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We investigate numerically different types of instabilities in a high loss Fabry-Perot laser cavity in
presence of the stimulated Brillouin scattering. Our results reveal many interesting dynamical behaviors
such as periodic, quasi-periodic and chaotic.
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1. Introduction

Brillouin instabilities have attracted much attention since the
early stage of single-mode fiber realization. Indeed, the instabil-
ities observed when an optical wave travels a single mode passive
fiber have been attributed to the presence of the Brillouin back-
scattering defined as a coupling between optical and acoustic
waves. The acoustic wave produces a moving index grating in
which the pump beam is back-reflected. The backscattered Stokes
wave is frequency down-shifted. A chaotic behavior is observed
very close to the Brillouin threshold without any optical feedback
[1]. The external feedback, provided by the fiber ends, leads to
additional dynamical behaviors such as periodic and quasi periodic
oscillations [1-3].

Various theoretical studies were made to explain the emer-
gence of the chaos and its suppression. The interaction of the
nonlinear refraction with the Brillouin scattering is identified as
being responsible for various dynamical behaviors [4]. Moreover,
the existence of the chaos without any feedback is related to the
stochastic nature of the spontaneous Brillouin scattering [5,6].
The feedback suppresses the stochastic nature of the Brillouin
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effect allowing a purely deterministic chaotic behavior resulting
from the interplay between Brillouin effect and nonlinear refrac-
tion [3,6].

The Brillouin effect has been also studied in fiber ring resonators
in order to realize Brillouin fiber lasers [7,8]. Various instabilities
were observed in such optical configurations. As demonstrated in
reference [8], the nonlinear refraction is an essential mechanism in
the destabilization of the dynamical behavior.

On the other hand, ytterbium-doped double clad fiber lasers
exhibit temporal instabilities which were attributed to Brillouin
scattering as demonstrated in [9] where the laser was stabilized in
a unidirectional cavity thus avoiding any backscattered waves.
Brillouin Stokes waves have been experimentally evidenced in
[10]. Further studies concerned the influence of the cavity losses
on the operating regime. It was demonstrated that a low losses
cavity favours continuous operating regime while the high losses
configuration leads to a self-pulsing instability [11]. Surprisingly,
there are few papers concerning the theoretical modeling of a fiber
laser in the presence of Brillouin effect. The first one is related to
the influence of the Brillouin effect on the pulse shape in an
actively Q-switch ytterbium-doped double-clad fiber laser [12].
In the previous work, we have proposed a simple model able to
describe the low-frequency self-pulsing instability [13] thus
demonstrating that this instability is a direct consequence of the
stimulated Brillouin scattering without any active or passive forced
modulation. The model was based on 4 intensity equations
(forward and backward components for laser and Stokes waves).
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In this first approach, we neglected the acoustic wave equation
thus implying an instantaneous Brillouin gain. This approximation
limited the validity of the model to the description of phenomena
on a time scale well above the phonon lifetime. We considered
a Fabry-Perot cavity inside which the spatial hole burning occurs.
As a consequence, different wavelengths experienced gain from
different dipoles distributions thus resulting in the existence of
different classes of dipoles [14]. Consequently, the model in [13]
assumes two distinct population inversions, one associated with
the laser field and the other to the Stokes wave. Both are coupled
through cross-saturation. The constructed model allowed demon-
strating that the Brillouin back-scattering can induce a self-pulsing
with a large period compared to the round trip time in the high
losses cavity case. For the low losses cavity, the laser remains
stable over a large range of pumping powers [13]. Before proceed-
ing it is worth to discuss about the strength of the cross-saturation
between laser and Brilllouin waves. The cross-saturation para-
meter p is generally of the order of 0.5 [15,16]. However with such
conventional value, no instability occurs and only the Brillouin
wave oscillates, the laser field vanishes. This is due to the fact that
the coupling between the two waves is too strong. The coupling
between the two waves has two origins; the first one is the cross-
saturation and the second one is the direct Brillouin coupling.
The latter is fixed by the host material. As a consequence we
decided in [13] to reduce the value of the cross-saturation which
was therefore considered as a free parameter. The instability of the
solution appeared for very low value of g of the order of 0.05. This
value allowed us to obtain a self-pulsing instability without need
to introduce a saturable absorber [12]. Also the value of g appears
unrealistic it is necessary to obtain results in good agreement with
the experimental data [10,11,17]. At this stage of our knowledge
the low value of g is not physically justified.

In this paper, the influence of Brillouin effect on the dynamics
of high power fiber lasers is described with an improved model
that takes into account the dynamics of the acoustic wave. Such
approach leads to results in better agreement with the experi-
mental ones reported in [10,11] and also to new dynamical
behaviors. In particular, the dynamics of the acoustic wave will
allow to (1) find an instability threshold close to that observed
experimentally [10], (2) reach a self-pulsing regime occurring on
the nanosecond range as for experimental observations [17] and
(3) identify new regimes which were not found by using the
intensity model [13]. An extensive study has been performed for
the identification of these regimes by using several analysis tools
such as phase portraits, first returns map and Fourier spectra. This
paper is organized as follows. Section 2 is devoted to the theoretical
model. Numerical simulations are presented in Section 3. Several
dynamical behaviors are identified.
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Fig. 1. Temporal evolution of the total output intensity for a pumping ratio r=1.5.

2. The model

We investigate numerically an ytterbium doped fiber laser,
with several watt of output power [17]. The laser is pumped at
976 nm and it emits at 1080 nm, it is considered as a quasi-three
levels system. We consider a Fabry-Perot fiber laser cavity and
assume that the fiber supports a forward and a backward laser
waves which are modeled through their amplitudes. For simplicity
we assume that there is only the first order Stokes wave with its
forward and backward components. In contrast with [13], we
include the equation for the acoustic wave. Optical Kerr effect is
neglected in this paper although it can be of importance in special
situations. What we gain with our new approach is that the results
are not limited by the phonon lifetime and that the model is valid
in a timescale below this lifetime. The different waves are
described in terms of their amplitudes which are subjected to
the classical boundary conditions on the mirrors. The forward
(backward) component of the laser wave is coupled to the back-
ward (forward) component of the Stokes wave as a result of the
Brillouin coupling. In addition, all waves fall below the gain curve
and consequently are coupled through the gain medium, at this
stage we have two possibilities. The first one is to assume that all
the fields are amplified through stimulated emission associated to
a unique population inversion. This approach, used in [12], does
not seem satisfactory because the spatial hole burning in standing-
wave lasers yields naturally to the existence of different classes of
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Fig. 2. (a) Temporal evolution of the total output intensity for r=2.3 and
(b) corresponding phase diagram in the plane (i*,s*).
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dipoles [14]. The second approach, that we have decided to use,
is a consequence of the spatial hole burning and consists to
consider two classes of atoms, each associated to one wavelength
[14]. Such approach has been used successfully for the description
of the dynamics of dual-wavelength erbium-doped fiber lasers
[16]. Of course, cross-saturation occurs between the laser and the
stokes waves.

In its final form, the model involves 2 material equations
(population inversions) and 6 field equations (forward and back-
ward components of the laser, the Stokes and the acoustic waves).
The normalized equations write as:

ad, 2 1P 2 e
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with the boundary conditions on the mirrors

ey (0,t)=v/Ri€;(0,0)

e, (#,t)=/Raef (£, 1)

e (0,t) = vRie; (0,1

a

0.018 ~
0.016 -
0.014 -
0.012 4

0.010 +

I @.u.)

0.008 +

0.006 ~

0.004 ~

0.002 +

0.000 T T T T 1
0 20 40 60 80 100

t (us)

0.01

0.009 | 1

0.008 | 1

0.007 | 4

0.006 I E

0.005 { R

s+(arb.units)

0.004 R

0.003 E

0.002 E

0.001 b

0 0.002  0.004  0.006  0.008 0.01 0.012  0.014
i+(arb.units)

Fig. 3. (a) Temporal evolution of the total output intensity for r=2.5 and
(b) corresponding phase diagram in the plane (i*,s*).

e (¢,t) = \/Rael (£,0) )

The d,'s are the population inversions normalized versus the
concentration of active ions (Ng = 10** m3). ey, el and ef are
the normalized laser, Stokes and acoustic field amplitudes. The
superscript plus and minus stand for forward and backward
components, respectively. The time t is normalized versus the
photon transit time along the fiber (T, =48 ns) and the long-
itudinal coordinate ¢ =z/L is normalized versus the fiber length
(L=10 m) which is assumed to coincide with the total cavity
length, so that the normalized cavity length is #=1. The other
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(b) corresponding first return map and (c) low frequency spectrum.



D. Mallek et al. / Optics Communications 308 (2013) 130-135 133

0.020 ~

0.015

0.010

I (a.u.)

0.005 +

0.000 T T T T T T T T T 1
00 01 02 03 04 05 06 07 08 09 1.0

0.014 “\ ”‘ ‘\“ \i ““‘ “"I‘ | ( | “" I

s ] || || H\I \/M?“‘M“u‘ |
o.mo-\/ ‘ | ‘
0008 o | | | \f\\‘j“\‘“ “ ‘HH “

0.006 -

i (arb.units)

tot

\[
0.004 «U I U\ | | ku‘ | I H \j \)‘ \J I

0.002 T T T T T T T T T 1
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Fig. 5. Temporal evolution of the total output intensity. (a) periodic regime for r=4
and (b) period having observed for r=4.5.

0.025
0.020
—~ 0015
2
ic
3
2
& 0010
2
0.005
0.000 T T T T T T T T T T T T 1
0 1 2 3 4 5 6 7 8 9 10 11 12
temps(us)

itot(1+2T)

0.005

0.02

itot(t+T) 0 0.005 001

itot(t)

0025

parameters are a; =T, /7, A= aNoL, G=gglLly, Ip = hw /(6 T}), ac = aL
and «, =T, I, I'the damping coefficient for acoustic wave.

7=2800 ps is the lifetime of the upper lasing level, ¢ =32 x
1072 m? the emission cross-section, g; the Brillouin gain and
a=0.0458 m~! the optical absorption coefficient of the fiber. The
normalized Brillouin gain is G=60 as discussed in [13]. The
normalized acoustical absorption coefficient is aqg =3. o =2zc/A
Is the optical pulsation with 1=1.08 ym. p Is the pumping
parameter and is assumed to be uniform along the fiber.
y represents a dichroism in the pumping process in order to take
into account some anisotropy of the laser [15,16]. g is the cross-
saturation parameter and physically represents the strength of the
coupling between the laser field and the Stokes through the
amplifying medium [14-16]. For the numerical simulations we
will take y=0.7 and #=0.05 [13]. R; and R, are the reflection
coefficients of the mirrors.

The laser threshold can be easily determined from the system

(1) [13]

1 1 1
pum 25 [ ocr an )

3. Periodic, pseudo-periodic and chaotic regimes

The above model of the coupled amplitudes is solved numeri-
cally by a fourth order Runge-Kutta algorithm for the temporal
derivatives. The z derivatives are computed by means of five-point
finite differences. We are interested on the temporal evolution of
the total output intensity of the laser defined as I(#,t) =i (¢, t) +
st(#,t) where i*(£,t)=Rlef (£, 0)* and s*(#,t)=Rylef (£, 1) are
the output intensities of the forward component of the laser and
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the Stokes waves, respectively. The external control parameter is
the pumping ratio defined as r=p/py,.

In [13] we showed that instabilities occurred only in high-loss
cavity. Therefore in this paper we restrict our analysis to this case,
assuming R; =1 and R, = 0.16. In the following the pumping ratio
is varied and the output intensity is analyzed. The numerical
results show that the laser presents a continuous behavior for
pumping rates r<2.3 as illustrated in Fig. 1 obtained for a
pumping ratio r=1.5. One can see that after the transient, the
laser operates in continuous regime (CW). The unusual transient
oscillations are due to the coupling between the laser field and the
Stokes wave. A regular self pulsing instability appears for r=2.3
with a period T=5 ps and a pulse duration of 2 us, as shown in
Fig. 2. The value of the instability threshold is considerably
reduced with regard to the value obtained with the model of
[13] (r~6,3), and is closer to the experimental value r~1.65 [10].
The phase diagram shown in Fig. 2(b) illustrates the trajectory in
the plane (i*,s*). It is a limit cycle associated with a periodic
regime. While the value of pumping increases, period doubling
occurs, the temporal evolution of the intensity is 2T-periodic for
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Fig. 7. Quasi-periodic evolution for r=>5.7. (a) Temporal evolution of the total output
intensity (b) reconstructed attractor showing a folded torus and (c) twentieth
return maps.

r=2.5, as shown in Fig. 3(a). The phase diagram of Fig. 3(b) confirms
the period doubling since it exhibits a double loop [16].

By further increasing the pumping rate up to r=2.7, the output
intensity presents several trains of irregular pulses as shown in
Fig. 4(a). We note that between two successive trains, the
amplitude of the pulses decreases considerably, and then increases
gradually during the duration of the next train of pulses. The laser
exhibits a fundamental period of about 5pus but this is not
sufficient to fully characterize the dynamics since there is a slow
evolution which seems to be random. To determine the nature of
the dynamical behavior for r=2.7, we first draw the first return
map constructed with the series of the maxima of the output
intensity. The last one is the unidirectional application which
relates the coordinate I, ; of a point with time (k+1)T to the
coordinate I, at time kT [18]. This application can be considered as
a reconstruction of the Poincare section by means of shifted
coordinates I =f(Iy). The first return map corresponding to
the time evolution of Fig. 4(a) is given in (b). It exhibits an
irregular distribution of points without any known pattern. Such
first-return map is characteristic of a chaotic behavior [18,19]. The
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Fig. 8. Quasi-periodic evolution for r=9. (a) Temporal evolution of the total output
intensity (b) reconstructed attractor showing a higher dimension torus and
(c) twentieth return maps.
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corresponding low frequency spectrum given in Fig. 4(c) illustrates
an important band of noise without any characteristic frequency
thus confirming the chaotic regime. The dynamic stabilizes on a
double loop periodic orbit for r=4. The period of the pulses is T'=
100 ns which corresponds to the round trip time of the cavity
while the pulse duration is 18 ns which is close to the lifetime of
the acoustic wave (Fig. 5(a)). For r=4.5, period halving occurs and
a sinusoidal periodic regime is observed, with a period T'/2=50 ns
and a pulse duration of 18 ns as shown in Fig. 5(b).

The dynamics completely changes for a pumping rate r=5.3 up
to r=9 for which a quasi-periodic regime appears. An example of
time evolution is given in Fig. 6(a) which exhibits a fast evolution
modulated with a very low frequency. The reconstructed attractor
is shown in Fig. 6(b). It consists in a torus T? characteristic of
quasi-periodicity. The reconstruction has been done using the
delayed coordinates in a three-dimensional space [18]. The twen-
tieth return map of Fig. 6(c) shows a closed curve confirming the
quasi-periodic regime. The system is driven by two incommensur-
able frequencies which can be pointed out with the Fourier
spectrum of the output intensity. The spectrum is given in Fig. 6
(d) and confirms two incommensurable frequencies F; (low fre-
quency) and Fy (high frequency) and linear combinations of these
two fundamental frequencies. The low frequency F,= 180 kHz corre-
sponds physically to the relaxation oscillation frequency while
Fy=9.985 MHz is the free spectral range. The regime is slightly
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Fig. 9. Chaotic regime for r=9.3003. (a) Temporal evolution of the total output
intensity and (b) first return map.

different for r=>5.7 as shown in the temporal trace of Fig. 7(a). The
diagram of the twentieth return map shows a kind of doubling (Fig.7
(c)) which reveals that the trajectory evolves on both parts of a folded
torus (Fig. 7.b) due to the importance of the second harmonic 2 F; of
the low frequency [19]. Note that the subharmonic F;/2 (and combina-
tions of the form (n+1/2)F;) also appear in the low-frequency
spectrum. The results for r=9 are given in Fig. 8. The twentieth return
map presents opened curves (Fig. 8(c)) thus confirming the quasi-
periodic regime. However it reveals that the attractor is a not a mere
torus T2 (Fig. 8(b)) but a torus embedded into a higher dimensional
space (at least four instead of three) [20]. For r=9.003 the systems
falls into a chaotic dynamics confirmed with a first return map,
which presents an irregular distribution of points (Fig. 9).

4. Conclusion

In summary we have investigated the dynamics of a high
power continuously pumped fiber laser in presence of stimulated
Brillouin scattering. The pumping ratio has been used as the
external control parameter. From the dynamical point of view
we observed first a route to chaos by period doubling, then a
return to a sinusoidal regime by period halving, and then again a
route to chaos, now through quasi-periodic process. Both the
subharmonic and the quasi-periodic routes to chaos are well-
known typical processes. From the physical point of view we have
pointed out two distinct self-pulsing regimes, one in the micro-
second range and the other in the nanosecond range. These
regimes were experimentally evidenced in the Yb-doped double-
clad fiber laser [17]. Our model is then in good qualitative
agreement with the experiment and considerably improves the
model which disregards the dynamics of the acoustic wave.

A better description of the dynamics could be obtained through
bifurcation diagrams. However, this is not achievable, at least with
our present numerical code, due to excessive computation time.
Improvement of the numerical code can be envisaged.
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