we implement absorbing
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Figure 1. Evolution of a dissipative FCP soliton.
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Figure 2. Evolution of a dissipative FCP soliton. Blue thick line: z = 26; red thin line: z = 50.

boundary conditions in the numerical simulations. We take the following numerical values of
the parameters: the nonlinear coefficient A = 1 (i.e. we consider a focusing optical medium),
the third-order dispersion coefficient B = 1, C = 0.1, which correspond to gain, G = 0.002
(corresponding to losses), D = −48.836 (a velocity adjusted in such a way that the soliton
remains in the computation box) and � = 1 (corresponding to losses). For this specific set
of parameters we obtain the stable few-optical-cycle dissipative soliton shown in figures 1
and 2. The initial field was a breather solution of the underlying mKdV equation. The
pulse was already propagated from z = 0 to z = 25 before the beginning of the numerical
simulation; however, there is still some reshaping of the pulse, because the velocity D of the
frame has been readjusted just at z = 25. Note that due to finite width of the numerical box,
the dissipative soliton is not exactly invariant with respect to a change in the value of D. The
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Figure 3. Evolution of the electric field from noise. (a) The input (z = 0). (b) Three dissipative
FCP solitons are formed (z = 31.9) (c) The interaction of many FCP solitons appears as chaotic
(z = 75).
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Figure 4. Evolution of the electric field from noise (same as in figure 3, but in the (z, t) plane).

above FCP propagates thus in a stable way. Its stabilization does not require any effective
saturable absorber, or nonlinear gain term in equation (73).

The above computation uses initial data close to the final FCP, hence describes the stability
of the pulse rather in the medium used as an amplifier than really in the laser cavity. In order
to study the latter issue, we use a random input and see whether a self-starting behaviour can
be observed. Using periodic boundary conditions, it is found that FCPs form spontaneously
(figures 3(b), and figure 4, left-hand side); however, their number in the numerical box
increases during propagation, and they interact directly or by means of other components
having a different velocity (figure 4). The result of the interaction and superposition of many
FCPs appears as irregular oscillations, with an apparently chaotic behaviour (figure 3(c), and
figure 4, right-hand side). It is incoherent light, and in this sense incoherent light can be seen
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Figure 5. Formation of a FCP soliton from noise in the presence of velocity filtering yielded by
absorbing boundary conditions.
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Figure 6. The FCP soliton formed from noise shown in figure 5 (thick blue line). The thin red
line shows the transverse variations of the linear absorption coefficient α producing the absorbing
boundary conditions (more exactly α/15).

as a superposition of FCPs. Thus, in order to produce a FCP laser, the question is not, how a
FCP can be produced, but how it can be isolated. In the frame of the numerical computation,
the absorbing boundary conditions achieve it (figure 5). However, the obtained FCP soliton
is locked to the edge of the pumped zone (figure 6). Hence the mechanism of stabilization is
closely related to the temporal localization of pumping realized this way. It strongly differs
from the situation of the figures 1 and 2, in which initial data close to the final FCP were
set. In this case, the absorbing boundary condition only ensured that the pulse did not be
submitted to large perturbation coming from the outside. It only proved pulse stability for
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the cavity working as an amplifier. The situation changes radically when the FCP is expected
to start from noise, since the perturbations also can self-start from noise. It may be thought
that an effective saturable absorber could stabilize the formation of an isolated pulse. We run
many calculations using an additional nonlinear gain/loss term in equation (73), in the (ad
hoc) form −A′E3

1 , −A′∂2
τ

(
E3

1

)
or −A′ (E2

1

)
∂2
τ E1, with various values of the coefficient A′.

The purely cubic term does not modify significantly the stability properties of the pulse, while
the other forms, which are frequency dependent, destabilize it completely, leading either to a
continuous wave or to numerical collapse depending on the sign of A′.

The absorbing boundary conditions are thus the only way to stabilize the pulse. The precise
identification of the physical mechanism they are modelling requires further investigation.
Indeed, careful observation of figure 4 shows that they act as a velocity-dependent filter. It
must be noted that a temporally localized pumping was also used in the numerical simulations
of [49]. In the strict sense, the numerical result shows that a single FCP may be formed if
the pumping is temporally localized, which can be achieved by pumping with a short pulse
(but not a FCP). On the other hand, velocity filtering is not an exotic process. It has been
used to manage the structure of soliton trains; the suppression of the highest velocities yields
a ‘cooling’ which transforms a train with a ‘gas’ structure into one with a ‘glass’, and then
‘crystal’ structure [56]. Further, recall that gain saturation is not taken into account in our
analysis. In the frame of SVEA, the gain saturation is known to limit the number of pulses
[57], and it has been shown that it could stabilize mode locking in solid state lasers [58]. The
accounting of gain saturation in the model is left for further study. A third interpretation could
be sought in the frame of KLM, since it yields a temporal response in terms of amplitude-
dependent gain/loss; it is not excluded that KLM would produce the required velocity filtering.
However, full resolution of the spatio-temporal counterpart to equation (73) is necessary to
study this eventuality. It is thus left for further study. The aim of the present paper was to
derive a non-SVEA model of a laser cavity, and to show that such an approach could describe
dissipative FCP soliton formation. It is restricted to one dimension as a first attempt in this
direction.

7. Conclusion

In conclusion, we have introduced a model based on the Maxwell–Bloch equations for an
ensemble of (2 × 2)-level atoms, which takes into account both the losses due to the optical
field reflection at the laser cavity mirrors and the ones occurring in the optical medium itself.
We have used the multiscale approach up to the third order in a certain small perturbation
parameter. As a result of this powerful reductive perturbation method, a generalized mKdV
equation containing gain and loss terms has been derived. Numerical simulations have clearly
proved its suitability for describing the physics of few-optical-cycle dissipative solitons. A
remarkable feature is that no nonlinear gain/loss term accounting for some effective saturable
absorber is required. However, a single dissipative FCP soliton is formed only if some velocity
filtering or temporal localization of pumping is introduced. The study of the mechanism
allowing to realize such effect is left for further investigation. The results obtained in this
work can also be generalized to (2+1)-dimensional few-cycle-pulse propagation models for
dissipative optical solitons.
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