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We consider the guiding of a few-cycle optical soliton by total internal reflexion, in a planar geometry. By
means of numerical solution of a cubic generalized Kadomtsev-Petviashvili equation, we show that, for intensities
high enough to induce soliton formation, the nonlinear effects considerably widen the guided mode and can even
prevent guiding for the shortest pulses and the narrowest waveguides. However, waveguiding can be achieved
by means of a steep variation of the nonlinear coefficients, e.g., by using a higher nonlinear coefficient in the
cladding than that in the waveguide core. We further propose an analytical approach for extremely narrow guides,
which allows us to derive a modified Korteweg–de Vries-type model for the propagation of few-cycle optical
solitons in the planar waveguide.

DOI: 10.1103/PhysRevA.88.023840 PACS number(s): 42.65.Tg, 42.65.Sf, 47.20.Ky

I. INTRODUCTION

Self-trapped spatiotemporal wave packets, which form in
both conservative and dissipative nonlinear optical media,
have been extensively investigated during the past decade.
Such localized optical waves, alias optical solitons, occur
in diverse physical settings, and numerous studies of their
existence, generation, and robustness to perturbations have
been reported in the fast growing area of nonlinear optics
and photonics [1–5]. Owing to the continuous advances in
both the generation and control of ultrashort optical pulses
from Kerr-lens mode-locked Ti:sapphire lasers, with duration
of only a few optical cycles, the study of propagation of
such intense few-cycle pulses (FCPs) has become a matter
of growing research interest over the past several years. The
experimental progress in the area of FCPs has paved the way
for the development of new theoretical approaches to model
their formation and to study their robustness to propagation
in a series of physical settings. It is worth noting that in the
case of wave packets containing only a few optical cycles,
the adequate analysis of the spatiotemporal pulse dynamics
should be carried out beyond the conventional slowly varying
envelope approximation (SVEA); see a series of earlier works
in this area [6–12] and a recent overview of theoretical models
of few-cycle solitons beyond the SVEA [13].

Since the standard SVEA is not valid for describing the
spatiotemporal evolution of ultrashort pulses containing only
a few oscillations of the optical field, several research groups
derived alternative approaches for describing the physics of
such phenomena; see a list of recent relevant works in this
growing area [14–28]. However, though most of the past
research interest in the study of propagation of FCPs was
confined to the simplest two-level atomic system (see the
review [13]), a more realistic description of the ultrashort-
soliton propagation in optical media by taking into account
an arbitrary number of atomic levels was also put forward
[29–31]. Thus, in a series of recent papers [29–31], some of
the main results concerning the systematic use of the reductive
expansion method beyond the SVEA in the simplest case of
two-level atoms were extended to few-cycle optical solitons in
media described by a generic atomic Hamiltonian, i.e., it was

considered a general quantum model involving an arbitrary
number of energy levels.

Though a variety of optical solitons that involve either
temporal effects (e.g., solitons in monomode fibers) or spatial
effects (e.g, solitons in photorefractive media) have been
observed during the past three decades [1–5], the experimental
studies of localized optical structures that involve both degrees
of freedom, the so-called spatiotemporal optical solitons (alias
nonlinear light bullets), are quite rare [32–38]. However,
there is a continuous flow of theoretical works in the area
of linear and nonlinear light bullets; see the early seminal
works [39–43] and a few recent review papers [5,44,45]. Such
spatiotemporal optical solitons attract a lot of interest owing to
their potential for all-optical logic devices with switching rates
of several 1012 Hz, i.e., with terahertz switching speeds. We
also mention theoretical studies of ultrashort spatiotemporal
optical pulse propagation in cubic (Kerr-like) media without
the use of SVEA [46,47], and of ultrashort spatiotemporal
optical solitons in quadratic nonlinear media [48,49]. Also,
the formation of robust ultrashort (only two cycles long)
spatiotemporal optical solitons in carbon nanotube arrays has
also been considered in a recent work [50].

Although many studies are devoted to short pulse propaga-
tion in waveguides, almost none of them consider the process
of waveguiding itself: usually the waveguide is treated using
linear modes and effective refractive index (see, e.g., [51]),
which is valid in principle in SVEA only, and assuming that
the index variation due to the nonlinear effect is small with
respect to the index difference responsible for waveguiding (or
the equivalent effect in photonic crystals or fibers). Even within
the SVEA, only a few studies considering the guiding process
itself in a nonlinear way, e.g., in inhomogeneous nonlinear
media in the form of graded-index materials with cubic (Kerr)
nonlinearities have been reported in the past [52,53]. In this
research line, a recent work [38] reports the observation of
spatiotemporal optical solitons with 0.5 nJ pulse energy in a
cylindrical waveguiding geometry (a graded-index multimode
optical fiber).

We consider here the waveguiding process of an ultrashort
pulse beyond the SVEA in the most simple configuration,
which is the step-index planar waveguide. We perform
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numerical and analytical modeling of the propagation of ultra-
short solitons described by the cubic generalized Kadomtsev-
Petviashvili (CGKP) equation in a planar waveguide geometry
based on total internal reflection. We consider the situation
when the nonlinear cubic (χ (3)) medium is a self-defocusing
one in the transverse spatial dimension while temporal self-
compression of the pulse occurs. Assuming a large waveguide
core, the evolution of the electric field in the nonlinear medium
is described by a CGKP equation, which contains an additional
term involving the cladding velocity shift. We show that
nonlinear wave propagation of ultrashort (few-cycle long)
spatiotemporal wave packets in planar waveguides is possible
when the cladding exhibits a sufficiently high nonlinear
refractive index. We also give an analytic theory of the guided
few-cycle solitons in ultranarrow planar nonlinear waveguides
by using the powerful reductive perturbation method.

This paper is organized as follows. In the next section,
we introduce the CGKP model for ultrashort-soliton prop-
agation in a planar waveguide geometry and we obtain
the corresponding linear guided modes and the associated
waveguiding condition. In Sec. III, we numerically solve the
CGKP equation by considering adequate input data in the
form of a fundamental guided mode multiplied by a temporal
Gaussian pulse. Computation of the confinement factor allows
us to make prominent the nonlinear widening of the guided
mode. Then, in Sec. IV, we consider in detail the nonlinear
waveguiding process as a function of the difference between
the two nonlinear coefficients in the waveguide core and the
cladding. We also compare the confinement factor in the
nonlinear waveguide with that corresponding to the linear
guide. In Sec. V, we present some analytic calculations of
the guided few-cycle solitons in the case of ultranarrow planar
waveguides. Finally, in Sec. VI, we present our conclusions.

II. BASIC EQUATIONS

We consider a planar optical waveguide. The spatial
coordinate frame is denoted by (Oξηζ ), the propagation
direction is the ζ axis, the waveguide core is limited by the
planes ξ = ±a, and the system is translationally invariant
along η. We consider a planar geometry for the sake of
simplicity and of computation time; however, the extension
to other relevant situations of both rectangular and cylindrical
channel waveguides is straightforward.

The evolution of the electric field E in the medium is
described by the cubic generalized Kadomtsev-Petviashvili
(CGKP) equation [29,46,54],

∂ζE + βα∂3
τ E + γα∂τE

3 + 1

Vα

∂τE − Vα

2

∫ τ

∂2
ξ Edτ ′ = 0,

(1)

with α = 1 in the waveguide core (−a � x � a) and α = 2 in
the cladding (|x| � a). The nonlinear coefficient is

γα = 1

2nαc
χ (3)

α , (2)

where nα (α = 1,2) are the linear refractive indices, χ (3)
α (α =

1,2) are the third-order susceptibilities at the low-frequency

limit, and the dispersion parameters are

βα = (−n′′
α)

2c
, (3)

where the prime denotes the derivative with respect to ω.
It is more convenient, for the numerical study of the

equations, to consider a dimensionless form of the CGKP
equation (1):

∂zu = Aα∂3
t u + Bα∂tu

3 + vα∂tu + Wα

2

∫ t

∂2
xudt ′, (4)

in which the dimensionless variables are defined as z = ζ/L,
t = (τ − ζ/V0) /τw, x = ξ/ l, and u = E/E0. The quantities
L and l are longitudinal and transversal reference lengths,
and τw and E0 are reference time and reference electric field,
respectively. The velocity V0 = c/n0 is chosen to be close
to both velocities V1 and V2, and these latter velocities are
replaced with V0 in front of the antiderivative (integral) term
in Eq. (1). The coefficients then read

Aα = (−βαL)

τ 3
w

, (5)

Bα =
(−γαLE2

0

)
τw

, (6)

vα = L

τw

(
1

V0
− 1

Vα

)
, (7)

and

Wα = VαLτw

l2
� V0Lτw

l2
. (8)

The reference time τw is fixed arbitrary of the order of
magnitude of the optical period and pulse length, i.e., we work
in the femtosecond range. Then we can set Aα = 1 by the
choice of the longitudinal reference length,

L = τ 3
w

(−βα)
= 2cτ 3

w

n′′
α

. (9)

Obviously, we can set A1 = A2 only if the dispersion coeffi-
cients of both media are the same, i.e., n′′

1 = n′′
2. The nonlinear

coefficient Bα can then be set to 1 by choosing the reference
electric field as

E0 =
√

τw

(−γL)
. (10)

If L has been fixed according to Eq. (9), then Eq. (10) becomes

E0 =
√

nαn′′
α(−χ

(3)
α τ 2

w

) . (11)

Equation (11) requires n′′
αχ (3)

α < 0, which is well known as the
condition for temporal pulse compression to occur.

In fact, we need to restrict ourselves to the situation in which
the nonlinear effect is a spatially self-defocusing one while
temporal compression occurs. The latter condition is necessary
for temporal soliton formation, which is the situation we intend
to consider in this paper. It is worthwhile to mention that if
spatial self-focusing occurs, it leads to the collapse of ultrashort
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spatiotemporal pulses [46]. Numerical computation allows
one to check that collapse will occur inside the waveguide,
which we intend to avoid. This situation differs from the usual
formation of temporal solitons in optical fibers, as described
within the SVEA; let us say, to make it more concrete, that we
consider picosecond temporal solitons in a standard telecom
fiber. For picosecond fiber solitons, the longitudinal size of
the pulse is very large with respect to the wavelength (10 ps
correspond to 3 mm), while its transverse size has the same
order of magnitude as the wavelength (the core diameter of the
standard telecom fiber is about 8.2 μm). Hence the picosecond
pulse propagation is a one-dimensional problem. The pulse
width, as confined by the optical fiber, is already narrower
than that of a pulse of the same length which would collapse
in a bulk medium. For a FCP, the situation strongly differs
since the pulse length has the same order of magnitude as the
wavelength. Hence the pulse propagation in the waveguide
is, in fact, a tridimensional problem (in our model, it is a
bidimensional one), and, consequently, collapse can occur in
the same way as in bulk media. Hence we need to restrict
to negative (self-defocusing) nonlinearity (χ (3)

α < 0) and to
normal group-velocity dispersion (n′′

α > 0), which ensure that
L given by Eq. (9) is positive and E0 given by Eq. (10) is a
real number. According to (6) and (2),

B2

B1
= γ2

γ1
= n1χ

(3)
2

n2χ
(3)
1

. (12)

If we fix E0 according to Eq. (10) for α = 1, so that B1 = 1,
then Eq. (12) gives B2. We assume some variation δnα of the
optical refractive index, so that nα = n0 + δnα , with δnα � 1.
Then the relative velocity is proportional to (−δnα), as

vα = (−δnαL)

twc
. (13)

If L is defined according to (9), then Eq. (13) becomes

vα = 2t2
wδnα

n′′
α

. (14)

Linear guided modes are easily computed: we seek solu-
tions of Eq. (4) of the form u = f (x) exp[i (ωt − kzz)]. It is
found that f must satisfy the equation ∂2

xf + Kαf = 0, with

Kα = 2ω

Vα

(Aαω3 − kz − ωvα). (15)

Due to the symmetry of the setup, the solutions must have
some parity; we restrict ourselves to even volume modes,
of the form f = R cos(kxx) with k2

x = K1 in the core, and
f = Ce−κ|x| with κ2 = −K2

2 in the cladding. Continuity
conditions of electromagnetic fields at the boundaries between
the waveguide core and cladding imply that both f (x) and
∂xf (x) are continuous at x = ±a, and we get the waveguide
dispersion relation as

tan(kxa) = κ

kx

, (16)

as in the usual symmetric dielectric planar waveguide. Every-
thing is identical to the standard theory, except the dispersion
relation of the medium based on the expression Kα given by
Eq. (15).

The guiding condition is, obviously, that both kx and κ are
real, i.e., K1 > 0 and K2 < 0. Taking for t the retarded time,
in the reference frame which moves at the velocity of linear
low-frequency waves in the bulk medium from which the core
is built, i.e., V0 = V1, the velocity v1 vanishes and the guiding
condition reduces to

A2ω
3 − ωv2 < kz < A1ω

3, (17)

and, in the special case A1 = A2, it requires v2 > 0. According
to the above notations, the core and cladding indices are n1 =
n0 and n2 = n0 + δn2, where v2 and δn2 are related through
Eq. (13) or Eq. (14). Let us call δn = −δn2 > 0 the difference
between the core and cladding refractive indices at the low-
frequency limit. The relative velocity v2 is proportional to δn

according to (14), and the condition (17) reduces to the usual
one, in which δn must be a positive number.

III. NONLINEAR WIDENING OF THE LINEAR
GUIDED MODES

The CGKP equation (4) is solved by means of the fourth-
order Runge-Kutta exponential time differencing (RK4ETD)
scheme [55]. It involves one integration with respect to t . The
antiderivative is computed by means of a Fourier transform,
which implies that the integration constant is fixed so that
the mean value of the antiderivative is zero, but also that
the linear term is replaced with zero, i.e., the mean value
of the function ∂2

xu is set to zero. For low frequencies, the
coefficients of the RK4ETD scheme are computed by means
of series expansions to avoid catastrophic consequences of
limited numerical accuracy. In order to reduce unphysical
behavior due to the reinjection of dispersed waves, we use
a quite long numerical box (100 times the dimensionless
fundamental optical period T ). However, for the computation
of the antiderivative, we use no better accuracy in frequency
than ν0/25, where ν0 = 1/T is the fundamental frequency.

We consider input data in the form of a fundamental linear
guided mode multiplied by a temporal Gaussian profile, as

u(x,t,z = 0) = u0(x,t) = A cos(ωt)f (x)e−t2/w2
, (18)

with

f (x) =
{

cos(kxx), for |x| � a,

cos(kxa)eκ(a−|x|), for |x| > a.
(19)

Here kx and κ are computed using Eq. (15), obviously. Hence
f is normalized so that maxx |f (x)| = 1 and maxx,t |u0| = A.

We use normalized coefficients A1 = A2 = B1 = B2 =
W1 = W2 = 1, assuming that both the dispersion parameter
and the nonlinear susceptibility have the same values in
the waveguide core and in the cladding. We perform the
computation in the reference frame, moving at the velocity
of linear long wave in the waveguide core, i.e., v1 = 0, and
we consider several numerical values of the cladding velocity
shift v2, i.e., of the refractive index difference δn between
core and cladding. We check, by using 1/w2 = 0 and very
small values of A, that the model correctly accounts for the
linear waveguiding, and, by setting v2 to zero, we check that
the diffraction effect is correctly described in both linear and
nonlinear regimes in the absence of the waveguide.
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FIG. 1. (Color online) Guided wave profiles in the linear (dashed
pink and cyan lines) and nonlinear (solid blue and red lines) regimes.
Intensities are normalized so that the total power is 1. Here v2 = 3
and w = 4.

We first consider v2 = 30. We consider as a typical value
of the dispersion parameter 2nn′′ = 0.015 fs2; note that the
values obtained in Ref. [30] in the BBO (beta barium
borate) crystal at λ = 1 μm, using Sellmeier approximations
of the dispersion relation given by industrials [56], were
2nn′′ = −0.0111 fs2 and −0.0180 fs2 for the ordinary and
extraordinary indices, respectively. We also assume a reference
time τw = 0.8 fs and a refractive index n = 1.6; then v2 = 30
corresponds to a large value of the index difference of about
δn = 0.1. The other parameters are w = 4, a = 0.76, ω = 1,
and A = 1.2, which would correspond to a pulse width
(full width at half maximum, FWHM) of 3.77 fs, and a
total core width of 5.3 μm. The reference lengths used in
the normalization are, indeed, for the proposed parameters
l = 3.5 μm and L = 82 μm. We compute the confinement
factor

CF =
∫ a

−a
dx

∫ +∞
−∞ dt |u|2∫ +∞

−∞ dx
∫ +∞
−∞ dt |u|2

(with the infinity symbol holding in practice for the boundary
of the computation box), and we get CF = 98.7% in both
linear and nonlinear regimes. We thus conclude that the con-
finement is very high. The mode profile is almost unchanged
in the nonlinear regime.

Then we set v2 = 3, i.e., we decrease δn by one order
of magnitude (δn = 0.01 with the above assumptions). The
confinement factor decreases from 87.8% in the linear regime
to 85.7% in the nonlinear one. The profile is slightly enlarged in
the nonlinear regime; see Fig. 1. The intensities are computed
by integration (summation) of |u|2 over t , at the end of
the computed evolution. Next we consider a much shorter
pulse (w = 2), which requires a higher amplitude for soliton
formation, A = 2.4. It corresponds to a FWHM of 1.88 fs for
the proposed parameters and, in this case, the confinement
factor decreases in the linear regime (80%) and even more in
the nonlinear regime (70% only). The corresponding widening
of the pulse profile is shown in Fig. 2.

If we decrease the width of the waveguide, the confinement
factor still decreases. For a = 0.55, that would correspond to
a total width of 3.85 μm and, as far as we can judge from our
computations, guiding still occurs. However, the confinement
factor goes down to 74% in the linear regime, and to only 60%
in the nonlinear one. In our computations, the waves remain

FIG. 2. (Color online) Same as Fig. 1, but for a shorter pulse.
Here v2 = 3 and w = 2.

confined within the finite computation box due to energy
conservation in the numerical model, even for a zero value of
the index difference. For the present parameters, especially for
our choice of guide width, the value of the confinement factor
due to this numerical artifact is about 50%, instead of 0 as it
should be if the wave were allowed to diffract indefinitely as is
physically the case. This is a limitation for the discrimination,
in a numerical study, between low-confinement guided modes
and the absence of guiding.

IV. THE STUDY OF THE NONLINEAR
WAVEGUIDING PROCESS

The fact that the mode profiles become wider and the
confinement factor decreases in the nonlinear regime is easy
to explain: it is well known that waveguiding is due to total
internal reflection. The latter occurs when the wave propagates
too fast in the cladding, so that it cannot be matched with
the field oscillations in the core, whatever the propagation
direction in the cladding is. In the few-cycle regime, not only
does the linear phase velocity have to be taken into account,
but so does the whole wave velocity, including its nonlinear
component. Due to the sign of nonlinearity, the nonlinear
velocity is positive and has a larger magnitude where the
amplitude is higher, i.e., in the core. It creates a nonlinear
variation of the refractive index, which may be comparable in
magnitude to the linear part, as well as compensate it, reduce
the efficiency of the guiding effect, and ultimately prevent it.

One might think that a change in the sign of the nonlinear
coefficient would allow one to restore the waveguiding;
however, we want to produce solitons and hence it would
imply that one would also change the sign of dispersion. In
this case, wave collapse occurs. The latter does not happen for
picosecond solitons in fibers because the amplitude is much
lower, and the transverse confinement which could arise due
to self-focusing is not as small as the core width of a standard
single-mode fiber.

One way to restore the waveguiding and improve the
confinement in the nonlinear situation is to take advantage of
the nonlinear velocity by using a higher nonlinear coefficient in
the cladding than that in the core. Figure 3 shows the evolution
of the guided mode profile against the nonlinear coefficient
difference B2 − B1. It is seen that, for a large value of this
difference, the guided mode profile is the same as for the
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FIG. 3. (Color online) Guided profiles of the nonlinear waveguide
for different values of the nonlinear coefficient difference. The linear
guided profile is given for the sake of comparison. Intensities are
normalized so that the total power is 1.

linear guide, while the nonlinear confinement becomes less
efficient for a smaller difference (see Table I).

However, not all of the energy of the input is guided. A part
of it is dispersed and is not trapped in the temporal soliton.
Since the guiding is mainly due to nonlinearity, and the radiated
waves do not have sufficient peak power to induce the latter,
they are not guided and they diffract. However, as mentioned
above, they remain confined in the computation box instead
of being totally spread out by diffraction. We thus have to
remove them in an ad hoc way. To obtain the results above,
we have suppressed the dispersed part (by setting u to zero out
of the main pulse) after a propagation distance of z � 50 (it
corresponds to 4.1 mm for the parameters above) and run again
the computation with the “cleaned” pulse as initial data (note
that we were not able to suppress totally the radiated waves).
The numerical picture of the guided soliton obtained this way
is displayed in Fig. 4. If we try to compute the confinement
factor without removing the dispersed part of the input, we get
a value close to the one due to the linear guide itself; it is, in
fact, not significant, being a mix of guided modes and waves
trapped in the computation box.

By using this guiding process, it is possible to reduce the
refractive index difference δn (or v2). For v2 = 0.7, which
corresponds to δn = 0.0025 with the above assumptions, and
using the dimensionless guide width a = 0.775 (i.e., a core
width of 5.4 μm), we find that the confinement factor for the
fundamental mode of the linear guide, for a plane wave, is
63.3%. For a FCP with duration w = 2 (the FWHM would be
1.9 fs), it decreases down to 55.8% in the linear regime. In
the nonlinear regime, the remaining confinement we observe
numerically is due in large part, and maybe in totality, to
reflexions on the boundaries of the computation box. Thus
we expect that, if it were possible to increase indefinitely the
width of the computation box, it would go to zero; note that
the reflexions on the boundary of the computation box are
indeed clearly observed in our numerical resolutions. Let us
consider now the nonlinear waveguide: the same amplitude

TABLE I. The confinement factor CF of the nonlinear waveguide
vs the nonlinear coefficient difference (B2 − B1).

(B2 − B1) 1 1/2 1/4 1/8 1/16 0 linear

CF (%) 74.4 71.9 73.3 70.7 68.3 60.2 74.0

A = 2.4 which allows the formation of the soliton in both the
(1 + 1)-dimensional reduction of the problem and in the guide
with higher linear confinement is neither large enough to form
a soliton, nor to produce nonlinear waveguiding. However,
for a higher field intensity (we used A = 3), the soliton
forms and nonlinear waveguiding occurs. The confinement
factor is rather low (33.7%), but the guiding is effective. The
corresponding numerical results are shown in Figs. 5–7.

V. ANALYTIC THEORY FOR GUIDED FEW-CYCLE
SOLITONS IN ULTRANARROW PLANAR WAVEGUIDES

We consider that each medium in both the waveguide core
and the cladding is described by a two-level Hamiltonian,

H0,α = h̄

(
ωα,a 0

0 ωα,b

)
. (20)

The electromagnetic field is coupled to the atoms by means of
the dipolar momentum matrix

μα = h̄

(
0 μα

μ∗
α 0

)
, (21)

so that the evolution of the density matrix ρ is given by

ih̄∂τ ρ = [H0 − μE,ρ], (22)

in which H0 and μ are H0,1 and μ1 in the core and H0,2 and
μ2 in the cladding, respectively. The electric field E (treated
as a scalar) obeys the wave equation

(
∂2
ξ + ∂2

ζ

)
E = 1

c2
∂2
τ

(
E + P

ε0

)
, (23)

where the polarization density P satisfies

P = NαTr(ρμα), (24)

with Nα being the number of atoms per volume unit.
According to the reductive perturbation method [57], we

introduce slow variables t and z,

t = ε

(
τ − ζ

V

)
, z = ε3ζ, (25)

in both the waveguide core (|ξ | � a) and in the cladding (|ξ | �
a), and the slow variable x,

x = εξ, (26)

in the cladding only, with the waveguide core being assumed
to be too narrow to allow variations in the ξ direction. The
electric field is expanded in a power series of ε as E = εE1 +
ε2E2 + · · ·, and so on. We denote the components of the matrix
ρ as

ρ =
(

ρa ρt

ρ∗
t ρb

)
,

and so on.
Equation (22) at order ε0 merely shows that the coherence

term ρ0,t must be zero. The diagonal terms ρα,a,0, ρα,b,0

are constant in both media and equal to the values of the
populations at thermal equilibrium.

Equation (22) at order ε1 gives, as in Ref. [58],

ρt,1 = −E1μαwα,0

h̄�α

, (27)
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FIG. 4. (Color online) (a) The temporal profile and (b) the spatiotemporal profile of the guided FCP soliton in the case of a nonlinear
waveguide with B2 − B1 = 1.

where �α = ωα,b − ωα,a > 0, and wα,0 = ρα,b,0 − ρα,a,0. This
allows one to compute P1 as

P1 = ε0
(
n2

α − 1
)
E1, (28)

where the optical index nα is given by

n2
α = 1 − 2Nαwα,0 |μα|2

h̄�α

. (29)

The obtained expression of P1 is inserted into the wave
equation (23) at leading order ε3. In the core (α = 1), we
merely get the velocity as V = c/n1. In the cladding (α = 2),
the situation differs because V is already fixed in the core, and
a term ∂2

xE1 appears. Defining

K = n2
1 − n2

2

c2
, (30)

the wave equation reduces to

∂2
xE1 + K∂2

t E1 = 0. (31)

Equation (22) at order ε2 gives ρa,1 = ρb,1 = 0 and

ρt,2 = −μαwα,0

h̄�α

E2 + iμαwα,0

h̄�2
α

∂tE2, (32)

from which we deduce

P2 = ε0
(
n2

α − 1
)
E2. (33)

We see that Eq. (23) at order ε4 is automatically satisfied in
the waveguide core, and it reduces to the same equation as (31)
to be satisfied by E2 in the cladding.

x

-6

-4

-2

0

2

4

6
0 10 20 30 40 50

FIG. 5. (Color online) The evolution of the spatial distribution of
optical average intensity in the propagation along z axis in the case
of the nonlinear waveguide with v2 = 0.7 and B2 − B1 = 1/4.

Then, Eq. (22) at order ε3 provides the following expres-
sions, in the same way as in the case of the bulk medium [58]:

ρa,2 = −ρb,2 = |μα|2 wα,0

h̄2�2
α

E2
1 , (34)

ρt,2 = −μαwα,0

h̄�α

E3 + iμαwα,0

h̄�2
α

∂tE2 + μαwα,0

h̄�3
α

∂2
t E1

+ 2μα |μα|2 wα,0

h̄3�3
α

E3
1 , (35)

from which we deduce

P3 = ε0
(
n2

α − 1
)
E3 + 2Nα |μα|2 wα,0

h̄�3
α

∂2
t E1

+ 4Nα |μα|4 wα,0

h̄3�3
α

E3
1 . (36)

Finally, Eq. (23) at order ε5 reduces, in the waveguide core,
to the modified Korteweg–de Vries (mKdV) equation

∂zE1 + β∂3
t E1 + γ ∂tE

3
1 = 0, (37)

with

β = V N1 |μ1|2 w1,0

ε0c2h̄�3
1

, (38)

γ = 2V N1 |μ1|4 w1,0

ε0c2h̄3�3
1

. (39)

The mKdV equation (37) to be satisfied at x = 0, together with
Eq. (31) to be satisfied for nonzero x, yield the sought system

FIG. 6. (Color online) The transverse profiles for a guide with
low refractive index difference (v2 = 0.7): linear regime, nonlinear
regime without nonlinear waveguiding, nonlinear waveguide with
insufficient power to form a guided FCP soliton (A = 2.4), and
nonlinearly guided FCP soliton (A = 3).
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FIG. 7. (Color online) (a) The temporal profile and (b) the spatiotemporal profile of the guided FCP soliton in the case of the nonlinear
waveguide with v2 = 0.7 and B2 − B1 = 1/4.

of equations for the field E1. We fix a reference slow time tw;
then the change of variables,

T = t

tw
, Z = β

t3
w

z, u = tw

√
γ

2β
E1, X =

√
K

tw
x, (40)

reduces Eqs. (37) and (31) to the dimensionless system of
equations,

∂Zu + ∂3
T u + 2∂T u3 = 0, (41)

∂2
Xu + ∂2

T u = 0. (42)

It is worthwhile to note that Eq. (42) shows that u must be a
harmonic function in each half plane Re(Y ) > 0 and Re(Y ) <

0, where the complex variable Y is Y = T + iX.
Let us consider the linear regime, i.e., let us replace γ with

zero, or remove the nonlinear term in Eq. (41). A solution
of (41) is u0 = Cei(ωT −ω3Z), and then it is easily seen that the
corresponding solution of Eq. (42) is

u0 = C exp[i(ωT − ω3Z) − ω|X|], (43)

assuming ω > 0.
In the general case, Eq. (42) can be solved as follows: we

consider the Fourier expansion of u0(T ) = u(T ,X = 0) as

u0(T ) =
∫ +∞

−∞
û0(ω)eiωT dω. (44)

Let U0 be the part of u0 corresponding to positive
frequencies, i.e.,

U0(T ) =
∫ +∞

0
û0(ω)eiωT dω. (45)

-10
-5

0
5

10

X
-6-4-20246

T

-4
 

-2
 

0
 

2
 

4

u

FIG. 8. (Color online) The guided FCP as described by the
approximate analytical approach.

Since u0 is real, we easily see that u0 = 2Re (U0).
The solution of Eq. (42) pertaining to U0 is

U (T ,X) =
∫ +∞

0
û0(ω)eiωT −ω|X|dω, (46)

i.e., U (T ,X) = U0(T + iX) if X � 0, and U (T ,X) =
U0(T − iX) if X � 0. Then,

u(T ,X,Z) = 2Re [U0(T + i|X|,Z)] (47)

is the complete solution. The computation of Eq. (47) can be
easily implemented numerically.

The two-soliton solution of Eq. (41) is [59]

u =
eη1 + eη2 + (

p1−p2

p1+p2

)2( eη1

4p2
1
+ eη2

4p2
2

)
eη1+η2

1 + e2η1

4p2
1

+ 2
(p1+p2)2 eη1+η2 + e2η2

4p2
2

+ (
p1−p2

p1+p2

)4 e2η1+2η2

16p2
1p

2
2

,

(48)

with ηj = pjT − p3
jZ − γj , for j = 1 and 2. If we choose the

arbitrary parameters p1, p2, γ1, and γ2 so that p2 = p∗
1 and

γ2 = γ ∗
1 , expression (48) is the breather solution of the mKdV

equation. An example of the computation with p1 = 3 + 2i,
γ1 = 0, and Z = 0.2 is shown in Fig. 8.

The mode width is typically 1/ω in the dimensionless
variable X, which reads, if we come back to the laboratory
frame variable, as

lm = λ

2π

√
n2

1 − n2
2

, (49)

where the quantity λ = 2πtwc/ (εω) has been identified as
the central wavelength of the pulse. If we compare Eq. (49)
to the usual expression of the normalized frequency, V =
2a(2π/λ)

√
n2

1 − n2
2 , we find lm = 2a/V , which is the typical

order of magnitude given by the exact linear theory. Thus
this approximate analytical approach allows one to describe
guided FCP soliton propagation, but is not able to account
for the transverse widening of the mode which occurs in the
nonlinear regime.

VI. CONCLUSIONS

In this work, we considered both linear and nonlinear
waveguiding of few-cycle spatiotemporal wave packets in a
planar geometry. In order to avoid the wave collapse, we
restricted ourselves to the case of self-defocusing Kerr nonlin-
earity of the medium and to normal group-velocity dispersion.
The evolution of the electric field in the cubic (Kerr) nonlinear
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medium was described by the cubic generalized Kadomtsev-
Petviashvili equation, which was solved by the fourth-order
Runge-Kutta exponential time differencing method. We have
found that for the linear waveguide in the nonlinear regime,
the mode profiles are much wider and the confinement factor
decreases in comparison to the situation of the linear regime.
For narrow waveguides in the subcycle regime, it may happen
that the wave is not guided at all. However, in the study
of propagation of few-cycle spatiotemporal pulses, not only
does the linear phase velocity have to be taken into account,
but also does the nonlinear component of the whole wave
velocity, and therefore we have shown that it was possible to
recover the guiding and to improve the confinement factor in
the nonlinear regime by using a higher nonlinear coefficient
in the cladding than that in the waveguide core, i.e., by

realizing a truly nonlinear waveguide. An analytic approach
for guided few-cycle solitons in ultranarrow planar waveguides
was introduced too. It has the advantage of allowing a simple
description of the guided few-cycle solitons, but does not
account for the mode widening and nonlinear waveguiding
discussed above. The results obtained in this work can
be relatively easily extended to other relevant waveguiding
geometries, e.g., to both rectangular and cylindrical channel
optical waveguides.
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K. Schuster, H. Bartelt, S. Nolte, A. Tünnermann, and T. Pertsch,
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