
HAL Id: hal-03256210
https://univ-angers.hal.science/hal-03256210

Submitted on 10 Jun 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Improvevement of Fitch function for Maximum
Parsimony in Phylogenetic Reconstruction with Intel

AVX2 assembler instructions
Jean-Michel Richer

To cite this version:
Jean-Michel Richer. Improvevement of Fitch function for Maximum Parsimony in Phylogenetic Re-
construction with Intel AVX2 assembler instructions. [Research Report] Non spécifié. 2013, pp.7.
�hal-03256210�

https://univ-angers.hal.science/hal-03256210
https://hal.archives-ouvertes.fr


Technical Report
Improvement of Fitch function

for Maximum Parsimony
in Phylogenetic Reconstruction

with Intel AVX2 assembler instructions

Research Lab: LERIA
TR20130624-1

Version 1.0
24 June 2013

JEAN-M ICHEL RICHER

Office: H206
Address: 2 Boulevard Lavoisier, 49045 Angers Cedex 01
Phone: (+33) (0)2-41-73-52-34
Email: jean-michel.richer@univ-angers.fr



Abstract

The Maximum Parsimony problem aims at reconstructing a phylogenetic tree from DNA,
RNA or protein sequences while minimizing the number of evolutionary changes. Much
work has been devoted by the Computer Science community to solve this NP-complete prob-
lem and many techniques have been used or designed in order todecrease the computation
time necessary to obtain an acceptable solution. In this paper we report an improvement of the
evaluation of the Fitch function for Maximum Parsimony using AVX2 assembler instruction
of IntelTM processors.

1 Introduction

This report is an extension of the technical reportTR20080428-1by the same author. We give here a new
version of the assembler code and we have performed some tests on an Intel Haswell processor to verify if
the AVX2 assembler instruction set gave any improvement over SSE2. For more details we refer the reader
to the technical reportTR20080428-1.

1.1 Software improvement using AVX2 instructions

The release of the new Haswell architecture of Intel processor in June 2013 led to the introduction of
AVX2 (Advanced Vector Extensions, version 2) assembler instructions. With AVX, introduced in 2008, the
width of the SIMD registers is increased from 128 bits to 256 bits and the SSE registersxmm0-xmm15are
renamed toymm0-ymm15for a 64 bits architecture.

AVX2 extensions likeSSE2(Streaming SIMD Extensions) instructions of modern x86 processors (Intel,
AMD) help vectorize the code, i.e. apply the same instruction on multiple data at the same time conse-
quently reducing the overall execution time.

In our implementation of phylogenetic reconstruction withMaximum Parsimony using Fitch criterion,
the main function that benefits from the use of vectorizationis the computation of a hypothetical parsimony
sequence from two existing sequences. The C code of this function is given figure 1 and takes as input two
sequencesx andy of a givensize . The outputs are the hypothetical taxonz and the number ofchanges
(or differences) returned by the function.

1 int fitch ( char x[], char y[], char z[], int size) {
2 int i, changes= 0;
3 for (i = 0; i < length; ++i) {
4 z[i] = x[i] & y[i];
5 if (z[i] == 0) {
6 ++changes;
7 z[i] = x[i] | y[i];
8 }
9 }

10 return changes;
11 }

Figure 1: Fitch Parsimony function

Modern compiler (gcc GNU, icc Intel) are not able to vectorize the code of this function efficiently if
no implementation specific information is provided. It is then necessary to code the function in assembler
to get a significant improvement during the execution of the program.

The implementation with AVX2 is nearly the same as the one given in report TR20080428-1 for SSE2:

1. we first load into registersymm0 andymm1 the first 32 bytes of each taxon (x andy )

2. in ymm2 andymm3, we respectively compute the binary-AND and the binary-OR of ymm0 and
ymm1 using instructionsvpand andvpor (for parallel AND and parallel OR).

2



3. then, we compareymm2 with a vector of zero using the instructionvpcmpeqb (which performs a
parallel comparison of each byte of two ymm registers) in order to determine which bytes ofymm3
will replace the zero values ofymm2. The result is stored in registerymm5. The result ofvpcmeqb
is such thatymm5[i] = 0, if originally ymm2[i] = 0 otherwiseymm5[i] = 255

4. as a consequence, we can useymm5 and combine it withymm2 andymm3 to get the final result of
taxonz by calculating :(ymm5&ymm3)|(NOT (ymm5)&ymm2). This process is repeated every
32 bytes until we reach the last bytes of the taxa.

5. when the size of the taxa is not a multiple of 32, the last part of the taxonz is computed using a
traditional implementation which treats one byte at a time.

The number of changes is evaluated using the POPCNT (for POPulation CouNT) instruction which
counts the number of bits set to 1 in a general purpose register. Note also that we take advantage of AVX2
by using thevpcmpeqb on aymm register which compares in parallel the 32 bytes of twoymm registers.

An overview of the assembler code is given figure 2:

1 pxor ymm4, ymm4 ; initialize ymm4 with 0 for comparison
2 vmovdqa ymm0, [ ebx ] ; load x[ebx+0:31] into ymm0
3 vmovdqa ymm1, [ esi ] ; load y[esi+0:31] into ymm1
4 vpand ymm2, ymm0, ymm1 ; ymm2<- ymm0 & ymm1
5 vpor ymm3, ymm0, ymm1 ; ymm3<- ymm0| ymm1
6 vpcmpeqb ymm5, ymm4, ymm2 ; compare ymm2 to ymm4 (AVX2)
7 vpmovmskb edx , ymm5 ; store in ymm5 and put number of bits in edx
8 popcnt edx , edx ; use popcnt to compute number of bits
9 add eax , edx ; add to eax which records number of changes

10 vpblendvb ymm0, ymm2, ymm3, ymm5 ; compute result
11 vmovdqa [ edi ], ymm0 ; store in z[edi+0:31]

Figure 2: Translation of the Fitch parsimony function (see fig. 1) in assembler x86 32 bits using AVX2
instructions.

In our implementation we use a special instruction calledvpblendvb which is equivalent to three
instructions (see figure 3). We also useloop unrollingof 4, which means that we can unroll the loop 4 times
in order to treat4× 32 elements in one iteration.

1 vpand ymm0, ymm3, ymm5 ; ymm0<- (ymm0| ymm1) & ymm5
2 vpandn ymm1, ymm5, ymm2 ; ymm1<- (ymm0 & ymm1) &̃ymm5
3 vpor ymm0, ymm0, ymm1 ; ymm0<- ymm0| ymm1

Figure 3: Equivalence of thevpblendvb instruction

2 Benchmark and results

To assess the performance of our AVX2 implementation we havedesigned a simple benchmark. The bench-
mark consists in a loop executed 200.000 times on a set of 100 sequences for different sizes (127, 255, ...,
4095). We apply the Fitch function between the sequences. Sequences are dynamically allocated using
mmmalloc and are aligned on a 32 bytes boundary, i.e. the addresses of the memory blocks allocated are

a multiple of 32. The benchmark was compiled and run under Ubuntu 13.04 32 and 64 bits versions.

2.1 Results On Intel i5 4570 Haswell

We have implemented the AVX2 version of the Fitch function and compared it to the SSE2 version re-
leased in 2008. Results were obtained on an Intel CoreTM i5 4570 CPU running at 3.20GHz that imple-

3



ments AVX2. Table 1 compares the basic C implementation compiled with gcc (-O2 -funroll-loops
--param max-unroll-times=8 -ftree-vectorize -msse2 -ftr ee-loop-optimize )
to the assembler SSE2 and AVX2 implementations on a 32 bits architecture. Table 2 reports results for a
64 bits architecture. All the SSE2 and AVX2 implementation use the POPCNT function and have been
compiled using NASM 2.10.07, the Netwide Assembler (http://www.nasm.us ).

In both cases, columns %sse2 and %avx2 reports the improvement in percentage compared to the C
implementation for different size of taxa that range from 127 to 4095 residues.

size C (s) sse2 (s) %sse2 avx2 (s) %avx2
127 2.620 0.800 69.47% 0.760 70.99%
255 7.740 0.970 87.47% 0.850 89.02%
511 20.900 1.320 93.68% 1.040 95.02%
1023 47.060 2.050 95.64% 1.390 97.05%
2047 98.330 3.650 96.29% 2.140 97.82%
4095 198.330 6.520 96.71% 3.920 98.02%

Table 1: Results on a 32 bits architecture of the execution ofthe benchmark with C, SSE2 and AVX2
implementations for a Core i5 4570 and compiled with gcc 4.7

size C sse2 (s) %sse2 avx2 (s) %avx2
127 1.650 0.650 60.61% 0.580 64.85%
255 6.080 0.810 86.68% 0.650 89.31%
511 18.500 1.160 93.73% 0.850 95.41%
1023 43.120 1.890 95.62% 1.260 97.08%
2047 90.630 3.420 96.23% 1.950 97.85%
4095 184.000 6.420 96.51% 3.750 97.96%

Table 2: Results on a 64 bits architecture of the execution ofthe benchmark with C, SSE2 and AVX2
implementations for a Core i5 4570 and compiled with gcc 4.7

From the results obtained we can make the following comments:

• for the C, SSE2, AVX2 implementations, the 64 bits version isfaster than the 32 bits version,

• the AVX2 assembler version is the fastest compared to C and SSE2 implementation

2.2 Result on Intel i5 3570 Ivy Bridge

The Intel CoreTM i5 3570k CPU @ 3.40GHz does not implement AVX2, but only AVX, so we have decided
to compare the results of the C and SSE2 implementations.

size C sse2 %sse2
127 3.840 0.920 76.04%
255 10.780 1.120 89.61%
511 22.790 1.540 93.04%
1023 48.390 2.400 95.04%
2047 99.910 4.080 95.92%
4095 201.750 7.260 96.40%

Table 3: Results on a 32 bits architecture of the execution ofthe benchmark with C and SSE2 implementa-
tions for a Core i5 3570k and compiled with gcc 4.7

4



Although the 3570k is running at a higher frequency than the 4570, we can see that it takes more time
to the 3570k to complete the benchmark.

More results for different processor architectures can be found on this page:http://www.info.
univ-angers.fr/pub/richer/ensl3i_crs6.php#parcimoni e.

2.3 Use of Intel compiler on Haswell

2.3.1 vectorization

The Fitch function on figure 2 can be compiled quite efficiently with icpc, the Intel C++ compiler. We
used the version 13.1.1 of icpc which is compatible with gcc version 4.7.0. For example by usingassume
directives we can tell the compiler that data are aligned on a32 byte memory boundary in order for the
compiler to useymm registers.

1 #include <stdint.h>
2
3 uint32 t parsimony 1( uint8 t * x, uint8 t * y,
4 uint8 t * z, uint32 t size) {
5 assume aligned (x, 32);
6 assume aligned (y, 32);
7 assume aligned (z, 32);
8
9 #pragma simd

10 for (i= 0; i<size; ++i) {
11 // code of Fitch function
12 }
13 }

Figure 4: Fitch Parsimony function with Intel icpc directives

The function is compiled with-O3 -xCORE-AVX2 flags. Thepragma directive can also be used to
provide implementation-defined information to the compiler: the pragma simd directive tells the compiler
to enforce vectorization of loops. The execution times showan important improvement of the C imple-
mentation but for small sizes (see table 4, column icpc1). Wecould also use the pragma directive with
simd vectorlength(32) to tell that we want to treat 32 bytes at a time. This information decreases
the execution time (column icpc2 of table 4) compared to icpc1 for a size of vector greater than 1023.

size icpc1 (s) icpc2 (s) avx2 (s)
127 0.550 1.200 0.770
255 0.860 1.340 0.850
511 1.430 2.040 1.030
1023 2.520 2.920 1.400
2047 4.640 4.620 2.140
4095 8.940 7.960 3.890

Table 4: Results on a 32 bits architecture of a Core i5 4570 when compiled with icpc and vectorization
directives

2.3.2 profile-guided optimization

PGO (forProfile-Guided Optimization) tells the compiler which areas of an application are most frequently
executed. The compiler is then able to use feedback from a previous compilation to be more selective in
optimizing the application. PGO with Intel icpc gave interesting results (see table 5) for the code of figure 2:

5



size pgo (s) avx2 (s)
127 0.790 0.820
255 1.010 0.920
511 1.500 1.170
1023 2.520 1.460
2047 4.400 2.240
4095 8.030 3.940

Table 5: Results on a 32 bits architecture of a Core i5 4570 when compiled with icpc and PGO directives

2.4 Use of GNU C compiler on Haswell

It was not possible to vectorize the code with gcc 4.7.0 although I have used some directives related to auto
vectorization of the code. So I have decided to useintrinsicsfunctions which are functions available for use
in a given programming language whose implementation is handled specially by the compiler. The most
efficient function uses AVX2 intrinsics (see figure 5).

1 uint32 t parsimony intrinsics3 ( uint8 t * x, uint8 t * y,
2 uint8 t * z, uint32 t size) {
3 uint32 t i, changes= 0;
4
5 m256i x, y, x and y, x or y, zero, cmp;
6
7 zero = mm256set epi8 ( 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
8 , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0);
9

10 for (i = 0; i < (size & ( ˜ 31)); i+= 32) {
11 x = mm256load si256 (( m256i * ) &x[i]);
12 y = mm256load si256 (( m256i * ) &y[i]);
13 x and y = mm256and si256 ( x, y);
14 x or y = mm256or si256 ( x, y);
15 cmp = mm256cmpeq epi8 ( zero, x and y);
16 uint32 t r = mm256movemask epi8 ( cmp);
17 changes += mmpopcnt u32 (r);
18 x = mm256blendv epi8 ( x and y, x or y, cmp);
19 mm256store si256 ( ( m256i * ) &z[i], x);
20 }
21
22 for ( ; i<size; ++i) {
23 z[i] = x[i] & y[i];
24 if (z[i] == 0) {
25 z[i] = x[i] | y[i];
26 ++changes;
27 }
28 }
29
30 return changes;
31 }

Figure 5: Fitch Parsimony function with intrinsics

Results are reported on table 6 for a 32 bits architecture andon table 7 for a 64 bits architecture. The
AVX2 intrinsics version is close to hand-coded AVX2 version.

6



size intrinsics intrinsics avx2 (s)
sse2 (s) avx2 (s)

127 0.440 0.750 0.820
255 0.590 0.900 0.860
511 0.970 1.130 1.100
1023 1.680 1.580 1.440
2047 3.250 2.510 2.300
4095 6.190 4.610 4.010

Table 6: Results on a 32 bits architecture of a Core i5 4570 when compiled with gcc and use of intrinsics

size intrinsics intrinsics avx2 (s)
sse2 (s) avx2 (s)

127 0.380 0.500 0.560
255 0.560 0.560 0.630
511 0.950 0.800 0.810
1023 1.740 1.240 1.220
2047 3.330 2.210 1.960
4095 6.960 4.670 3.960

Table 7: Results on a 64 bits architecture of a Core i5 4570 when compiled with gcc and use of intrinsics

3 Conclusion

In this article we have introduced an implementation improvement which relies on the capabilities of mod-
ern processors to vectorize data treatments. We think that it would be worth to implement those techniques
into existing softwares that try to solve Maximum Parsimonywith the Fitch criterion. However the AVX2
instruction set does not improve significantly the execution time compared to its SSE2 version, but the as-
sembler hand-coded versions of the Fitch function are generally more efficient than the ones generated by
compilers especially for sequences of size greater than 1023.

7


