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Abstract: The spatiotemporal dynamics of few-cycle optical scalar and vector solitons in nonlinear Kerr media 

is studied outside the traditional framework of the SVEA. The pulse interactions, collapse threshold, and light 

bullets are calculated both analytically and numerically. 
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In the recent years, there has been a great deal of interest in the area of ultraintense light pulses comprising 

merely a few optical cycles. These few-cycle pulses (FCPs) have both been widely exploited in ultrafast 

nonlinear optics and also pushed extensive modeling studies beyond the slowly-varying envelope 

approximation (SVEA). In particular, numerous applications speed up interest towards deep understanding the 

pulse self-compression down to the single-cycle pulsewidth that goes on in a transparent medium with 

instantaneous cubic (Kerr-like) nonlinearity. The dynamics of a FCP in a self-focusing medium can be 

described beyond the SVEA by means of using the modified Korteweg-de Vries equation (mKdV) [1], sine-

Gordon (sG) [2,3] or mKdV-sG equations [4]. The mKdV and sG equations are completely integrable by the 

inverse scattering transform [5] whereas the mKdV-sG equation is completely integrable only if conditions are 

imposed on the nonlinear properties of the medium [6]. All these equations admit breather solutions which can 

realistically describe the FCP solitons. In (2+1) dimensions, the mKdV-based model should be replaced with 

the (non-integrable) generalized Kadomtsev-Petviashvili equation (GKPE) which, in turn, supplies a very 

distinct electrodynamical explanation for the stable few-cycle beam propagation [7,8].  

These findings have driven us to a specific question if the two-breather solution of the mKdV-sG equations 

describes the interaction in a Kerr-medium of two few-cycle optical solitons initially well separated, can be 

modeled in any optically reasonable setting. In this Report, we first consider the propagation of optical FCPs in 

a (1+1)D optical medium, such as a highly nonlinear optical waveguide. Our second goal is to expand this 

generic mKdV-sG model onto a (2+1)D medium in such way to answer the practical question of optical 

collapse and possibility of its arrest for the FCP. 

In any physical implementation, a train of FCPs can be launched into the medium in such a way that these 

propagate as a train of solitons. Due to the fluctuations of the intensity of the laser, the consecutive FCPs may 

have different energy/peak power, and, subsequently, different velocities. Therefore, it is only natural to expect 

them to overlap with each other and  our goal is to predict what can happen during the interaction. Owing to the 

analytic solutions that describe the two-breather solution of the mKdV-sG equation, we manage to define in 

explicit form, the amplitude, time location and shift resulting from the interaction. 

In the (2+1)D case of a Kerr-like medium, the evolution equation (1) should be replaced with a cubic 

GKPE as (see [10]) 
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where the dimensionless variables U, z, and τ are proportional to the electric field, propagation distance, and 

retarded time, correspondingly,  and y is proportional to the transverse coordinate. Notice that U is not the 

amplitude of the FCP, but is proportional to the true electric field itself. The constants σ1,2 = ±1 are related to the 

dispersion and nonlinearity properties of the medium; see, e.g., Refs. [2-4]. As an input FCP train we chose a 

linear superposition of the two-breather solution which we believe is the best fit for the two-cycle optical pulse. 

Since the final expressions are somewhat cumbersome, here we restrict ourselves to the highlight of the results 

obtained analytically.     

  Let us assume first that σ1,2 = -1, that is, the nonlinearity and dispersion yield temporal  self-

compression while nonlinearity and diffraction tend to defocus the FCP and what is more memory effects come 

into action here. The peculiarities of such diffraction are displayed at Fig. 1 where the optical field is strongly 

localized in time domain yet considerably spatially delocalized. This typical crescent shape is due to the 

conjugated action of temporal self-compression and diffraction. If the joint effect of nonlinearity and diffraction 

is focusing (σ1,2 = +1), and if the input is strong enough, the self-focusing might happen and two distinct 

regimes of the collapse are found numerically. At the same time, the spectrum of the FCP presents a strongly 

asymmetric oscillatory behavior that is in strict contrast with the case of the “long” pulses described within the 

SVEA. 
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In other typical case (the so called short-wave limit), when the characteristic frequency of the optical 

transition is much smaller than the carrier frequency of the FCP, the spatiotemporal dynamics is described by a 

two dimensional sine-Gordon equation as [11]:    
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
                (2) 

where C depends on z and is proportional to the inverse population. 
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Figure 1  Nonlinear diffraction of the FCP: (a) input profile at the (y, t)-plane; (b) an intermediate stage 

with a typical crescent shape; (c) nonlinear diffraction; (d) linear diffraction. 

 

The numerical simulations to Eq. (2) reveal evolution (not shown here) of the Gaussian pulse into a stable 

localized structure being affected neither by dispersion nor by diffraction; after a transient stage where the FCP 

radiates energy, its amplitude decreases and stabilization in the form of a localized oscillatory structure is 

reached eventually. 

It is very much tempting to expand this type of a multiscale perturbative analysis to depart from the SVEA 

and to describe evolution of vector few-cycle optical solitons that propagate in, e.g., Kerr-like media. Hence, we 

take into account the vector character of the electric field and consider the spatiotemporal propagation effects 

properly. That is, in the long-range approximation we find that the vector field corresponding to such few-cycle 

solitons is adequately described by the two complex GKPEs (1) but coupled through the second term as ~ (U
2
 + 

V
2
)Uτττ, where V is the field component orthogonal to U.  

In conclusion, we study the spatiotemporal dynamics of few-cycle optical solitons by making use of the 

two-breather solution of the mKdV-sG equation (or GKPE-sG) found earlier [7, 9-11]. The shapes of input and 

output soliton envelopes as well as the phase and location shifts are computed by mean of the exact expressions 

for the four-soliton (two-breather) solutions of the mKdV-sG equation. The remarkable feature is that, contrary 

to the case of the traditional (SVEA-type) soliton envelopes, no phase matching of any kind is required for the 

two-cycle pulses to interact efficiently. This interaction may bring novel features into the nonlinear propagation 

of trains of few-cycle optical pulses. At the same time, light bullet formation is proven for a medium, where the 

characteristic frequency of the optical transition is much smaller than the carrier frequency of the FCP. Contrary 

to that, the FCP propagation might also lead to the true wave collapse or nonlinear diffraction, depending on the 

sign of nonlinearity and dispersion. This Report completes our previous research efforts and presents a 

description for spatiotemporal dynamics of few-cycle scalar and vector optical solitons alternative to 

approaches based on the traditional slowly varying envelope (and phase) approximation. 
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