Accéder directement au contenu Accéder directement à la navigation
Nouvelle interface
Article dans une revue

Autonomous operator management for evolutionary algorithms

Abstract :

The performance of an evolutionary algorithm strongly depends on the design of its operators and on the management of these operators along the search; that is, on the ability of the algorithm to balance exploration and exploitation of the search space. Recent approaches automate the tuning and control of the parameters that govern this balance. We propose a new technique to dynamically control the behavior of operators in an EA and to manage a large set of potential operators. The best operators are rewarded by applying them more often. Tests of this technique on instances of 3-SAT return results that are competitive with an algorithm tailored to the problem.

Type de document :
Article dans une revue
Liste complète des métadonnées

https://hal.univ-angers.fr/hal-03255406
Contributeur : Okina Univ Angers Connectez-vous pour contacter le contributeur
Soumis le : vendredi 18 mars 2022 - 16:08:23
Dernière modification le : lundi 14 novembre 2022 - 02:42:07
Archivage à long terme le : : dimanche 19 juin 2022 - 18:05:08

Fichier

PaperJoH.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Jorge Maturana, Frédéric Lardeux, Frédéric Saubion. Autonomous operator management for evolutionary algorithms. Journal of Heuristics, 2010, 16 (6), pp.881-909. ⟨10.1007/s10732-010-9125-3⟩. ⟨hal-03255406⟩

Partager

Métriques

Consultations de la notice

13

Téléchargements de fichiers

25