N
N

N

HAL

open science

Soft Pattern Discovery in Pre-Classified Protein
Families through Constraint Optimization
David Lesaint, Deepak Mehta, Barry O’Sullivan

» To cite this version:

David Lesaint, Deepak Mehta, Barry O’Sullivan. Soft Pattern Discovery in Pre-Classified Protein
Families through Constraint Optimization. WCB 13 - Workshop on Constraint-Based Methods for

Bioinformatics, 2013, Uppsala, Sweden. pp.47-55. hal-03256745

HAL Id: hal-03256745
https://univ-angers.hal.science/hal-03256745

Submitted on 10 Jun 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://univ-angers.hal.science/hal-03256745
https://hal.archives-ouvertes.fr

Soft Pattern Discovery in Pre-Classified Protein
Families through Constraint Optimization

David Lesaint!, Deepak Mehta?, and Barry O’Sullivan?

! LERIA, Université d’Angers, F-49045 Angers, France
david.lesaint@univ-angers.fr
2 University College Cork, 4C, Cork, Ireland
d.mehta,b.osullivan@4c.ucc.ie

Abstract. A considerable effort has been invested in discovering pat-
terns amongst protein sequences. This paper introduces the notion of soft
pattern to characterize existing classes in a dataset. A soft pattern for a
class is an exclusive set of subsequences, called c-blocks, which are com-
mon to the class and whose embeddings feature consistent mismatches.
Soft patterns are less verbose than regular expressions and are not re-
stricted to be linear as opposed to class signatures produced by multiple
sequence alignment methods. We formalize a general soft pattern com-
putation problem and present two variants enforcing either sequencing
or non-replication of c-blocks in a pattern. We cast these problems into a
lexicographic constraint optimization framework and present a two-stage
procedure to solve the replication-free problem variant.

1 Introduction

Detecting patterns in amino acid sequences is critical to understand the rela-
tionship between the function and structure of proteins. This problem has been
thoroughly investigated in Bioinformatics, notably via multiple sequence align-
ment (MSA) and pattern recognition approaches [1-6]. MSA methods insert gaps
in input sequences (interpreted as amino acid indels) in order to align common
blocks that have a limited amount of mismatch (interpreted as point mutations).
By design, these methods only detect sequences of common blocks which is re-
strictive when analyzing proteins featuring different block orderings. Besides,
MSA does not address the problem of enforcing pattern exclusivity when dealing
with pre-classified sequences. The same applies to pattern recognition methods,
and while the latter are less sensitive to block orderings, they may yield verbose
or loose class signatures.

This paper proposes a constraint optimization approach to detect exclusive
patterns in pre-classified protein families. The key requirements are addressed
separately with constraints which gives the ability to use dedicated algorithms
but also to integrate and reason about other dimensions of the problem (e.g.,
chemico-physical properties). The approach relies on the notion of soft pattern to
accommodate point mutations and variable block orderings. A soft pattern for a
class is an exclusive set of common subsequences where each subsequence features

47

2 David Lesaint et al.

the same point mutations across the class. We call ¢-blocks such subsequences
and refer to point mutations as hashes. In order to facilitate biological interpre-
tation and limit computational complexity, subsumption (coverage) between the
c-blocks of a pattern is prohibited. Lexical subsumption and overlapping may
also be prohibited to prevent replication or enforce sequencing of c-blocks.

On this basis, we formulate a core soft pattern discovery problem which we
specialize into two different variants. The general problem is to detect exclusive
and coverage-free patterns. The first variant detects replication-free patterns that
are minimally exclusive and maximally refined while the second variant detects
exclusive sequential patterns. All problems incorporate parametric constraints
that bound the slack (i.e., the maximum number of consecutive hashes in c-
blocks) and width of patterns (i.e., the minimum span of c¢-blocks) in order to
discard degenerate solutions. Note that MSA problems may be cast as particular
cases of the sequential pattern discovery variant.

The replication-free problem variant yields strong class characterisations
since solution patterns are stripped of rendundant c-blocks while the remain-
ing c-blocks cannot be specialized further, nor extended. We restrict our at-
tention to this variant which we model as a lexicographic constraint optimiza-
tion problem (COP). This COP addresses subsequence matching, commonality,
hash-consistency, slack and width bounding, exclusivity, non-coverage and non
equivalence of c-blocks through separate constraints. In particular, exclusivity is
reducible to a set covering problem. The lexicographic objective function prior-
itizes minimum pattern cardinality over length maximality which ensures solu-
tions are minimally exclusive and maximally refined soft patterns. We present
a two-stage procedure to solve this COP. The procedure composes maximal c-
blocks from minimal blocks before computing exclusive solution patterns.

The paper is organized as follows. Sec.2 discusses the notion of soft pattern
and motivates the different pattern discovery tasks. Sec.3 formalizes the problems
and introduces the constraint optimization model for computing replication-
free patterns. Sec.4 presents the two-stage procedure for this problem. Sec.5
concludes. Due to lack of space, we refer the reader to [7] which includes proofs
and presents a declarative implementation in Minizinc [8].

2 Soft Patterns

This section motivates the three pattern discovery problems and introduces the
underlying concepts. Given a dataset composed of classes of protein sequences,
the objective is to characterize a class by a soft pattern. A soft pattern is a
set of c-blocks where a c-block corresponds to a subsequence that is common
to the sequences of the class and whose adjacent characters are separated by
the same number of mismatching characters in each sequence. We call block the
embedding of a c-block in a sequence, and hash any mismatch inside a c-block.
Note that a c-block cannot start nor end with a hash but no further constraint
on hashes are assumed (allowed amino-acid substitutions and c-blocks starting
or ending with hashes are not discussed here). Fig.1 shows a dataset made of

48

Soft Pattern Discovery 3

Class A Class B
protein protein protein protein protein
ACADEEC EECAEA CADA ADAAEEC CAEEC
1234567 123456 1234 1234567 12345
c-block A#A A#A A#A A#A
c-block CA CA CA CA
c-block EEC EEC EEC EEC

Fig. 1. A soft pattern {A#A,CA,EEC} for class A.

two classes A and B. Class A includes proteins ACADECC and EECAEA and a soft
pattern of three c-blocks is shown for it. The first c-block corresponds to the
common subsequence AA with embeddings {1,3} in the first protein and {4, 6}
in the second, both sharing a hash in second position. This c-block is given
signature A#A where # indicates a hash. The other two c-blocks are CA and EEC.

Beyond subsequence matching, commonality and hash-consistency, a key re-
quirement is that patterns discriminate classes, that is, a pattern for a class
should not match any “foreign” protein (i.e., any protein not in the class). Pat-
tern exclusivity is defined differently based on the constraints one wishes to im-
pose between the c-blocks of a pattern. We consider three constraints, namely,
non-coverage, non-replication and sequentiality. Non-coverage means that no c-
block embedding should contain another in a protein which is legitimate from
biological and computational standpoints. In this case, a pattern is exclusive if
any set of blocks in a foreign protein matching the c-blocks is itself coverage-free.

Optionally, a further restriction is to prohibit c-block replication. A c-block
may indeed be repeated in a coverage-free pattern (i.e., c-blocks with the same
signature) or replicated within larger c-blocks (e.g., a pattern containing AC#A
and C#4). Replication subsumes coverage and determining exclusivity for replica-
tion-free patterns boils down to proving that every foreign protein is incompati-
ble with one c-block. This is illustrated in Fig.1 where the pattern is replication-
free and exclusive to class A since no protein of class B matches its three c-blocks.

Another alternative is to search for patterns whose c-blocks occur in the same
order in each protein of the class. Since block embeddings may be abstracted
as intervals, interval relations (e.g., Allen relations) may be used to characterize
an ordering between blocks. The simplest and most intuitive relation is the
precedence relation which guarantees that intervals do not overlap nor meet.
Exclusivity holds in this case if any set of blocks in a foreign protein matching
the c-blocks cannot be sequenced consistently with the pattern.

Different objectives may be pursued on top of these features. One such ob-
jective is to make patterns minimally exclusive and devoid of redundancy from
a classification viewpoint. Minimal exclusivity is achieved by discarding c-blocks
that do not contribute to making a pattern exclusive (notably, c-blocks that do
not exclude any protein). This is the case for the pattern of Fig.1 since drop-
ping any c-block yields a non-exclusive pattern. It would not be so if class B
did not contain protein CAEEC, A#A being redundant in this case. Another objec-

49

4 David Lesaint et al.

tive is to try refining c-blocks as much as possible by substituting hashes with
matching characters (specialization) or adding matching characters left or right,
possibly introducing new hashes in doing so (extension). The pattern of Fig.1 is
mazimally refined in this sense.

Three indicators may also be used to assess pattern quality: slack (maximum
number of consecutive hashes in c-blocks), width (minimum span of c-blocks) and
length (total number of matching characters in the c-blocks). The width of a c-
block is the sum of its slack and length while there is no such correlation for
patterns as increasing the length of a pattern may increase the slack or decrease
the width. Consistently with the need for maximality, preference goes to patterns
with lower slack, greater width or length, all things being equal.

It is challenging though for domain experts to come up with a preference
model aggregating all these features, criteria and objectives. On this basis, we
formulate a general soft pattern discovery problem (SPD) and two variants. The
SPD consists in computing exclusive and coverage-free patterns for a class. Note
that SPD solutions may feature replicated c-blocks. The SPD enforces two para-
metric constraints, namely, an upper bound on slack to discard loose patterns
and a lower bound on width to discard short patterns. The first variant, called
replication-free soft pattern discovery problem, consists in computing SPD solu-
tion patterns that are minimally exclusive, maximally refined and non equivalent
for replication. Such solutions are replication-free and minimal exclusivity boils
down to a minimal set covering problem. The second variant, called sequential
soft pattern discovery problem, consists in searching for sequential SPD solu-
tion patterns. Minimal exclusivity and c-block maximality may conflict under a
precedence ordering which is why neither feature is imposed in this variant.

3 Soft Pattern Discovery Problems

We use the following notations. For n € N, [n] denotes the range {i e N |1 < i <
n}, |t| denotes the number of elements of a tuple or a set ¢ and [¢] denotes the
range [|t|], ¢; denotes the i-th element of a tuple ¢ for all i € [t], and f(A) denotes
the image of a function f : A — B (i.e., f(4) = {f(i) | i € A}). X denotes a
finite alphabet and X* the set of finite strings that are constructed from the
characters of X' by concatenation. Tuple notations will be used for strings.

A class over X is a tuple of strings belonging to X* and a dataset over X' is
a tuple of classes over Y. A string = has length n or is n-long if it consists of n,
not necessarily distinct, characters from Y. A string y is a substring of a string x
if there exist not necessarily distinct and possibly empty strings vy, vo € X* such
that viyve = x. A k-long string y = y; . . . Y is a subsequence of a string x if there
exist k + 1 not necessarily distinct and possibly empty strings vy, ... vg41 € 2*
such that viy; ... vpyrvg+1 = =. We denote this fact by y < z. Let y < =,
an embedding of y in z is a strictly increasing function u : [y] — [z] such that
Yi = ;) for all i € [y]. Note that a subsequence may have multiple embeddings.
A string y is a common subsequence of a class z if y < x; for all i € [z].

50

Soft Pattern Discovery 5

A block for a string x is a triple {(u,y,2) such that y < x and p is an
embedding of y in x. We associate to a block b = {u,y,x) a hash function
2(8) : [y] — [zl — Iy]] defined by 7(8)([y]) = 0 and A(b)(i) = ju(i + 1) — a(i) — 1
(1 <4 < |y|). For instance, CDA is a subsequence of CACDEAC that determines
two blocks, the left-most one C##D#A verifying u([y]) = {1,4,6} and v([y]) =
{2,1,0}. Let b = {p,y,zy and ' = {',y/,2’") be two blocks, we say that b
and b’ are compatible if y = y' and ~v(b) = (V). In other words, compatible
blocks embed a common subsequence with identical hashes. Let b = (u,y,x)
and b = (¢/,y’, x) be two blocks for the same string x, we say that b covers b
if n([y]) 2 1/ ([¢']) and that b replicates b if there exists a block b” for z, not
necessarily distinct from o', compatible with &' and covered by b. Coverage is a
particular case of replication. For instance, block ACD covers and replicates the
right-most block CD in string CDACD but only replicates the left-most block CD.

A c-block for a class = is a |z|-tuple ¢ of compatible blocks such that t; =
iy i, @iy for all ¢ € [x]. That is, a c-block determines a common subsequence
in a class whose embeddings have identical hashes. We say that a c-block is
compatible with a block b if its blocks are compatible with b; and that it is
incompatible with a string z if there is no block for z compatible with it. Let ¢ and
t' be two c-blocks for a class x, we say that ¢ covers t' (respectively, ¢ replicates
t'), denoted t = ¢’ (resp., t > t'), if there exists i € [x] such that ¢; covers t; (resp.,
t; replicates t}). Replication is a partial order that subsumes coverage which is
itself non-transitive. Both relations preserve incompatibility, i.e., if £ > ¢ and ¢
is incompatible with string z then ¢ is incompatible with z. We introduce the
following relations: t <t/ < (t <t/ A =t =t)), txt' < <t At >=1t), and
t<t < (t<t A—(t=1)). <is a strict partial order as opposed to < and =
is an equivalence relation (equivalent c-blocks have signatures over X u {#}).

A pattern for a class = is a set of c-blocks for x. We say that a pattern is
compatible with a string z if one can replicate its c-blocks in z without coverage.
Formally, let ¢ be a dataset and p be a pattern for class ¢; for some i € [c], p is
compatible with a string z if there exists a set g of blocks for z such that (1) for
all t,t' € p, t # t/, there exists b € g and b’ € ¢ such that b # ¥, ¢ is compatible
with b and ¢’ is compatible with &', and (2) for all b,b’ € ¢, b # ¥, b does not
cover b'. If there is no replication in p, it suffices to show that each c-block of p
is compatible with z. We say that p is exclusive to ¢; wrt. ¢ if for all j € [¢] such
that j # 14, for all k € [¢;], p is incompatible with ¢;, . We say that p is minimally
exclusive for a class ¢; wrt. a dataset c¢ if any pattern strictly included in p is
not exclusive for ¢; wrt. c.

We denote by A\, 0 and w the length, slack and width functions used for
blocks, c-blocks or patterns. Let b = (u,y,x) be a block, A(b) = |y|, o(b) =
maxep,]Y(0)(4) and w(b) = pu(ly|) — (1) + 1. Let ¢ be a c-block, A(t) = A(t;),
o(t) = o(t;) and w(t) = w(t;) where i € [t]. Let p be a pattern, A(p) = 3., A(?),
o(p) = maxepo(t) and w(p) = minge,w(t). Let £ € N and = denote a block,
c-block or pattern, we say that x is k-loose if o(z) < k; x is strict if it is 0-loose;
and z is k-wide if w(z) > k. Let | € N and w € N, a c-block ¢ for a class x

l

such that o(t) < [and w(t) = w is <! -minimal over x (resp. <! -mazimal,

51

6 David Lesaint et al.

<! -minimal, <! -maximal) if there is no c-block ¢ for = such that (') < I,
w(t)zwand t >t (resp.,, t <t',t>1t,t<t).

The soft pattern discovery problem (SPD) consists in determining slack- and
width-bounded patterns that are exclusive and coverage-free. The replication-
free SPD (RSPD) requires that c-blocks be maximal for <, and non equivalent
to prevent replications (non-equivalence may be dropped to allow repetitions).
The sequential SPD (SSPD) requires that c-blocks be consistently and totally
ordered over the class based on the following relation over embeddings: block
b = {u,y,x) precedes block ' = {u',y',x) if u(ly|) +1 < p'(1). Let ¢ and ¢’ be
two c-blocks over a class z, we say that ¢ precedes t' if for all i € [z], t; precedes
t;, and that a pattern p is sequential if precedes is a total ordering over p.

Definition 1 (SPD, RSPD, SSPD). Let C be a dataset over an alphabet
A, i€ [C], seN, and w € N*. A solution to a SPD (A,C.,i,s,w) is an ex-
clusive, coverage-free, s-loose and w-wide pattern for C;. A solution to a RSPD
(A, C,i,s,w) is a minimally exclusive pattern of <5 -mazximal and non-equivalent
c-blocks for C;. A solution to a SSPD (A, C,i,s,w) is a sequential, exclusive,
s-loose and w-wide pattern for C;.

We propose a lexicographic constraint optimisation model for the RSPD
that computes solution patterns of minimum cardinality and, amongst those, of
maximum length. The model substitutes maximality and minimality constraints
with the requirement that c-blocks be maximal according to the lexicographic
ordering prioritizing minimum cardinality over maximum length.

Lemma 1 (RSPD as a COP). Let P ={(A,C,i,s,w) be a RSPD, II the set
of patterns for C;, and p € II. p is a minimum cardinality solution to P if and
only if it satisfies the following conditions:

. slack and width bounds: o(p) < s and w(p) = w;

. exclusivity: p is exclusive to C; wrt. C;

. non-equivalence: for allt e p, u € p s.t. t #u, t % u;

. non-coverage: for allt € p, u€p s.t. t # u, —(t < u);

. maximality for <je,: for all ¢ € IT s.t. q satisfies (1-4), —(p <jex q) where

P <iex ¢ if (lgl = [p| = (lal = Ipl A Aq) > A(p))) holds true.

B Lo D M~

The above result generalizes to the case where we include slack minimality as
the least preferred criterion in the lexicographic objective function. Since RSPDs
prohibit replication, the maximum number of solutions to a RSPD is (loosely)
bounded by the maximum number of blocks in the smallest protein of the class
C;. The following result formulates the bound in the case of 1-loose patterns.

Lemma 2. Let ¢ = 1+—2*/5,) = 1_7*/5, n €N and B(n) be the number of 1-loose
o ¢ﬂ+47wn+4 ¢n+4

blocks for a n-long string. B(n) = — tn-3 and lim,,_,o, 8(n) = VR

More generally, the number of blocks of slack & that span a string of length
n is the Fibonacci sequence of order k (where each element is the sum of the

52

Soft Pattern Discovery 7

previous k elements). The closed-form for the n-th element of the sequence is

=1,
[ka%] where [] denotes the nearest integer function and r is the limit of

the ratio between successive terms as n increases. r corresponds to the root of
equation x + 2% = 2 near to 2 and it approaches 2 as k increases.

4 A Two-Step Approach to Solving (R)SPD

As (R)SPD involves finding a pattern consisting of one or more maximal c-blocks
for a class C}, we propose a two-step approach where first we compute all the
maximal c-blocks for C) and then compute an exclusive pattern of minimum
cardinality. We describe these two steps briefly.

Computing mazimal c-blocks. To compute the set of maximal c-blocks, we first
compute all blocks of length 2 that are common to the proteins of class Cj. This
is done by first selecting the protein having the minimum size and then verifying
for each valid block of length 2 whether it is common to all the proteins or not.
Once done, we know all the minimal length blocks and their starting positions
in the smallest protein of the class. We then compute all maximal blocks of
the protein by composing the minimal length blocks while ensuring that each
of them is involved in at least one c-block. Finally, we compute the set of all
maximal c-blocks based on the maximal blocks and ensure that none of them
covers another.

Computing optimal patterns. Once we have all the maximal c-blocks, we for-
mulate a constraint optimization problem for computing an optimal pattern,
i.e., an exclusive pattern of minimum cardinality. Let A denote the set of the
maximal c-blocks for class Cj and F' denote the set of foreign proteins (i.e., pro-
teins not in Cy). For each protein ¢ € F', we compute the subset of A containing
the maximal c-blocks whose signature is not matched by protein i. This set is
denoted by E; < A. For each combination of a protein ¢ € F' and a maximal
c-block j € E; a Boolean variable z;; is created which denotes whether j is used
to exclude 7. Another Boolean variable y; is created that denotes whether the
maximal c-block j is part of the pattern or not. For each protein ¢ € F', we want
to select at least one maximal c-block whose signature is not matched by ¢, i.e.,
2jer, Tij = 1. A maximal c-block is selected if it is used to exclude a protein
i, i.e., y; = max,erx;j. The objective is to minimize the number of maximal
c-blocks that are selected for class Cy, i.e., min ZjGA Yy

Notice that the formulation is equivalent to that of a minimum set covering
problem. This model only works for RSPD as it does not use the number of
times a c-block signature is matched by a foreign protein to enforce exclusivity.
We remark that it is possible to have a multiple c-blocks with same signature.
Indeed, it is possible that a c-block signature is matched by a foreign protein but
not as many times as there are maximal c-blocks in A sharing this signature. In
this case, the model will consider each of these c-blocks as compatible whereas
they are incompatible as a whole.

53

8 David Lesaint et al.

Let s, be the number of maximal c-blocks associated with a signature s,
and let {cs,,...,¢s,} S A be some permutation of those maximal c-blocks.
For solving SPD, we additionally associate each maximal c-block cs; with a
number j, and the constraint that if ¢y, is selected then at least j number of
c-blocks associated with the same signature must be selected. These constraints
are enforced through a set of dependencies.

Our preliminary results using SPD are shown in Table 1 which suggest that
the presented approach is indeed scalable for handling large size instances. We in-
vestigated with two databases: Late Embryogenesis Abundant Proteins (LEAP)
and Small Heat Shock Proteins (sHSP). The number of classes and the total
number of proteins in these classes is mentioned in the columns labelled as
nclasses and nproteins respectively. For LEAP 6 out of 12 classes and for
sHSP 3 out of 23 classes were unsatisfiable as they do not have any exclusive
SPD patterns. The maximum (and the minimum) number of maximal c-blocks,
slack and length of an optimal exclusive patterns associated with the classes
of each database is shown in the columns labelled as cardinality, slack and
length respectively.

Table 1. Results of LEAP and sHSP instances obtained using SPD

name |nclasses|nproteins|#unsat|cardinality| slack|length
LEAP| 12 1066 6 5 (1) 4 (0)|13 (4)
sHSP| 23 2244 3 10 (1) |25 (0)|20 (4)

5 Conclusion

We have introduced the notion of soft pattern to characterize and discriminate
classes of protein sequences. Three pattern discovery problems have been formal-
ized to prevent c-block coverage, replication or overlapping. We have shown that
minimal exclusion and maximal refinement are compatible objectives when com-
puting replication-free patterns. The principles of a lexicographic constraint opti-
mization model have been laid out and a two-stage procedure has been sketched.
Future work involves carrying out experiments on two existing datasets of un-
structured and highly structured proteins [9-12].

References

1. Gusfield, D.: Algorithms on Strings, Trees and Sequences. Computer Science and
Computational Biology. Cambridge University Press (2008)

2. Seiler, M. et al.: The 30f5 web application for complex and comprehensive pattern
matching in protein sequences. BMC Bioinformatics, pp. 7-144 (2006)

54

9.

Soft Pattern Discovery 9

. Bailey, T.L. et al.: MEME SUITE: tools for motif discovery and searching. Nucleic

Acids Research, 37:-W202W208 (2006)

. Uversky, V.N., Dunker, A.K.: Understanding protein nonfolding. Biochim. Biophysi.

Acta 1804, pp. 1231-1264 (2010)

. Grant, C.E., Bailey, T.L., Noble, W.S.: FIMO: Scanning for occurrences of a given

motif. Bioinformatics, vol. 27, pp. 1017-1018 (2011)

. Dinkel et al.: ELM the database of eukaryotic linear motifs. Nucleic Acids Res.,

vol. 40: D242-D251 (2012)

. Lesaint, D., Mehta, D., O’Sullivan: Soft Pattern Discovery in Pre-Classified Protein

Families through Constraint Optimization. Technical report (2013)

. Nethercote, N. et al.: MiniZinc: towards a standard CP modelling language, Princ.

and Pract. of Constraint Programming (CP’07), pp. 529-543, Springer-Verlag (2007)
Hunault, G., Jaspard, E.: The Late Embryogenesis Abundant Proteins DataBase.
http://forge.info.univ-angers.fr/~gh/Leadb/index.php (2013)

10. Hunault, G., Jaspard, E.: LEAPdb: a database for the late embryogenesis abundant

proteins. pp. 11-221, BMC Genomics (2010)

11. Jaspard, E., Macherel, D., Hunault, G.: Computational and statistical analyses of

amino acid usage and physico-chemical properties of the twelve late embryogenesis
abundant protein classes. PLoS ONE 7:€36968 (2012)

12. Hunault, G., Jaspard, E.: The Small Heat Shock Proteins Database. sHSPdb. http:

//forge.info.univ-angers.fr/~gh/Shspdb/index.php (2013)

55

