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Abstract. A brief overview of recent theoretical studies of several models used for the 
adequate description of both temporal and spatiotemporal dynamics of few-cycle optical pulses in 
both cubic and quadratic nonlinear media beyond the framework of slowly varying envelope 
approximation is given. 
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1. INTRODUCTION 

Ultrashort optical pulses comprising merely a few electric field oscillation 
cycles, are a matter of intensive current research activity since their first 
experimental realization in 1999 by several research groups [1]-[4]; see also a 
comprehensive early review on ultraintense few-cycle laser fields [5]. Such 
ultrashort pulses find diverse applications in the area of light matter interactions, 
high-order harmonic generation, extreme [6] and single-cycle [7] nonlinear optics, 
and attosecond physics [8]-[9]. The availability of ultrashort and ultraintense laser 
pulses generated by the powerful technique of chirped pulse amplification along 
with the development of high-fluence laser materials has opened up the field of 
optics in the relativistic regime [10]. Thus the ultrahigh electromagnetic field 
intensities I produced by these techniques (I > 1018 W/cm2), lead to relativistic 
effects generated by the motion of electrons in such laser fields, see, e.g., Ref. 10.  

From the fundamental point of view, other interesting physical phenomena 
involving ultrashort optical pulses (with very broad spectra) are studied in detail at 
present. We mention here the supercontinuum generation (the spectral width 
exceeds two octaves) in microstructured photonic crystal fibers, which is seeded by 
femtosecond pulses in the anomalous group velocity dispersion regime of such 
fibers where unique physical processes such as soliton fission, stimulated Raman 
scattering, and dispersive wave generation were studied in detail, see, e.g., Refs. 
[11]-[13] and two comprehensive recent reviews  [14]-[15].  

It is worthy to mention here a recent experimental work demonstrating the 
synthesis of a single cycle of light by using compact erbium-doped fiber 



 

technology [16]; the obtained pulse duration of only 4.3 fs was close to the shortest 
possible value for a data bit of information transmitted in the near-infrared 
spectrum of light, at the wavelength of 1300 nm, see Ref. [16].  

The traditional slowly varying envelope approximation (SVEA) is no 
longer valid for ultrashort optical pulses with duration of only a few femtoseconds. 
Although several generalizations of the SVEA have been proposed and have 
proven their efficiency [these generalizations are refered to as higher-order 
nonlinear Schrödinger equation (NLS) models, see e.g. Refs. [17]-[22]], a 
completely different approach to the study of few-cycle pulses (FCPs), which 
completely abandons the SVEA was put forward in a series of  published works 
during the past two decades.  

First, we mention that first-order nonlinear evolution equations can be 
obtained under the so-called unidirectional approximation. Non-SVEA models 
were proposed within the framework of the unidirectional approximation, see, e.g., 
Refs. [13] and [23]. Second, to the best of our knowledge, the necessity of using 
the non-SVEA approach for the adequate description of  FCPs was put forward in 
the early seminal work  by Akhmediev, Mel’nikov and Nazarkin published in 1989 
[24]. In a subsequent paper, Belenov and Nazarkin [25] obtained exact solutions of 
nonlinear optics equations outside the approximation of slowly varying amplitudes 
and phases for light pulses a few wavelengths long and with power densities of the 
order of 109-1018 W/cm2, clearly stating that traditional SVEA methods “are 
becoming ineffective in describing wave processes at such small spatial and 
temporal scales and at such high fields”. However, several additional works 
introducing non-SVEA models for FCPs in different physical setting were 
published during the past two decades [26]-[44]. 

It is worthy to mention here some recent works on FCPs dealing with few-
cycle spatiotemporal optical solitons (alias “light bullets” [45]-[49]) created by 
femtosecond filaments [50], the study of ultrashort light bullets in quadratic 
nonlinear media [51], the ultrashort spatiotemporal optical pulse propagation in 
cubic (Kerr-like) media without the use of the SVEA [52]-[53], single-cycle gap 
solitons generated in resonant two-level dense media with a subwavelength 
structure [54], observation of few-cycle propagating surface plasmon polariton 
wavepackets [55], and the possibility of generating few-cycle dissipative optical 
solitons [56]-[57]. We also mention recent studies of ultrafast pulse propagation in 
a mode-locked laser cavity in the few femtosecond pulse regime and the derivation 
by Farnum and Nathan Kutz [58] of a master mode-locking equation for ultrashort 
pulses. As clearly stated in this relevant recent work, the standard NLS-based 
approach of ultrafast pulse propagation, though has been shown “to work 
quantitatively beyond its expected breakdown, into the tens of femtoseconds 
regime, and has been used extensively for modeling supercontinuum generation … 
when pushed to the extreme of a few femtosecond pulses, the NLS description 
becomes suspect…” [58].  Other relevant works deal with the experimental study 
of intrinsic chirp of single-cycle pulses [59], and the proposal of a method to 
generate extremely short unipolar half-cycle pulses based on resonant propagation 
of a few-cycle pulse through asymmetrical media with periodic subwavelength 
structure [60]. 

Since 2003 [34], by using the reductive perturbation method or multiscale 
expansion (for a tutorial review of this powerful method, which is widely used in 
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soliton theory, see Ref. [61]), a systematic analysis of the Maxwell-Bloch-
Heisenberg equations describing the propagation of ultrashort (few-cycle) pulses in 
nonlinear optical media, put forward universal equations such as sine-Gordon (sG), 
Korteweg-de Vries (KdV), modified Korteweg-de Vries (mKdV), modified 
Korteweg-de Vries-sine Gordon (mKdV-sG), or Kadomtsev-Petviashvili (KP)  
ones [42], [51]-[53]. We notice that our earlier studies in this area [30]-[32], [36]-
[37] were then generalized to a physical system consisting of two atomic 
transitions, one below and one above the range of  propagated wavelengths. As a 
result, a model of mKdV-sG-type equations was put forward [33], [35], [38]. We 
notice that in certain cases this nonlinear dynamical system is completely 
integrable by means of the inverse scattering transform (IST) method. It admits 
stable soliton solutions of “breather” type, which also give a good account of few 
cycle soliton propagation. The complete integrability allowed us to investigate the 
interaction of FCP solitons and it was found that no phase matching is required 
[41].  

The propagation of few-cycle pulses in a quadratic nonlinear medium has 
also been described by either a Korteweg-de Vries (KdV) or a Kadomtsev-
Petviashvili equation, in (1+1)- or (2+1)- dimensional models, respectively, see 
Refs. [62] and [51]. In Ref. [62] it was shown that a FCP launched in a 
quadratically nonlinear optical medium may result in a half-cycle soliton in the 
form of a single hump, with no oscillating tails. By using the powerful reductive 
perturbation method a KdV equation was derived from both a classical and a 
quantum mechanical simple model of radiation-matter interaction [62]. These 
single-humped pulses always have a zero carrier-envelope phase, in the sense that 
the field polarity is completely determined by the properties of the medium, and as 
a direct consequence of this fact, the mean value of the optical electric field is not 
zero in such situations.  

Moreover, by using the multiscale analysis, a generic Kadomtsev-
Petviashvili evolution equation governing the propagation of femtosecond 
spatiotemporal optical solitons in quadratic nonlinear media beyond the SVEA was 
put forward [51]. Direct numerical simulations showed the formation, from 
adequately chosen few-cycle input pulses, of both stable line solitons in the case of 
a quadratic medium with normal dispersion and of stable lumps for a quadratic 
medium with anomalous dispersion. Notice that the perturbed unstable line soliton 
typically decays into stable lumps in the case of a quadratic nonlinear medium with 
anomalous dispersion [51].  

In a recent work, we also found circularly polarized (CP) few-optical-cycle 
solitons in cubic nonlinear media in the long-wave-approximation regime and 
beyond the SVEA [63]. We found by direct numerical simulations that the CP few-
optical-cycle soliton becomes unstable when the angular frequency is less than 1.5 
times the inverse of the pulse duration, see Ref. 63. 

The present work briefly summarizes the above mentioned new results in 
the area of both temporal and spatiotemporal dynamics of FCPs beyond the SVEA. 
In the next section we briefly overview the most general SVEA model based on the 
mKdV-sG nonlinear evolution equation. In Sec. 3 we consider FCP propagation in 
cubic nonlinear optical media. The propagation of FCPs in quadratically nonlinear 
optical media is briefly discussed in Sec. 4, where we point out the relevance of 
both KdV and KP evolution equations for the adequate description of such 
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quadratic FCPs. The recent studies of circularly polarized (vectorial) FCPs  beyond  
the slowly varying envelope approximation framework and the corresponding 
wave polarization effects is briefly overviewed in Sec. 5. Finally, in Sec. 6 we 
summarize the obtained results and we indicate a few possible extensions of these 
studies to other relevant physical settings. 

2. THE MOST GENERAL SVEA MODEL (THE MKDV-SG NONLINEAR 
EVOLUTION EQUATION)  

The generic mKdV-sG equation is written as: 
 

( ) ( ) 0.2csin 32
3

21 =Ec+Ec+Ec+E ttttz ∫                            (1)  

The mKdV-sG equation (1) can be derived from Maxwell-Bloch equations, and 
describes FCP soliton propagation in Kerr (cubic) optical media. It reduces to 
mKdV equation if 01 =c , and to sG equation if 032 =c=c . The two latter 
equations are completely integrable by means of the IST, and Eq. (1) is also 
completely integrable if 23 2c=c [64]. It admits breather solutions, which describe 
FCP solitons (see Fig. 1 for a typical breather solution of the mKdV-sG equation 
(1)). 

Notice that during the past several years other non-SVEA models have been 
proposed to describe FCP soliton propagation. Among them is the so-called short-
pulse equation (SPE) [65]: 

              ( )ttzt E+E=E 3

6
1

.                              (2)  

It is well known that the SPE (2) is completely integrable [66], and it accounts 
for FCP soliton propagation. Notice that the SPE can be derived from  mKdV-sG 
[42]. In order to prove this assertion let us first perform a small amplitude 
approximation, so that the sine term in Eq. (1) reduces to ∫ uc t

1 ; then the  mKdV-

type dispersion is neglected: 03 =c . A linear change of variables allows to fix the 

values of the remaining coefficients to 11 −=c , 6/12 −=c , and derivative with 
respect to t  yields exactly the SPE equation (2). If we use the same small 
amplitude approximation, but do not neglect the mKdV-type term, we obtain after 
rescaling ( μ=c −3  and 121 =c=c ) the alternative model equation 

              ( ) 03 =E+EE+E ttttttzt μ− .                             (3)  

Equation (3) was first proposed to model FCP soliton propagation in Ref. [67] and 
it has shown FCP pulse compression, see Refs. [68] and [39]. Hence we see that all 
non SVEA models which have been put forward in the literature, in order to model 
FCP propagation in nonlinear optical media are obtained as certain approximations 
of the generic mKdV-sG equation (1). 
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Fig. 1 - A typical FCP soliton described by the breather solution of the mKdV-sG equation (1). Blue 
(dark gray): the analytical profile, red (light gray): its exact envelope; after Ref. [44]. 

 
3.  FCP SOLITONS IN CUBIC NONLINEAR MEDIA 

 
Next we consider the defocusing-type mKdV equation. Notice that there are 

actually two different mKdV equations: 
              2 0 ,z t tttu +σu u +u =      (4)  

where 1±=σ . For 1+=σ  the mKdV equation (4) is of focusing type, while for 
1−=σ  it is of defocusing type. The mKdV-sG equation with a defocusing mKdV 

part supports FCP solitons, see Ref. [42] for details. This fact can be argued as 
follows: for high frequencies (closer to SVEA limit), the mKdV-sG  equation can 
be approximately mapped to sG equation  [42]. Then the exact sG breather solution 
allows us to construct an approximate soliton, which can be used as input in a 
numerical resolution of mKdV-sG equation. It evolves with little shape 
deformation, as is shown in Fig. 2 in the particular case of vanishing mKdV 
dispersion. For really defocusing mKdV dispersion, pulse compression may occur, 
as shown in Fig. 3. The input waveform used is this numerical simulation is the 
soliton of the nonlinear Schrödinger equation which corresponds to the SVEA limit 
of mKdV-sG equation; it is seen that SVEA limit is not valid, see Ref. [42]. 
 
. 
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Fig. 2 – Typical evolution of a FCP soliton according to the mKdV-sG equation with defocusing 
mKdV nonlinearity and vanishing mKdV dispersion; after Ref. [42]. 

 

 
 
 

Fig. 3 – Typical pulse compression according to the mKdV-sG equation with defocusing mKdV part; 
after Ref. [42]. 

 

4.  FCP SOLITONS IN QUADRATIC NONLINEAR OPTICAL MEDIA 

In a previous work [62] it was proved that starting from either a classical 
model of elastically bound electrons or a quantum two-level model, in which a 
quadratic optical nonlinearity has been introduced, the reductive perturbation 
method allowed us to derive a KdV equation: 
  ( )23 EB+EA=E ττζ ∂∂∂ ,                  (5)  
in which the dispersion coefficient  A is 

 
6



 

       
3 2

3 2
0 0

1 1
6 2cω= ω=

d k d nA= =
dω dω

,                              (6)  

and the nonlinear coefficient B is given by 

       ( ) ( )2

0

2 2 ;
ω=

πB = ω ω,ω
nc

χ− .                  (7)  

It was found that a quadratic FCP soliton can be formed from an adequate FCP 
input, from both the resolution of the KdV equation (5) by the IST and numerical 
analysis, see Ref. [62]. The ultrashort soliton is exactly a half-cycle one, with no 
oscillating tail. In addition, it has a determined polarity. However, a large part of 
energy is dispersed, and soliton formation strongly depends on initial carrier-
envelope phase, see Ref. [62]. 

Notice that in (2+1) dimensions, the generic KdV equation becomes the 
Kadomtsev-Petviashvili (KP) equation, either KP I or KP II. For the normal 
dispersion case, it is the so-called KP II equation, which admits stable line solitons. 
This corresponds to a nonlinear recovery of the initial wavefront, hence the spatial 
coherence of the wave is improved by the nonlinear effect (see Fig. 4 for a typical 
example of the formation of line solitons). For the anomalous dispersion case, the 
governing model is the so-called  KP I equation, which admits stable localized 
lump solutions [69]-[70]. The exact, analytical profile of the lump soliton is shown 
in Fig. 5. Numerical simulations show that lump solitons form spontaneously from 
transverse irregularities, see Ref. [51]. 
 
 

            
 
 

Fig. 4 – Typical FCP in quadratic nonlinear media with normal dispersion: Recovery of a perturbed 
wavefront according to the KP II equation and generation of a line soliton. Left: input, right: after 
propagation; after Ref. [51].  
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Fig. 5 – Typical two-dimensional FCP soliton (lump soliton) in quadratic nonlinear media with 
anomalous dispersion, as given by the analytical solution; after Ref. [51]. 

 

5. VECTORIAL FCP SOLITONS: POLARIZATION EFFECTS 

Recently [63] we considered the propagation of CP FCPs, i.e., of vectorial 
FCPs in Kerr media beyond the slowly varying envelope approximation. Assuming 
that the frequency of the transition is far above the characteristic wave frequency 
(i.e., the so-called long-wave-approximation regime), we showed that propagation 
of FCPs, taking into account the wave polarization, is described by the 
nonintegrable complex modified Korteweg–de Vries (cmKdV) equation, see Ref. 
[63] for details. By direct numerical simulations, we got robust localized solutions 
to the cmKdV equation, which describe CP few-cycle-optical solitons. These 
robust localized solutions strongly differ from the breather solitons of the modified 
Korteweg–de Vries equation, which represents linearly polarized (LP) FCP 
solitons. The CP FCP soliton becomes unstable when its angular frequency is less 
than 1.5 times the inverse of the pulse length [63]. Moreover, we found by direct 
numerical simultations that the unstable subcycle pulses decay into LP half-cycle 
pulses, the polarization direction of which slowly rotates around the propagation 
axis, see Ref. [63]. 

In the following we show a typical example of the robust propagation of a 
CP soliton. As we said above we work in the long-wave-approximation regime. In 
this case, the typical frequency ωw of the wave must be far away from the 
resonance frequency Ω of the two-level atoms, because the transparency of the 
medium is required for soliton propagation. Thus we consider in what follows the 
situation ωw « Ω., i.e., the typical duration of the wave, let say, tw = 1/ωw, is very 
large with respect to the characteristic time tr = 1/ Ω associated to the transition. 
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By using the powerful multiscale analysis [63], we got the following pair 
of coupled nonlinear evolution equations in their normalized form, for the x- and y-
polarized electric field components U and V, respectively:  

 
      2 2[( ) ] 0Z TTT TU U U V U =− − +                                              (8) 
 
      2 2[( ) ] 0Z TTT TV V U V V =− − +                                                (9) 
 
Here Z and T are the normalized propagation distance and the retarded 

time, respectively. Notice that the retarded normalized time variable T describes 
the pulse shape propagating at speed V=c/n, where n is the refractive index. Next, 
setting f=U+iV, Eqs. (8) and (9) reduce to the the following complex cmKdV 
equation (the so-called cmKdV I equation), which is not a completely integrable 
one: 

 
            2(| | ) 0Z TTT Tf f f f− − =                  (10)  
 
An approximate solution to the above cmKdV I equation is given by: 

    

      ( ) ( )2 232( , ) 6 sec 3
i T b Z

f T Z b h b T Z e
ω ω

ω
⎡ ⎤− −⎣ ⎦⎡ ⎤= −⎣ ⎦             (11) 

                                   
The above formula is valid for long pulses, i.e., for b « ω. In Fig. 6 we show the 
evolution of a FCP of the above form, with b = 1 and ω = 2. The robustness of the 
FCP is obvious, and its width and maximum amplitude are conserved, see Fig. 6.  
Also, we have investigated in Ref. [63] the transition to a half-cycle soliton for 
sufficiently small values of the ratio ω/b. Thus we have found that the value 

/ 1.b 5ω  is the lower limit for the stability of the CP FCP soliton. For values of 
the ratio ω/b less than 1.5, the FCP becomes unstable and decays into a LP single-
humped (half-cycle) pulse in the form of a fundamental soliton of the real mKdV 
equation; see Ref. [63].  
 We also considered in other recent work [69] the propagation of FCPs 
beyond the SVEA, in media in which the dynamics of constituent atoms is 
described by a two-level Hamiltonian, by taking into account the wave 
polarization. We considered the short-wave approximation, assuming that the 
resonance frequency of the two-level atoms is well below the inverse of the 
characteristic duration of the optical pulse. By using the reductive perturbation 
method (multiscale analysis) we derived from the Maxwell-Bloch-Heisenberg 
equations the governing evolution equations for the two polarization components 
of the electric field in the first order of the perturbation approach. We showed that 
propagation of CP few-optical-cycle solitons is described by a system of coupled 
nonlinear equations, which reduces in the scalar case to the standard sine-Gordon 
equation describing the dynamics of LP FCPs in the short-wave-approximation 
regime. We also calculated by direct numerical simulations the lifetime of CP 
FCPs and we investigated the transition to two orthogonally polarized single-
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humped pulses as a generic route of their instability; see Ref. [69] for more details 
of this study. 
 
 

 
 
Fig. 6 – Propagation of a CP FCP, which shows its remarkable robustness. Left panel: x-polarized 
component. Right panel: Norm of the electric field |f |. The input is given by Eq. (9) with b = 1 and ω 
= 2; after Ref. [63]. 
 
 

 
 
Fig. 7 – Initial (Z = 100) and final (Z = 10 000) profiles of the FCP plotted in Fig. 6 for the input 
given by Eq. (11). Blue (dotted line): initial |f |; light blue (thick gray line): initial U; red (thin solid 
line): final |f |; pink (dashed-dotted line): final U; after Ref. [63]. 

6. CONCLUSIONS 

We developed in the past few years an adequate theory of ultrashort 
(femtosecond) soliton propagation beyond the commonly used SVEA for both Kerr 
and quadraticaly nonlinear optical media. We have summarized in this overview 
some recent results of this self-consistent theory, emphasizing the generality and 
interest of the generic mKdV-sG model in the case of cubic (Kerr) nonlinear 
media. Also, some aspects of FCP soliton propagation in quadratic nonlinear media 
have been briefly discussed. In both cases, no phase matching is required, which 
makes a strong contrast with the longer (picosecond) pulses described by the 
common SVEA. In addition we have briefly overviewed our recent work on these 
general lines concerning the vectorial (circularly polarized) FCPs in both the long-
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wave and the short-wave limits. Therefore we put forward, in these recent studies, 
unique polarization effects of  ultrashort solitons with duration of only few optical 
cycles.  

A natural extension suggested by these studies is to consider the case of 
two optical transitions, one below and one above the range of propagated 
wavelengths. Another interesting issue might be the generalization of these works 
to one or even to two spatial transverse dimensions, in addition to time and spatial 
longitudinal coordinates, that is, to investigate, beyond the slowly varying envelope 
approximation, vectorial few-optical-cycle spatiotemporal solitons (ultrashort 
circularly polarized light bullets) and the associated wave-polarization effects.  
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