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a b s t r a c t

We analyze pattern-formation scenarios in the two-dimensional (2D) complex Ginzburg–Landau (CGL)
equation with the cubic–quintic (CQ) nonlinearity and a cellular potential. The equation models laser
cavities with built-in gratings, which stabilize 2D patterns. The pattern-building process is initiated by
kicking a compound mode, in the form of a dipole, quadrupole, or vortex which is composed of four local
peaks. The hopping motion of the kicked mode through the cellular structure leads to the generation of
various extended patterns pinned by the structure. In the ring-shaped system, the persisting freely
moving dipole hits the stationary pattern from the opposite side, giving rise to several dynamical
regimes, including periodic elastic collisions, i.e., persistent cycles of elastic collisions between the
moving and quiescent dissipative solitons, and transient regimes featuring several collisions which end
up by absorption of one soliton by the other. Still another noteworthy result is the transformation of a
strongly kicked unstable vortex into a stably moving four-peaked cluster.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

The fundamental principle behind the creation of dissipative
solitons is that their stability relies upon the simultaneous balance
of conservative and dissipative ingredients in the underlying
system [1]. These are the diffraction and self-focusing nonlinearity
in the conservative part of the system, and the linear and non-
linear loss and gain terms in the dissipative part. Well-known
physical realizations of such systems are offered by lasing [2,3] and
plasmonic [4] cavities, the respective models being based on the
complex Ginzburg–Landau (CGL) equations with the cubic–quintic
(CQ) set of gain and loss terms, combined with the background
linear loss [3]. This combination is well known to maintain stable
localized modes [5]. The CGL equations constitute a generic class
of dissipative pattern-formation models [6], which find many
other applications, including bosonic condensates of quasi-
particles in solid-state media [7], reaction–diffusion systems [8],
and superconductivity [9].

Originally, the CGL equation of the CQ type was introduced [5]
as a model for the creation of stable two-dimensional (2D)

localized modes. Following this work, similar models were derived
or proposed as phenomenological ones in various settings. Many
1D and 2D localized states, i.e., dissipative solitons, have been
found as solutions of such equations [10–15].

An essential ingredient of advanced laser cavities is a trans-
verse periodic grating, which can be fabricated by means of
available technologies [16]. In addition to the permanent gratings,
virtual photonic lattices may be induced in photorefractive crystals
as interference patterns by pairs of pump beams with the ordinary
polarization, which illuminate the crystal along the axes x and y,
while the probe beam with the extraordinary polarization is
launched along z [17]. A 2D cavity model with the grating was
introduced in Ref. [18]. It is based on the CQ-CGL equation
including the cellular (lattice) potential, which represents the
grating. In fact, the laser cavity equipped with the grating may
be considered as a photonic crystal built in the active medium.
Periodic potentials also occur in models of passive optical systems,
which are driven by external beams and operate in the temporal
domain, unlike the active systems which act in the spatial domain
[19–21].

Localized vortices, alias vortex solitons, are an important
species of self-trapped modes in 2D settings. In uniform media,
dissipative vortex solitons cannot be stable without the presence
of a diffusion term, in the framework of the CGL equation (see, e.g.,
Ref. [12]). However, this term is absent in models of waveguiding
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systems (it may sometimes be present in temporal-domain optical
models [22]). Compound vortices, built as complexes of four peaks
pinned to the lattice potential, may be stable in models including
the grating in the absence of the diffusion [18]. Using this
possibility, stable 2D [23] and 3D [24] vortical solitons have been
found in the framework of CGL equations including trapping
potentials.

In a majority of previous works, the studies of various 2D
localized patterns have been focused on their stabilization by
means of the lattice potentials. Another relevant issue is the
mobility of 2D dissipative solitons in the presence of the under-
lying lattice (dissipative solitons may move without friction only if
the diffusion term is absent, therefore the mobility is a relevant
issue for the diffusion-free models of laser cavities). Localized
modes can be set in motion by the application of a kick to them,
which, in the context of the laser-cavity models, implies launching
a tilted beam into the system. Recently, the mobility of kicked 2D
fundamental solitons in the CQ-CGL equation with the cellular
potential was studied in Ref. [25]. It has been demonstrated that
the kicked soliton, hopping through the periodic structure, leaves
in its wake various patterns in the form of single- or multi-peak
states trapped by the periodic potential. In the case of periodic
boundary conditions (b.c.), which correspond to an annular
system, the free soliton completes the round trip and hits the
pattern that it has originally created. Depending on parameters,
the free soliton may be absorbed by the pinned mode (immedi-
ately, or after several – up to five – cycles of quasi-elastic
collisions), or the result may be a regime of periodic elastic
collisions, which features periodic cycles of passage of the moving
soliton through the quiescent one.

A natural extension of the analysis performed in Ref. [25] is the
study of the mobility of kicked soliton complexes, such as dipoles,
quadrupoles, and compound vortices, and various scenarios of the
dynamical pattern formation initiated by such moving complex
modes, in the framework of the 2D CQ-CGL equation with the lattice
potential. This is the subject of the present work. In fact, such
configurations are truly two-dimensional ones, while the dynamical
regimes for kicked fundamental solitons, studied in Ref. [25], actually
represent quasi-1D settings. The model is formulated in Section 2,
which is followed by the presentation of systematic numerical results
for dipoles, quadrupoles, and vortices of two types, onsite- and
offsite-centered ones (alias “rhombuses” and “squares”) in Sections
3, 4, and 5, respectively. The paper is concluded in Section 6.

An essential finding is that the interaction of a freely moving
dipole with pinned patterns, originally created by the same kicked
dipole, gives rise to new outcomes under the periodic b.c. In
particular, the quiescent dipole can be absorbed (cleared) by the
moving one, which may have obvious applications to the design of
all-optical data-processing schemes, where one may need to
install or remove a blocking soliton. Also noteworthy is the
transformation of an unstable vortex by a strong kick into a stable
moving four-soliton cluster.

2. The cubic–quintic complex Ginzburg–Landau model with
the cellular potential

The CQ-CGL equation with a periodic potential is written as

∂u
∂Z

¼ �δþ i
2
∇2

? þðiþϵÞjuj2�ðiνþμÞjuj4þ iVðX;YÞ
� �

u: ð1Þ

It describes the evolution of the amplitude of electromagnetic field
uðX;Y ; ZÞ along propagation direction Z, with transverse Laplacian
∇2

? ¼ ∂2=∂X2þ∂=∂Y2. Parameter δ is the linear-loss coefficient, ϵ is
the cubic gain, μ the quintic loss, and ν the quintic self-defocusing
coefficient (it accounts for the saturation of the Kerr effect if ν40).

The 2D periodic potential with amplitude V0 is taken in the usual
form, VðX;YÞ ¼ V0½ cos ð2XÞþ cos ð2YÞ�, where the normalization of
the field and coordinates is chosen so as to make the normalized
period equal to π, which is always possible. The total power of the
field is also defined as usual:

P ¼∬ juðX;YÞj2 dX dY : ð2Þ
We solved CGL equation (1) by means of the fourth-order

Runge–Kutta algorithm in the Z-direction, and five-point finite-
difference scheme for the computation of the transverse Laplacian
∇2

? . Periodic boundary conditions (b.c.) were used for the study of
kicked dipoles and quadrupoles, and absorbing b.c. for kicked
vortices. In the latter case, the absorbing b.c. are implemented by
adding a surrounding linear-absorption strip to the computation
box. The absorption coefficient varies quadratically with X and Y
from zero at the internal border of the strip to a value large enough
to induce complete absorption of any outgoing pulse, at its
external border. This smooth variation, if the width of the strip
is not too small, allows one to suppress any reflection from the
absorption strip.

Values of coefficients chosen for numerical simulations are
δ¼ 0:4, ϵ¼ 1:85, μ¼ 1, ν¼ 0:1, and V0 ¼ �1. This choice corre-
sponds to a set of parameters for which the initial static config-
urations for the dipoles, quadrupoles, and vortices are stable (in-
phase bound states of two dissipative solitons are also possible,
but, unlike the dipoles, with the phase shift of π between the
bound solitons, they are unstable). The kick is applied to them in
the usual way, by adding the linear phase profile to the initial field:

u0ðX;YÞ-u0ðX;YÞ expðik0 � rÞ; ð3Þ
where r� fX;Yg. The key parameters are length k0 of kick vector
k0, and angle θ which it makes with the X-axis:

k0 ¼ ðk0 cos θ; k0 sin θÞ: ð4Þ
In the laser setup the kick corresponds to a small deviation of

the propagation direction of the beam from the Z-axis. If K0 is the
full wave number and φ is the deviation angle, the length of the
transverse wave vector in physical units is K0 sin φ, which
corresponds to k0 in the normalized form. Below, we investigate
the influence of kick parameters k0 and θ, defined as per Eq. (4), on
a variety of multi-soliton complexes, which are created by moving
dipoles, quadrupoles, or vortices (of both onsite- and offsite-
centered types) in the 2D CGL medium with the cellular potential.

3. The pattern formation by kicked dipoles

3.1. Generation of multi-dipole patterns by a dipole moving in the
transverse direction

In this section we consider the simplest soliton complex in the
form of a stable vertical dipole, which consists of a pair of solitons
aligned along the Y-axis and mutually locked with phase differ-
ence π, which is shown in Fig. 1. The same color code as in Fig. 1
(a) is used in all figures showing amplitude distributions through-
out the paper. First, the dipole is set in motion by the application
of the kick in the horizontal (X) direction (i.e., transverse to the
dipole's axis), as per Eqs. (3) and (4) with θ¼ 0.

As shown in Fig. 2, the moving dipole multiplies into a set of
secondary ones, similar to the outcome of the evolution of the
kicked fundamental soliton [25]. Each newly created dipole
features the fixed phase shift π between two constituent solitons,
and the entire pattern, established as the result of the evolution, is
robust. The particular configuration displayed in Fig. 2 is a chain of
five trapped dipoles, and a free one, which has wrapped up the
motion and reappears from the left edge, moving to the right, due
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to the periodic b.c. Then, the free dipole will hit the pinned chain,
and will be absorbed by it, yielding a pattern built of five quiescent
dipoles. Immediately after the collision, the pattern features
intrinsic oscillations, which are gradually damped.

The snapshot shown in Fig. 2 corroborates an inference made
from the analysis of numerical results: the largest number of the
dipoles generated by the initially kicked one is six, including one
moving dipole and five identical quiescent ones. It is worthy to
note that, as seen in Fig. 2(b), in this case the total power (2) of the
finally established set of six dipoles is close to the net power
corresponding to seven quiescent ones, which is explained by the
observation that the power of the stably moving dipole is,
approximately, twice that of its quiescent counterpart.

To study the outcome of this dynamical pattern-formation
scenario in a systematic form, we monitored the number of output
solitons as a function of the kick's strength, k0. These results are
summarized in Fig. 3, which provides an adequate overall char-
acterization of the interactions, including a potential possibility to
use these interactions for the design of data-processing setups.

Below the threshold value of the kick's strength, whose
numerically found value is

kðthrÞ0 ðθ¼ 0Þ � 1:651; ð5Þ

the kicked dipole exhibits damped oscillations, remaining trapped
near a local minimum of the cellular potential. Then, as seen in

Fig. 3, the number of dipoles initially increases steeply with k0,
reaching (as mentioned above) a maximum of six at k0 ¼ 1:665. It
is worthy to mention that this value is different from those,
ranging in interval k0A ½1:6927;1:6942� in which the maximum
number of secondary solitons is reached in the case when the kick
is applied to a fundamental soliton [25]. This observation suggests
that building the structures by the kicked dipole does not merely
reduce to the earlier studied regime of the pattern formation by
the individual solitons forming the dipole. With the further
increase of k0, the number of solitons in the output decreases by
increasing broad steps.
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Fig. 1. The distribution of the amplitude (a) and phase (in units of π) (b) in the stable quiescent dipole mode.
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Fig. 2. (a) Field juðX; YÞj produced by the horizontally kicked (with θ¼ 0) vertical dipole at Z¼22.410, for k0 ¼ 1:665. In this panel, the leftmost dipole is moving to the right.
The color code is the same as in Fig. 1(a). (b) The evolution of the pattern produced by the horizontally kicked dipole, shown in terms of the total power of the field as a
function of propagation distance Z. The set of horizontal red lines shows power levels corresponding to different numbers (n) of quiescent dipoles. (For interpretation of the
references to color in this figure caption, the reader is referred to the web version of this paper.)

Fig. 3. The number of dipoles in the final configuration versus the kick strength, k0,
applied to the vertical dipole in the horizontal direction.
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3.2. Dynamical regimes initiated by the longitudinal kick applied to
the dipole

For the sake of the completeness of the description of the 2D
system, we have also simulated essentially quasi-1D dynamical
regimes initiated by the motion of the dipole kicked at angle of
θ¼ π=2, i.e., in the longitudinal direction, see Eq. (4). This setting
implies the possibility to generate not only new dipoles but also
fundamental solitons. It was found that the minimum value of the
kick which is necessary to set the dipole in motion is smaller in
this case than the one given by Eq. (5):

kðthrÞ0 ðθ¼ π=2Þ � 1:303: ð6Þ

The results obtained for this configuration are summarized in
Table 1. Above the threshold value (6), additional moving solitons
are created: one at k0A ½1:304;1:875� and two in a narrow interval
k0A ½1:880;1:885�. Then, for k0A ½1:89;2:015�, a new moving dipole
appears, which, as well as the original one, is oriented along the
direction of the motion, and accompanied by two moving solitons.
For k0A ½2:02;2:17�, we have one moving soliton less, and at
k0A ½2:175;2:255� the original dipole disappears in the course of
the propagation, thus leaving one moving dipole and two moving
solitons in the system. At k0A ½2:26;2:36�, we observe the same
pattern as for k0A ½2:02;2:17� (two dipoles and one moving
soliton). Then, for k0A ½2:365;2:46�, the dipole splits into two
traveling solitons, with the upper one leaving a pinned soliton at
the site which it originally occupied. At higher values of the kick's
strength, the same pattern appears, except that the solitons do not
leave anything behind them, just traveling through the lattice.

3.3. Collision scenarios for moving dipoles in the system with
periodic b.c.

The above consideration was performed for a long system,
before the collision of the freely moving dipole with the static
pattern left in its wake, which should take place in the case of
periodic b.c. In the application to laser-cavity settings, the periodic
b.c. in the direction of X are relevant, corresponding to the cavity
with the annular shape of its cross section. The study of dynamical
pattern-formation scenarios with the periodic b.c. is also interest-
ing in terms of the general analysis of models based on the CGL
equation [25].

Thus, under the periodic b.c., the freely moving dipole observed
in Fig. 2 will complete the round trip and will hit the trapped chain
of quiescent dipoles. Results of extensive simulations of this
setting are summarized in the list of three different outcomes of
the collisions, which feature persistent or transient dynamics (all
the regimes were observed for θ¼ 0, i.e., the transversely kicked
dipole):

� The regime of the periodic elastic collisions, corresponding to
the periodically recurring passage of the moving dipole
through the quiescent one, see Fig. 4. This outcome takes place
for k0A ½1:865;1:868�. Note that, according to Fig. 3, in this
region the pattern left in the wake of the kicked dipole indeed
amounts to another single quiescent dipole.

� The transient regime, which features several quasi-elastic
collisions, before the moving dipole is eventually absorbed by
the pinned pattern, which is a bound complex of two dipoles,
see Fig. 5. This transient regime occurs around k0 ¼ 1:816, in
which case Fig. 4 confirms that the moving dipole leaves a set
of two additional dipoles in its wake.

� The regime of “clearing the obstacle”, opposite to the previous
one, which features several elastic collisions, before the pinned
dipole is absorbed by the moving one, see Fig. 6. This happens
for k0A ½1:884;1:9� and around k0 ¼ 2:083 (in this region, Fig. 3
confirms that the moving dipole creates, originally, a single
quiescent one).

In other cases, the freely moving dipole is absorbed by the
quiescent pattern as a result of the first collision.

It is relevant to stress that, while the first two above-mentioned
regimes have been reported in Ref. [25] for the motion of kicked
fundamental solitons, the third regime (clearing the obstacle) is a
new one, which was not found for the fundamental solitons.
Another characteristic feature of the latter regime is that it
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Fig. 4. (a) The cross section of field juðX; Y ; ZÞj at Y¼0, in the plane of ðX; ZÞ, for k0 ¼ 1:865. This is an example of the scenario of the periodic elastic collisions, when the
moving dipole repeats elastic collisions with the quiescent one. (b) The close-up of the elastic collision. The color code is the same as in Fig. 1(a).

Table 1
The number of dipoles and fundamental solitons in the established pattern versus
the kick's strength k0 directed along the dipole's axis (θ¼ π=2). In the right column,
a newly emerging dipole (if any) is counted as two solitons.

Behavior pattern Range of k0 Number of new solitons
along the Y-direction

1 Dipole k0A ½0;1:303� 0
1 Dipole and 1 moving soliton k0A ½1:304;1:875� 1
1 Dipole and 2 moving solitons k0A ½1:88;1:885� 2
2 Dipoles and 2 moving solitons k0A ½1:89;2:015� 4
2 Dipoles and 1 moving soliton k0A ½2:02;2:17� 3
1 Dipole and 2 moving solitons k0A ½2:175;2:255� 2
2 Dipoles and 1 moving soliton k0A ½2:26;2:36� 3
1 Pinned and 2 moving solitons k0A ½2:365;2:46� 1
2 Moving solitons k0A ½2:465;1Þ 0
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eventually leads to the splitting of the surviving single dipole into
unbound fundamental solitons, as shown in Fig. 7(a). To analyze
the splitting, we have identified position fXc;Ycg of the field
maximum in each soliton (its center), and values of phases at
these points (mod 2π), as functions of evolution variable Z. As a
result, it has been found that the splitting of the dipole and the
loss of the phase correlation between the splinters start in a
“latent form” at Z � 102:8, and become explicit at ZC112:5, see
Fig. 7(c) and (d). The two splinter solitons get completely sepa-
rated at ZC115. The splitting also leads to the appearance of the
velocity difference between the solitons (the velocity is defined as
dXc=dZ), as seen in Fig. 7(b).

4. The pattern formation by kicked quadrupoles

A quadrupole is composed of four soliton-like power peaks,
which are mutually locked with phase difference π between
adjacent ones, see an example of the offsite-centered (alias
“square-shaped”) quadrupole in Fig. 8. Although this mode carries
no vorticity, simulations demonstrate that it is a very robust one.
We here aim to investigate dynamical regimes initiated by the
application of the horizontal kick (3) to the quadrupole.

The quadrupole is set in motion by the kick whose strength
exceeds the respective threshold:

kðthrÞ0 ðquadrÞ ¼ 1:28; ð7Þ
cf. Eqs. (5) and (6). The horizontal motion of the kicked quadrupole
splits it into two vertical dipoles, and generates a set of additional
vertically arranged quiescent soliton pairs, with a phase shift of π=2

between them. The dependence of the total number of solitons in
the eventually established pattern on the kick's strength, k0, is
shown in Fig. 9. Because these simulations were subject to the
periodic b.c., the free dipole completes the round trip to collide
with the quiescent pattern. The number of solitons was counted
just before this collision. In the case where there is no motion in
the system (no free dipole emerges), the count of the number of
solitons is straightforward.

The result is quite different from that reported in the previous
section for the pattern formation by the kicked dipole, cf. Fig. 3.
Above the threshold value (7), the number of fundamental solitons
in the emergent pattern increases and remains constant in a wide
interval of values of k0, viz., six solitons for k0A ½1:28;1:87�. Then,
the number of the solitons increases to its maximum, which is 14
at k0A ½1:89;1:893�, k0 ¼ 1:91 and k0A ½1:935;1:96�. Note that the
increase is not monotonous. For example, 12 solitons are generated
at k0 ¼ ½1:885;1:887� and k0 ¼ ½1:895;1:9�. Subsequently, in the
interval of k0A ½1:9125;2:338�, the soliton number varies between
8 and 16. The largest number of solitons, 18, is reached at
k0 ¼ 2:339. Then, the soliton number drops to 6, and this value
remains constant over a relatively broad interval, k0A ½2:373;
2:475�. At still larger values of k0, no additional solitons are
generated by the initially moving quadrupole, which in this case
again splits into two dipoles.

At k0 ¼ 2:339, the simulations generate a set of 18 solitons (the
largest number, as said above). At first, two moving dipoles are
actually produced by the splitting of the original quadrupole, see
Fig. 10(a). The faster dipole [whose trajectory is characterized by a
larger slope (velocity), dXc=dZ] moves without creating new
solitons, while the slower one creates several of them, namely
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the third moving dipole and six quiescent ones, which brings the
total number of solitons to 18, as said above. The total energy
increases up to about 24 times the energy of a quiescent soliton,
which corresponds to the 12 such solitons, plus the 3 moving
dipoles, with the energy of a moving soliton being about twice

that of a quiescent one (see Fig. 10(b)). Due to the periodic b.c., the
three moving dipoles hit the previously generated quiescent chain,
one after the other (see Fig. 10(a)). As a result, two first dipoles are
captured by the chain increasing the number of the bound solitons
in it, while the third moving dipole is absorbed without adding
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color in this figure caption, the reader is referred to the web version of this paper.)
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new solitons to the chain. This complex interaction results in a
chain of 8 quiescent dipoles (equivalent to 16 solitons). The so-
generated dipole train originally features intrinsic oscillations,
which are eventually damped, see Fig. 10(d). Note that Fig. 10
(a) shows only the constituent fundamental solitons on line Y¼0,
in terms of Fig. 10(c), their counterparts on the line of Y¼3
showing the same picture.

As mentioned above and shown in Fig. 11, at k042:48 the initial
quadrupole splits into two dipoles, which move at different velocities,
without the formation of additional soliton pairs. Each dipole keeps
the phase difference of π between the constituent solitons.

5. The pattern formation by kicked vortices

5.1. Chaotic patterns generated by kicked rhombic (onsite-centered)
vortices

It is well known that the lattice potential supports localized vortical
modes of two types, the onsite- and offsite-centered ones [26–28].
First, we consider the pattern-formation dynamics for horizontally
kicked rhombic vortices built of four fundamental solitons with an
empty site in the center, which carry the total phase circulation of 2π,
corresponding to the topological charge S¼1, see Fig. 12(a).

Fig. 9. The total number of fundamental solitons in the pattern produced by kick k0
applied to the stable offsite-centered quadrupole. Each dipole counts as two
solitons.
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Fig. 10. The evolution of the horizontally kicked quadrupole, for k0 ¼ 2:339. (a) Field juðX; Y ; ZÞj in the cross section Y¼0, before the collision of the moving dipole with the
pinned complex. (b) The total power versus Z (the vertical arrow indicates the collision point); the horizontal red lines show the power corresponding to n quiescent
fundamental solitons, n being the numbers indicated on the right vertical axis. (c) Field juðX;YÞj at Z¼399.34. (d) Field juðX; Y ; ZÞj in the cross section Y¼0, after the collision.
The color code is the same as in Fig. 1(a). (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)

Fig. 11. Velocities of two dipoles into which the kicked quadrupole splits at k0 ¼ 3.
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A weak horizontal kick, with k0≲0:1, excites oscillations of the
constituent fundamental solitons which built the vortex, while
vorticity S¼1 is maintained (i.e., phase differences between the
adjacent solitons remain very close to π=2), see Fig. 13(b). A
stronger kick (for instance, k0 ¼ 0:5) destroys the vortical phase
structure, and transforms the vortex into a quadrupole, as shown
in Fig. 13(c).

At k0 ¼ 1:0 and k0 ¼ 1:5, see Figs. 14 and 15, respectively, the
kick completely destroys the vortices, which are replaced by
apparently random clusters of quiescent fundamental solitons.
Note that, although the results shown in Figs. 14 and 15 have been
obtained with absorbing b.c., rather than periodic ones, this
circumstance does not affect the results. The same type of b.c. is
used below.

5.2. Kicked offsite-centered (square-shaped) vortices

Unlike their onsite-centered counterparts, quiescent offsite-
centered vortices, such as the one shown in Fig. 16, are unstable
in the entire parameter space of Eq. (1) which we have explored, in
agreement with the general trend of the offsite-centered vortices
to be more fragile than their onsite-centered counterparts [27]. As
a result of the instability development, they are transformed into
stable quadrupoles. Nevertheless, results displayed below confirm
that it is relevant to consider dynamical pattern formation by
unstable kicked vortices as this type.

First, we consider the application of the horizontal kick (3)
corresponding to θ¼ 0 and varying strength k0. The fundamental
solitons building the vortex oscillate without setting in progressive
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Fig. 12. (a, b) The distribution of the amplitude and phase (in units of π) in the stable onsite-centered (rhombus-shaped) vortex. The lines are level contours of potential V.
The color code for the amplitude is the same as in Fig. 1(a).

Fig. 13. The phase difference between adjacent constituent solitons (in units of π), versus Z, in a weakly kicked rhombic vortex, for different values of the kick's strength: (a)
k0 ¼ 0, (b) k0 ¼ 0:1, and (c) k0 ¼ 0:2.
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motion below the threshold, k0rkðthrÞ0 ¼ 1:2125, cf. Eqs. (5)–(7).
Actually, it may happen, in this case, that a new soliton is created
and starts moving in the horizontal direction, but the energy is not

sufficient to stabilize it, and the new soliton decays eventually,
while the initial solitons which compose the offsite-centered
vortex are recovered at the original positions. The inner phase
structure of the unstable offsite-centered vortices is destroyed in
the course of the oscillations, and it transforms into a quadrupole,
in accordance with the above-mentioned fact that this is the
outcome of its instability in the absence of the kick.

The increase of k0 leads to the formation of new 2D patterns. At
k0 ¼ 1:5, the right vertical pair (column) of the fundamental
solitons, which are a part of the original vortical square, start to
duplicate themselves, while moving to the right (in the direction
of the kick), see Fig. 17. A noteworthy effect is breaking of the
symmetry between the top and bottom solitons in the column by
the kick, only the bottom soliton succeeding to create a horizontal
array of additional solitons (three ones, in total). In this case,
Fig. 18 shows that the eventual value of the total power (2)
oscillates between values corresponding to the cumulative power
of 7 or 8 quiescent fundamental solitons. The resulting pattern
develops a disordered form, which oscillates randomly, as Fig. 18
clearly demonstrates.

At somewhat higher values of k0 (for example, k0 ¼ 2:0), the
original four-soliton set is transformed into a quiescent three-
soliton complex, while an extra dipole and separate free solitons
are created and travel through the lattice, see Fig. 19.

Finally, a still stronger kick applied to the square-shaped vortex
transforms it into a square-shaped cluster of four solitons moving
as a whole, see Figs. 20 and 21, which display the result in the 3D
form. In the former case, at k0¼2.5, the cluster leaves behind a
copy of one of the original solitons, while at k0¼3.0 the moving
cluster is the single emerging mode. Although the clusters are
dynamically stable, they do not carry the vortical phase structure.

We have also studied the application of the kick to the offsite-
centered vortex in other directions, i.e., varying angle θ in Eq. (4).
First, as seen in Fig. 22(a), in the case of θ¼ π=8 and k0 ¼ 1:5, the
kick again breaks the symmetry between the top and bottom rows
of the solitons, generating an array of additional solitons in the
bottom horizontal row. Further, to check that the numerical code
is compatible with the global symmetry of the setting, we also
considered equivalent angles, θ¼ 5π=8, 9π=8 and 13π=8. The
results, shown in Fig. 22, evidence the possibility of controlling
the direction of the emission of the soliton array by the direction
of the initial kick.

Further, running the computations for varying θ and moderate
values of k0, we have concluded that there is a threshold angle ε,
so that the emission towards any of the four equivalent directions,
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Fig. 14. Field juðX; YÞj at Z¼299.725, generated by the kicked rhombic vortex for
k0 ¼ 1:0. The color code is the same as in Fig. 1(a).
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Fig. 15. The same as in Fig. 14, but for k0 ¼ 1:5. The color code is the same as in
Fig. 1(a).
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corresponding to directions ϕ¼ 0, π=2, π or 3π=2, occurs provided
that the orientation of the kick belongs to a certain range around
this direction, viz., ðϕ�π=4þεÞoθoðϕþπ=4�εÞ, with ε¼ 0:059.
If the kick's orientation falls into interstices between these ranges,
namely ½ϕþπ=4�ε;ϕþπ=4þε�, solitons arrays are not generated.
In the latter case, the square vortex transforms into a quadrupole.

These results can be explained by noting that the intrinsic
phase circulation in the vortex is directed counterclockwise (from
X to Y). Then, as schematically shown (for example) for θ¼ π=8 in
Fig. 23, the superposition of the externally applied kick (the phase
gradient) and the intrinsic phase flow gives rise to the largest local
phase gradient at the position of the bottom right soliton, in the
positive horizontal direction, therefore the array is emitted
accordingly.

It is also instructive to perform the simulations for the vortex
with the opposite vorticity (�1 instead of þ1). In this way, the
expected symmetry reversal has been verified (not shown here in
detail): The same results as above are obtained, with angle θ
replaced by its counterpart, which is symmetric with respect to
the closest coordinate axis. We also note that identical results
were obtained using both periodic and absorbing boundary
conditions.

6. Conclusions

The objective of this work is to extend the analysis of the
dynamical pattern-formation scenarios in the CQ-CGL (cubic–
quintic complex Ginzburg–Landau) equation with the 2D cellular
potential. The equation is the model for laser cavities with built-in
gratings, represented by the spatially periodic potential. Recently,
the quasi-1D pattern-formation scenarios, initiated by the moving
fundamental solitons, were studied in this model. Here, we have
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Fig. 17. The evolution of the unstable offsite-centered vortex kicked in the horizontal direction (θ¼ 0) with k0 ¼ 1:5. The color code is the same as in Fig. 1(a). (a) Z¼2.6593,
(b) Z¼12.008, (c) Z¼239.91, and (d) Z¼299.825.

Fig. 18. The evolution of the total power for the pattern produced by horizontally
kicking the offsite-centered vortex, for k0 ¼ 1:5. The red horizontal lines show
power levels corresponding to n quiescent solitons. (For interpretation of the
references to color in this figure caption, the reader is referred to the web version of
this paper.)
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systematically analyzed the fully 2D scenarios, produced by kick-
ing compound modes, viz., dipoles, offsite-centered quadrupoles,
and vortices of two different types, onsite- and offsite-centered
ones. The motion of the kicked compound through the cellular
potential leads to the generation of diverse multi-peak patterns
pinned to the lattice, which the moving object leaves in its wake.
In the annular system with periodic boundary conditions, the
persistently traveling dipole hits the pinned pattern from the

opposite direction. In this way, several dynamical regimes are
initiated, including the periodically recurring elastic passage of the
free dipole through the quiescent one, and transient regimes,
which lead, after a few quasi-elastic collisions, to absorption of one
dipole by the other. In the case of vortices, the dependence of the
outcome on the magnitude and direction of the kick was also
investigated. In particular, a noteworthy result is that a strong kick
transforms the original offsite-centered vortex (which is unstable
by itself) into a clean stably moving four-soliton cluster.

The analysis can be extended by considering two-component
systems (which would take the polarization of light into account),
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Fig. 19. The evolution pattern produced by horizontally kicking the offsite-centered vortex, for k0 ¼ 2. The color code is the same as in Fig. 1(a). (a) Z¼1.0784, (b) Z¼2.0680,
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Fig. 20. The three-dimensional rendition of the evolution of the horizontally
kicked offsite-centered vortex for k0 ¼ 2:5, which is transformed into a stably
moving four-soliton cluster. The chromatic progression indicates the propagation
direction. The vertical rod represents the additional quiescent fundamental soliton,
left in the wake of the moving four-soliton cluster.
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Fig. 21. The same as in Fig. 20 but for k0 ¼ 3:0. In this case, the unstable vortex is
entirely transformed into the stable moving cluster.
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collisions between independently created moving modes, and the
motion of kicked solitons in inhomogeneous lattices. Eventually,
the analysis may be generalized for the three-dimensional setting,
which is not relevant to optics, but may be realized, in principle, in
terms of Bose–Einstein condensates of polariton–exciton quasi-
particles [29].
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