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We consider the formation of ultrashort spatiotemporal optical waveforms in arrays of carbon nanotubes.
We use a short-wave approximation to derive a generic two-dimensional sine-Gordon equation, describing
ultrashort soliton evolution in such nanomaterials. This model was derived by using a rigorous application of
the reductive perturbation formalism (multiscale analysis) for the Maxwell equations and for the corresponding
Boltzmann kinetic equation for the distribution function of electrons in carbon nanotubes. We show numerically
diffractionless and dispersionless robust propagation over large distances (with respect to the wavelength) of
few-cycle (2 + 1)-dimensional spatiotemporal solitons in the form of optical breathers.
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I. INTRODUCTION

Carbon nanotubes (CNTs) are believed to be the wonder
material of this century due to the tremendous range of phys-
ical, mechanical, thermal, electronic, and optical properties
offered by such nanomaterials [1–3]. The unique characteris-
tics of CNTs have generated a strong interest in their possible
use in nanomechanical, nanoelectronic, and nanophotonic
devices. Emerging applications of CNTs using their good
thermal and electronic conductivities are flat panel displays,
field-effect transistors, etc. The use of these nanomaterials
in biosensors, chemical and pressure sensors, as well as in
biomedical applications, e.g., as drug delivery vehicles, are
also being envisaged. CNTs were synthesized in 1991 as
graphitic carbon needles [4], ranging from 4 to 30 nm in
diameter and up to 1 μm in length. That pioneering paper
of Iijima [4] was of particular importance because it brought
CNTs to the awareness of the scientific community as a whole.
Then, the large-scale synthesis [5] of carbon nanometer-size
tubes provided an impetus to research in the area of carbon
fiber growth as well as in the production and characterization
of fullerene-related materials. The synthesis of abundant
single-shell tubes with diameters of about 1 nm was reported
as early as 1993 [6]. Note that, whereas, the multishell CNTs
are formed on the carbon cathode, the single-shell tubes grow
in the gas phase, see Ref. [6].

Comprehensive studies of various nonlinear effects in CNT
arrays were performed in the past few years. Here, we mention
that discrete breathers, that is, intrinsic localized modes or
discrete solitons [7], which appear in strongly nonlinear
systems being responsible for energy localization in discrete
anharmonic lattices were studied in CNT arrays [8]. Large-
amplitude oscillating modes of carbon nanotubes that have the
additional features of being nonlinear as well as discrete were
considered in Ref. [8]. Nonlinear spin-wave propagation in
CNTs has also been considered [9]. A study of propagation of
short optical pulses in CNTs placed in dispersive nonmagnetic
dielectric media was reported recently [10]. We also mention
the recent paper on the propagation of extremely short optical
pulses in coupled graphene waveguides [11]; these (1 + 1)-
dimensional solitons can be considered as discrete optical
solitons [12], which form in such graphene waveguides.

In Ref. [13], we used a powerful reductive perturbation
technique or a multiscale analysis [14] to obtain a generic
Kadomtsev-Petviashvili evolution equation governing
the propagation of (2 + 1)-dimensional femtosecond
spatiotemporal optical solitons, alias light bullets
(LBs) [15,16] in quadratic nonlinear media beyond the slowly
varying envelope approximation (SVEA). The collapse of
ultrashort spatiotemporal pulses in cubic (Kerr-like) media
was also studied by using the multiscale analysis beyond
the SVEA, and it was obtained from the Maxwell-Bloch
equations for two-level atoms a generic cubic generalized
Kadomtsev-Petviashvili nonlinear evolution equation [17].
Ultrashort LBs described by the two-dimensional sine-Gordon
(2DsG) equation, obtained by using the multiscale analysis in
the short-wave approximation for a cubic (Kerr-like) nonlinear
medium, were studied recently [18], and it was shown that
robust few-cycle LBs may form, oscillating in both space and
time, that is, two-dimensional breathers.

In this paper, we derive, in a rigorous way by using
the reductive perturbation method [14] in the short-wave
approximation regime, the governing model in the form of
a 2DsG equation for the propagation of (2 + 1)-dimensional
spatiotemporal optical solitons in arrays of carbon nanotubes.
We show that a perturbed few-cycle plane-wave input evolves
into a robust two-dimensional LB, which propagates without
being dispersed and diffracted over a few millimeters (thus,
the propagation distance is very long with respect to the wave-
length, ensuring the validity of the short-wave approximation).

II. GOVERNING MODEL FOR LIGHT PROPAGATION IN
CNT ARRAYS

Belonenko and co-workers recently derived a model which
accounts for light propagation across an array of carbon
nanotubes [19,20]. They numerically solved their model
equation and found evidence for soliton propagation. In two
dimensions, they claimed that the numerical results show
(2 + 1)-dimensional light-bullet propagation [20] in arrays of
CNTs, but the two-dimensional spatiotemporal waveform they
display is not a genuine spatiotemporal optical soliton because
it is spread out due to diffraction. We will see that the model,
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FIG. 1. (Color online) Geometry of the problem.

derived in Refs. [19,20], can be reduced with a slight further
approximation to the sine-Gordon equation. In two dimen-
sions, the so-called two-dimensional sine-Gordon equation is
obtained. It admits light-bullet solutions, which are oscillating
ones, i.e., breatherlike spatiotemporal optical solitons.

In the absence of charge density and of magnetization, using
the gauge �E = −∂ �A/∂t , the Maxwell equations reduce to the
equation,

� �A − 1

c2

∂2 �A
∂t2

= −μ0 �j (1)

to be satisfied by the vector potential �A. Here, μ0 and c are
the magnetic permeability and the light velocity in vacuum,
respectively, and we use Système International units. In the
considered geometry (see Fig. 1), the current �j is directed
along the direction of the nanotubes (z axis) �j = j �ez, where
�ez is a unitary vector directed along z. We assume that the
wave field is polarized in the same direction, and �A = A�ez.
Here, A and j are functions of x, y, and t . The Laplacian
operator in Eq. (1) reduces, thus, to � = ∂2/∂x2 + ∂2/∂y2.
The current is related to the vector potential by means of a
semiclassical approach, which uses the classical Boltzmann
kinetic equation,

∂f

∂t
− q

∂A

∂t

∂f

∂p
= F0 − f

τ
, (2)

in which q is the electron charge, f = f ( �p,t) is the distribution
function of electrons in the nanotubes in which �p = (pϕ,pz)
is the momentum of the electron, where pϕ = s �pϕ is the
azimuthal component, and the axial component pz is merely
denoted by p below. Hence, the integer s characterizes
the momentum quantization transverse to the nanotube. The
equilibrium value F0 of the distribution function f is the
Fermi-distribution function,

F0 = 1

1 + exp (E/kBT0)
, (3)

in which kB is the Boltzmann constant, T0 is the absolute
temperature, and the energy E in the conduction band in the
case of zigzag CNTs [21] is given by

E = γ

√
1 + 4 cos(ap) cos

πs

m
+ 4 cos2

πs

m
. (4)

Here, we have γ = 2.7 eV, a = 3b/2h̄, where b = 0.142 nm
is the distance between adjacent carbon atoms and m is the
number of hexagons in the perimeter of a nanotube. Then, the
surface current density js is given by

js = 2q

(2πh̄)2

∫ ∫
vf dpϕdp, (5)

where the velocity v is v = ∂E/∂p. The distribution function
f can be written as

f =
∑

s

�pϕδ(pϕ − s �pϕ)fs(p,t). (6)

Here, fs is the longitudinal distribution function relative to
the azimuthal quantum number s. The integration over pϕ

is straightforward, and the separation between two values of
pϕ is �pϕ = 2πh̄/ l, where l = nb

√
3 is the perimeter of the

nanotube.
Denoting the surface density of nanotubes in the xy plane

by N , the volume current density j is deduced from the surface
one (5) as

j = Nq

πh̄

∑
s

∫
vfsdp. (7)

Note that the distinction between the two currents js and j and,
consequently, the dependence with respect to N in Eq. (7) were
missed in Refs. [19,20].

Instead of the relatively complicated derivation of the
governing equations for light-bullet propagation in CNT
arrays, which was performed in Ref. [19], we use the
powerful reductive perturbation method in the short-wave
approximation regime [14,22]. We assume that the typical
duration of the pulse (in the optical range) is very small with
respect to τ but that the propagation length is very long with
respect to the wavelength. We, thus, introduce fast and slow
variables,

θ = 1

ε

(
t − x

V

)
, ξ = εx, (8)

in which ε is a small parameter and V is a wave velocity to
be determined. The fast variable θ accounts for the shape of
the wave in the frame moving at velocity V , whereas, the slow
variable ξ holds for the propagation distance. The dependent
variables are expanded in a power series of ε as fs = f0 +
εf1 + · · ·, and so on. The derivation operators,

∂

∂t
= 1

ε

∂

∂θ
, and

∂

∂x
= ε

∂

∂ξ
− ε

V

∂

∂θ

are then reported in Eqs. (1) and (2). At leading order 1/ε,
Eq. (2) yields

∂f0

∂θ
− q

∂A0

∂θ

∂f0

∂p
= 0. (9)

The general solution of Eq. (9) is f0 = ϕ(p + qA0), where ϕ

is some arbitrary function. At large t , the wave A vanishes, and
f0 goes to its equilibrium value F0, hence, ϕ = F0. Reporting
this expression of f in Eq. (7) and making the change in
variable p → p − qA, we get

j0 = q

πh̄

∑
s

∫
v(p − qA)f0(p)dp, (10)

which yields the same expression as used in Ref. [19].
Reporting the fast and slow variables in the Maxwell

equation (1) yields, at leading order 1/ε2,

1

V 2

∂2A0

∂θ2
− 1

c2

∂2A0

∂θ2
= 0, (11)
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and consequently, V = c. The equation at order 1/ε is
automatically satisfied, and we get, at order ε0,

−2

c

∂2A0

∂ξ ∂θ
= −μ0j0. (12)

Equations (10) and (12) yield the governing model.

III. REDUCTION TO THE SINE-GORDON EQUATION

Then, instead of expanding v(p) in a Fourier series as in
Ref. [19], let us consider the Boltzmann distribution F0. The
energy E is on the same order of magnitude as γ � 2.7 eV,
hence, γ /kB � 3.1 × 104 K, which is very large with respect
to room temperature. This means that only the levels with the
lowest energy are excited. Let us now seek this minimum. For
a given s, elementary analysis shows that the minimum value
of E is

Em = γ

∣
∣
∣
∣
1 − 2

∣∣∣∣ cos
πs

m

∣∣∣∣
∣
∣
∣
∣
, (13)

and is reached for p = ±π/a if cos πs/m > 0 and is reached
for p = 0 if cos πs/m < 0. Assuming, for the analysis, that
s can take any real value, the minimum of Em as s varies is
0 and is obtained if cos πs/m = ±1/2, i.e., for s/m = ±1/3
or ±2/3. If m = 6, e.g., the minimum will be reached for
s = 2 and 4 only. Since s is an integer, the value E = 0 is
reached for values of m, which are multiples of 3 only. In
the other nanotubes, there is a nonzero gap between valence
and conduction bands. Then, according to the value of γ , the
conductivity will be very low. Hence, only the nanotubes with
m multiples of 3 will contribute. The expression reduces to

Es(p) = 2γ

∣∣∣∣ cos
ap

2

∣∣∣∣ (14)

for s/m = 1/3 and to

Es(p) = 2γ

∣∣∣∣ sin
ap

2

∣∣∣∣ (15)

for s/m = 2/3. Taking the derivative of Eq. (14) [respectively,
(15)] with respect to p, then substituting p − qA0 for p and
considering the value at which the minimum is reached, p =
π/a (respectively, p = 0) yields

v = −aγ sgn

(
sin

aqA0

2

)
cos

aqA0

2
, (16)

where sgn (X) denotes the sign of X in both cases. Since the
essential contribution to the integral in Eq. (10) comes from
the minimum of E, we can replace v with its expression at the
minimum (16), in the integral (10). The integrals,

Is =
∫ π/a

−π/a

dp

1 + exp[Es(p)/kBT ]
(17)

can be reduced to

Im/3 = I2m/3 = 2

a
�

(
γ

kBT

)
, (18)

with

�(X) =
∫ π/2

−π/2

dx

1 + e2X| sin x| . (19)

Finally, we get the following expression for the current:

j0 = −Q sgn

(
sin

aqA0

2

)
cos

aqA0

2
, (20)

in which the constant Q is

Q = 4Nqγ

πh̄
�

(
γ

kBT0

)
. (21)

Inserting Eq. (20) into Eq. (12) yields the evolution equation.
However, due to the sign of the sine term, it presents a
discontinuity as A0 = 0. It is clear that such a discontinuity
is unphysical. Recall, however, that A0 is a component of a
potential and, hence, is only defined up to an additive constant.
Let us assume 0 < aqA0/2 < π and define A′

0 such that
aqA′

0/2 = aqA0/2 − π/2. Then, Eq. (12) reduces to

∂2A′
0

∂ξ ∂θ
= −R sin

aqA′
0

2
, (22)

which is exactly the sine-Gordon equation, and where we have
set

R = 2Nqγ

πε0h̄c
�

(
γ

kBT0

)
. (23)

If |aqA0/2| > π , we can set A′′
0 = A0 + π/aq, and we see that

the same equation as (22) is satisfied by A′′
0. Since A0, A′

0, and
A′′

0 represent exactly the same electric field and the evolution
law of the latter cannot present a discontinuity, this proves that
Eq. (22) is, in fact, valid for any A0.

IV. LIGHT BULLETS

If we retain the second transverse derivative in the wave
equation (12), the final equation is

∂2A′
0

∂ξ ∂θ
= c

2

∂2A′
0

∂y2
− R sin

aqA′
0

2
, (24)

which is known as the 2DsG equation. The 2DsG equation
admits light-bullet solutions.

The 2DsG equation is solved numerically as follows: First,
we rewrite it in the dimensionless form,

∂B

∂Z
= U sin

(∫ T

B

)
+

∫ T ∂2B

∂Y 2
, (25)

by means of the change in variables B = E0/Er, Z =
x/Lr, T = (t − x/c)/tr , and Y = y/wr , with Er =
2/(traq), Lr = −UEr/R, and wr = √

ctrLr/2. We used
tr = 2.785 fs and U = −10 for practical reasons, but
formally, U is arbitrary, and it has no physical meaning here,
in contrast to the case of the two-level systems [23]. Then,
(25) is transformed into the rational differential system,

∂A

∂T
= −BC, (26)

∂C

∂T
= AB, (27)

∂B

∂Z
= C +

∫ T ∂2B

∂Y 2
, (28)

with the assumption that A tends to the fixed value U as T

tends to −∞. System (28) is solved by means of a modified
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FIG. 2. (Color online) Evolution of a perturbed plane-wave few-
cycle spatiotemporal waveform into two-dimensional light bullets.
(a) Input and (b) At x = 720 μm.

Euler scheme (also known as the midpoint method, a second-
order Runge-Kutta one) in Z in each substep of which the
equations relative to the variable T are solved by means of a
scheme of the same type. The surface density of nanotubes N is
evaluated as follows: We assume that the separation between
nanotubes is d = 0.34 nm and, for the sake of simplicity,
that the nanotubes are arranged on a square array and have
all the same radii r = mb

√
3 corresponding to m = 6. Then,

N = (1/d + 2r)2 � 1.5 × 1018 m−2.
First, we consider an initial datum in the form of a perturbed

few-cycle plane wave as

Ez = Ae−(t−t1)2/w2
t cos

[
2πc

λ
(t − t1) + ϕ

]
, (29)

with t1 = δt exp(−y2/w2
y) accounting for a transverse

perturbation. We used λ = 1.25 μm, wt = 2.785 fs, wy =
4.83 μm, ϕ = 0.233π, δt = 0.28 fs, and A = 1.78 ×
1010 V/m, which corresponds to the huge peak powers which
can be reached in the few-cycle regime. In Fig. 2, it is seen
that the initial plane wave breaks into two-dimensional spots.
Then, a rough fit of one of these spots is used as the input
spatiotemporal waveform to check its stability on propagation
as

Ez = Ae−t2/w2
t −y2/w2

y cos

[
2πc

λ
(t − t1)

]
. (30)
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FIG. 3. (Color online) Evolution of an input-localized few-cycle
pulse, which is close to the output two-dimensional light bullet.
Panel (a) shows the temporal profile. The solid line on the left
shows the input, the lines on the right show the temporal profiles
at x = 3.62, 3.67, 3.72, 3.77, 3.82, 3.87, and 3.92 mm, showing the
oscillations of the two-dimensional breather over a half period. Panel
(b) illustrates the diffraction-free evolution (spatial profile). In fact, it
shows maxt t(|Ez|)/ maxt,y(|Ez|) against y and x.

The best fit was obtained with λ = 1.5 μm, wt =
1.95 fs, wy = 1.81 μm, and A = 4 × 1010 V/m. The results
are shown in Fig. 3: The propagation occurs freely from
diffraction and dispersion up to distances of a few millimeters.

In conclusion, we have shown the possibility for two-
dimensional optical light-bullet propagation in arrays of CNTs
in the two-cycle regime. It must be noticed that damping
was neglected in this paper, however, it should be taken into
consideration in future papers. On the other hand, from the
point of view of mathematical physics, a systematic study on
the stability conditions for the two-dimensional breather of
the 2DsG equation remains to be performed. Such a study
would allow better specifying the conditions under which
two-dimensional light bullets in CNTs could be effectively
produced.
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